NON-ISOMORPHIC COMPLEMENTED SUBSPACES OF THE REFLEXIVE ORLICZ FUNCTION SPACES LΦ[0,1]
نوع المنشور
بحث أصيل
المؤلفون

Abstract. In this note we show that the number of isomorphism classes of complemented subspaces of a reflexive Orlicz function space LΦ[0,1] is un- countable, as soon as LΦ[0,1] is not isomorphic to L2[0,1]. Also, we prove that the set of all separable Banach spaces that are isomorphic to such an LΦ[0,1] is analytic non-Borel. Moreover, by using the Boyd interpolation the- orem we extend some results on Lp [0, 1] spaces to the rearrangement invariant function spaces under natural conditions on their Boyd indices. 

المجلة
العنوان
Proceeding of the American Mathematical Society
الناشر
American Mathematical Society
بلد الناشر
الولايات المتحدة الأمريكية
Indexing
Thomson Reuters
معامل التأثير
0,681
نوع المنشور
Both (Printed and Online)
المجلد
144
السنة
2016
الصفحات
285-299