Hemolysis of Human Erythrocytes by Riboflavin in the Presence of Cu(II)‎
Publication Type
Conference Paper

The photodynamic action of riboflavin is generally considered to involve the generation of reactive oxygen species, whose production is
enhanced when Cu(II) is present in the reaction. In the present study we report that photoactivated riboflavin causes K‡ loss from fresh
human red blood cells (RBC) in a time dependent manner. Addition of Cu(II) further enhances the K‡ loss and also leads to significant
hemolysis. Riboflavin in a 2:1 stoichiometry with Cu(II) leads to maximum K‡ loss and up to 45% hemolysis. Bathocuproine, a specific
Cu(I)-sequestering agent, when present in the reaction, inhibits the hemolysis completely. Free radical scavengers like superoxide dismutase,
potassium iodide and mannitol inhibited the hemolysis up to 55% or more. However, thiourea was the most effective scavenger showing
90% inhibition. These results suggest that K‡ leakage and hemolysis of human RBC are basically free radical mediated reactions.

Conference Title
Federation of American Society for Experimental Biology
Conference Country
Conference Date
July 2, 2005 - July 7, 2005
Conference Sponsor
International union of biochemistry and molecular biology