Experimental and first-principles study of a new hydrazine derivative for DSSC applications
Publication Type
Original research
Authors
Fulltext
Download

Hydrazine derivatives have a wide variety of applications in organic synthesis, material science, medical treatments, as well as the dye-sensitized solar cells (DSSC). In this work, the molecular structure, electronic spectra and first principles investigation for the exo-endo isomerization in (1E,2E)-bis[1-(4-nitrophenyl)ethylidene]hydrazine were studied. The structural interactions and synthon formations have been determined experimentally via Hirshfeld surface analysis (HSA) and two-dimensional fingerprint plots (2D-FP). Furthermore, the solid-state XRD/HSA interactions have been used to explain the physical behavior of the compound. The transition state for the exo-endo isomerization was located using density functional theory (DFT). The activation barrier is estimated to be 110.5 kJ/mol (in vacuo). The endo isomer was found to be slightly more stable than the exo one. The UV-Vis spectra of the two isomers were obtained using time-dependent density functional theory (TDDFT) and compared to the experimental spectra in vacuo, water, and methanol. To explore the potential of the new compound as a DSSC sensitizer, the emission spectrum was also constructed by optimizing the singlet electronic excited state.

Journal
Title
Journal of Molecular Structure
Publisher
Elsevier
Publisher Country
Netherlands
Indexing
Scopus
Impact Factor
4.0
Publication Type
Both (Printed and Online)
Volume
1229
Year
2021
Pages
12