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Abstract—An epileptic seizure, a disorder in brain function-
ality, happens when electrical bursts spread across the brain,
causing the person to lose control or consciousness. Predict-
ing epileptic seizures before they occur is useful for seizure
prevention with medicine or for neural pre-surgical planning.
Machine learning and computational methods are used to predict
epileptic seizures from electroencephalogram (EEG) recordings.
However, noise removal and feature extraction in EEG data are
two important challenges that have a negative impact on the
effectiveness of both time and true positive prediction rate. We
offer a model in this paper that provides a reliable strategy for
both preprocessing and feature extraction. Our model is based
on a two-dimensional Convolution Neural Network (CNN), with
EEG input provided to the CNN in the form of two-dimensional
images. On the University of Bonn data set’s normal vs intericatl
vs ictal instance, our proposed system achieved 97.8 percent
accuracy and over 97 percent for the other parameters, which
include precision, recall, F1-score, and ROC-AUC. Our findings
are reproducible using the code available on github [1].

Index Terms—epilepsy, convolution neural networks, machine
learning, eeg, seizure

I. INTRODUCTION

The human brain, the central part of the nervous system,
is a complex network that contains billions of neurons and
thousands of synapses per neuron that communicate with each
other using electrochemical signals. Any condition that affects
brain functions is considered a brain disorder. This includes
conditions caused by illness, genetics, or traumatic injury.
Excessive and abnormal firing of electrical signals in the brain
causes a brain disorder called a seizure. The condition of
frequent seizures is called epilepsy. Epilepsy is the fourth most
common neurological disorder that affects about fifty million
people worldwide at all ages [2]. Therefore, it is important to
periodically monitor the brain to manage and prevent seizures.

An Electroencephalogram (EEG) is a noninvasive monitor-
ing technology used widely to record electrical activities of
the brain and detect potential problems associated with these
activities, such as epilepsy, sleep disorders, and encephalitis.
EEG is a low-cost, non-invasive medical tool that displays
the status of the brain. It proved to be a powerful technique
for diagnosing epilepsy. However, manual analysis of long
recordings of EEG signals by neurologists is time-consuming

and requires the availability of an experienced neurologist. In
response, several automatic methods were proposed to help
neurologists detect epilepsy in EEG signals [3]–[6]. Several of
these methods have been used to distinguish between binary
epileptic states, such as seizure vs. non-seizure or normal
vs. ictal. However, the majority of them have difficulties
distinguishing between the three states: ictal, normal, and
inter-ictal. As a result, automatic diagnosis of brain disorders
from EEG signals is a critical job in the field of neuroscience.

The majority of existing epilepsy detection algorithms in-
volve signal processing to extract features from the EEG
signal, which are then used to train a machine learning
model to classify the EEG data. This strategy frequently
produces excellent accuracy in the case of binary classification.
However, it performs badly when comparing normal vs. ictal
vs. inter-ictal [4]. As a result, machine learning algorithms
must overcome a number of challenges in order to tackle
this problem. Among these difficulties is a scarcity of EEG
data pertaining to epilepsy. Furthermore, the presence of noise
in the data creates an extra barrier for machine learning
algorithms that aim to avoid learning from the noise. In this
research, we present an EEG classification strategy based on
grayscale images and a deep two-dimensional Convolution
Neural Network (CNN). By transforming the EEG data to a 2D
EEG image, the process of noise filtering, feature extraction,
and feature reduction is simplified. CNN will handle these
specifics. In this technique, CNN acts as a neurology expert
examining EEG signals. When compared to earlier work, our
results indicate an improvement in detection.

The proposed augmentation approach in [4], [7] is utilized
to increase the quantity of the training data, which improves
accuracy. By augmenting two-dimensional EEG images, CNN
may learn with several views on a single EEG image. In
addition, using EEG images for classification improves the
model’s robustness when compared to the one-dimension
model, which is susceptible to noise. When the EEG image
is fed into a CNN, the proposed model ignores the noise
input while extracting essential characteristics throughout the
convolution layers. Another advantage of this model is that
it may be used with EEG inputs from multiple EEG devices
with different sampling rates and amplitudes. While learning
based on 1d signals may entail the creation of a new model for
each device. The proposed model can be utilized for long-term978-1-6654-3279-5/21/$31.00 ©2021 IEEE



EEG signal monitoring and can assist specialists in identifying
brain illnesses.

The remainder of this paper is structured as follows. Section
2 includes a summary of relevant work. Section 3 goes
into detail on the approaches utilized for EEG classification,
including a convolutional neural network classifier. Section 4
discusses our EEG classifier evaluation results. Finally, Section
6 summarizes the paper’s discussion and conclusion.

II. RELATED WORKS

Classification of EEG signals into epileptic and non-
epileptic involves extracting features from the EEG signals
and using these features in training a machine learning model.
In the literature, several feature extraction approaches and
several classification methods are used. Several groups used
the Discrete Wavelet Transform for feature extraction and then
they applied different machine learning algorithm. Guo et al.
[8] extracted features such as entropy, standard deviation, and
energy from EEG signals using discrete wavelet transform
(DWT). For classification, they used Artificial Neural Network
(ANN). They reported 97.8% accuracy for the seizure vs non-
seizure case (ABCD vs E) on the University of Bonn dataset.
Swami et al. [9] took a similar method, employing the DWT
to extract features including entropy, root-mean-square, and
energy. They used the regression neural network classification
approach on the University of Bonn dataset and reported an
accuracy of 100 percent for seizure versus non-seizure (A-E)
cases and 98.2 percent for normal vs seizure cases (AB-E).

Other studies utilized DWT to extract the attributes but
classified the data using SVM and probabilistic neural net-
works (PNN) [10]. For normal vs. seizure classification, they
reported a 95.44 percent accuracy rate (ABCD-E case). In
a similar work, Shoeb [11] used energy as a feature and
SVM as a machine learning classifier, as well as a patient-
specific prediction approach. Permutation entropy was utilized
as a feature, and the SVM was used as a classifier, by
Nicolaou et al. [12]. On the University of Bonn dataset, they
reported a 93.55 percent accuracy for the A-E example. The
maximum accuracy was 86.1 percent in the remaining cases.
The accuracy rate was claimed to be 96%. In addition, wavelet
transform was employed for feature extraction in Khan et al’s
work [13].

The authors of [14] employed the wavelet transform to
obtain the tensor representation of EEG signals and principal
components analysis to extract features. The Bayesian Linear
Discriminant Analysis (Bayesian LDA) was used to classify
the tensor distance features, with a reported accuracy of 97.60
percent. Acharya et al. [15] employed four entropies features
to detect seizures and compared the performance of seven
different classifiers based on classification accuracy. The Fuzzy
Sugeno classifier was shown to be the best model, while
the Naive Bayes classifier was found to be the worst. The
authors of [16] used spectral features derived from the Discrete
Wavelet Transform (DWT) and the Discrete Fourier Transform
in five frequency bands (DFT). For classification, a neural
network (NN) classifier based on improved particle swarm

optimization (IPSO) is used. They stated ” their sensitivity had
improved”. Similar approch is done in [17] where they used
Chebyschev filter. Fractal geometry is employed as a feature
of EEG data in [3]. The neural network is trained using an
extreme learning machine (ELM). The sensitivity was 91.72
percent and the specificity was 94.89 percent.

In [4], the features were extracted using variational mode
decomposition and quadratic feature extraction, and the classi-
fication was done using Random Forest. For the case of normal
vs interictal vs ictal, they reported a 97.4 percent accuracy.
Ihasan et al. [7] employed an ensemble learning technique
based on voting scheme and a 1D convolutional neural network
model. They reported that the CNN findings were 96.1 percent
accurate, and that the ensemble learning results were 99.1
percent accurate. In [18], multi-modal Machine Learning is
used to integrate EEG features. EEG from patients were used
to discriminate healthy subjects from patients. Continuous
Wavelet Transform used to extract features from EEG sub-
bands. They reported that a neural network classifier outper-
forms Logistic Regression and Support Vector Machine.

A convolutional network was used in another study to learn
seizure characteristics from EEG data. Then, to understand
the temporal dependencies in EEG data, these features are
loaded into a Nested Long Short-Term Memory (NLSTM)
model. They stated that this model performed well, with an
accuracy range of 98.44-100 percent [5]. Convolutional neural
networks are also used in [5]. They reported accuracy and
specificity scores of 99.3 percent and 99.6 percent for the
CHB-MIT dataset, respectively, as well as 98.0 percent and
98.3 percent for patients [6]. Patel et al [19] proposed seizure
detection in ambulatory EEG. On 13 different subjects, they
compared various classifiers. When trained and assessed on
a single subject, linear discriminant analysis (LDA) performs
best. It has an overall accuracy of 76.5 percent.

According to the preceding research, most feature extrac-
tion algorithms are theoretically designed using statistical or
numerical methods and are not data-adaptive. To improve the
accuracy and generalization of an epilepsy detection system, a
deep learning technique is utilized instead of feature extractors
and classifiers. With an accuracy of 99.1%, the deep learning
algorithms proposed in [7] outperform all previous approaches.
They employed a 1D convolutional network and ensemble
learning to improve their method. As a result, we motivated
to follow their example and use a deep learning method, but
this time using a 2D convolutional network rather of a 1D
convolutional network, and to apply ensemble learning scheme
to improve the results.

III. METHOD

The suggested CNN classifier for detecting epilepsy from
EEG signals is divided into two steps: preprocessing and clas-
sification. During the preprocessing step, the EEG signals are
divided into sub-signals using an augmentation strategy. The
sub-signals are then converted to 2D images. The 2D images
are used as input to the CNN classifier in the classification
step, which performs classification of the three epilepsy states.



Fig. 1. System Architecture

The complete technique is depicted in Figure 1 and is detailed
below.

A. Data set

In this research, we used the University of Bonn epilepsy
dataset for CNN model training and testing [20]. The data
set is divided into five sections labeled A, B, C, D, and E.
Each set has 100 recordings of brain signals. Signals from the
surface of the cerebral cortex were recorded from five healthy
participants in groups A and B. Group A is recorded when
the eye is open, and group B is recorded when the eye is
closed. Groups C and D contain the EEG records of patient
individuals between seizures. EEG signals from the epileptic
region (epileptogenic zone) are found in Group D, but signals
from the hippocampus on the opposite side of the epileptic
area are found in Group C. Signals from patient individuals’
seizure activities are contained in Group E. Figure 2 illustrates
a representative sample from each group. Each record is 23.6
seconds long. Each set has 4097 samples. 173.61 hertz is the
sampling rate. The data set is in text format, with 100 text
files in each category.

Because the purpose of this study is to categorize EEG
signals into three categories: normal, interictal, and ictal, the
normal group is generated by joining groups A and B. The
interictal group is formed by combining groups C and D, while
group E makes up the ictal group. The available signals are

separated into three categories: training, validation and testing
sets. The test data set is created by randomly selecting 10%
of each group’s files. The remaining 90% of the data is used
for training and validation.

B. Pre-processing

The number of examples in this dataset is insufficient to
build a comprehensive learning model. As a result, the model
is likely to overfit. Obtaining a larger number of EEG signals
is usually not possible, and recognizing these cases by expert
neurologists is a challenging task. As a result, in order to
improve training and generalization accuracy, we adopted an
augmentation technique to expand the size of the data set. In
addition to increasing the amount of samples, the augmentation
scheme can be used to keep the data balanced between classes.
This is relevant in general, but particularly in medical imaging,
because the vast majority of them are normal, with only a few
abnormal instances. The augmentation method proposed in [4]
and employed in [7] is also used in this work. The data set
is augmented in this technique by using a sliding window of
size w samples and a stride of s samples, as shown in Figure
1.

Because each EEG file provides a signal with a sample size
of n = 4097. Each signal can be augmented with m sub-
signals, where m equals to floor((n−w)/s) + 1. Each sub-
signal is handled as a seperate sample in training the model.



Fig. 2. University of Bonnepilepsy data set

In the case of unbalanced data sets, we used w = 512 and
s = 64 in the training, validation and testing data sets for all
groups. This would yield 57 sub-signals from each signal, for
a total of 28500 sub-signals. We emphasize here that the data
splitting technique is based on signals rather than sub-signals.
This means that all sub-signals of a given signal will be in
either the training, validation, or testing data sets, but not in
more than one set in order to avoid data leaking. Using the
augmentation strategy, we can balance the samples among the
classes; for example, we can use w = 512 and s = 32 for
group E to nearly quadruple the amount of sub-signals from
group E. In this paper, we kept the data unbalanced, but we
adopted a stratified sampling in all our experiments.

Because the CNN model’s inputs are 2D EEG images,
employing different overlapping parts of the EEG signals
expands the training set while maintaining performance. In
the next step, the EEG data was converted to a 2D image
by plotting each EEG sub-signal on fixed-sized axes, and the
figure frame was captured as a 2D gray-scale image. For
this task, we used the Matlab environment. These images
were then used to train and evaluate the performance of the
convolution neural network. In this study, we investigated
image resolutions of 64× 64 and 128× 128.

C. EEG classifier

In this study, we used CNN as an epilepsy classifier. CNN
was created in response to the Artificial Neural Network’s
(ANN) limitations in image classification. The exponential in-
crease in the number of free parameters made ANN ineffective
for image classification. The reason is that ANN does not take
the image’s topology into account while CNN can extract local
visual features automatically utilizing convolution and pooling
layers which reduces the need for signal processing and the
challenge of feature engineering. As a result, using 2D CNN
is similar to how a neurologist analyzes EEG information

There are various CNN architectural models, includ-
ing AlexNet, GoogleNet, VGGNet, ResNet, and DenseNet.

GoogleNet and VGGNet won first and second in the ILSVRC-
2014 classification challenge, respectively. However, VGGNet
is more popular due to its simpler structure. ResNet and
DenseNet are two more recent CNN models. They developed a
deep neural network to overcome the vanishing gradient prob-
lem, which happens when early features have little influence
on the output. In this work, we looked at VGGNet’s design,
then modified its structure and evaluated its performance in
identifying EEG signals. The architecture of the CNN that we
utilized is shown in Figure 3.

As shown in Figure 3, the proposed CNN architecture
contains six convolutional layers interspersed with three max
pooling layers for feature extraction and two fully-connected
layers. The convolutional layer kernel size is 3x3 and has a
stride of 1 and a padding of 1. Each convolutional layer is
made up of several channels. The architecture begins with a
small number of kernels equal to 64 in the first two layers, then
climbs to 128 in the following two layers, and finally 256 in
the last two layers. The convolutional layer’s basic principle
is that it learns the hierarchy of low to high-level features
from the provided input image. These features are obtained
via convolution of the input with a number of filters learned
during training.

A max pooling layer is inserted after each block of convo-
lution layers to reduce the spatial dimension. The max pooling
layers use 2× 2 kernels with a stride of 2, which reduces the
size of the previous layer by half. The function of this layer is
to summarize the features activated by the convolutional layer.
To accelerate convergence, we used batch normalization after
each convolutional layer, followed by an activation function.
The ReLu activation function is employed in this work. A
dropout layer is used after each convolutional layer block
and after the fully connected layer to decrease or eliminate
overfitting. The Fully connected layer is the most effective way
for learning non-linear features generated by the convolutional
layer. The semantic representation of the high-level features is
provided to the softMax classifier in the final layer, which



Fig. 3. The convolution neural network structure

predicts the class of the input EEG image. Figure 3 depicts
an overview of our model at a high level. Some of the CNN
parameters are covered in further detail below.

a) Kernel initialization:: In deep learning, the initializa-
tion of the kernel weights is important for optimal convergence
of the gradient descent to avoid being trapped in local minima.
Keras allows a variety of kernel and bias initialization options
per layer. After experimenting with different initializers, we
used the Glorot normal initializer, which is also called the
Xavier normal initializer.

b) Activation function:: The primary purpose of the
activation function is to introduce non-linearity to the system
which allows it to learn complex pattern from the data. If no
activation function is applied, the neural network would be
just a linear regression model. Several non-linear function are
used in the literature including rectified linear units (ReLU),
Leakage rectified linear unit (LReLU), and exponential linear
units (ELU). In this paper we experimented with ReLU and
LReLU and ELU activation functions.

c) Batch normalization:: The goal of batch normal-
ization is to speed up convergence and increase the stability
of a network. It works by normalizing the output of a layer
by subtracting the batch mean and dividing by the standard
deviation. The reason for this is that in a deep network, a
small change in a parameter can cause a large influence on the
input distribution of the next layer which is known as internal
covariate shift problem. The goal of batch normalization is to
reduce this effect. Batch normalization is usually applied just
before the activation function and after the convolution layer
and it can be applied after the activation of a layer including
the fully connected block.

d) Regularization:: Regularization is used to minimize
overfitting when training the network. L1 and L2 norm are
used in most recent networks and they require a hyperparame-
ter to be tuned. Keras allow adding a penalty for weight size to

the loss function in what is called weight regularization. By de-
fault no regularization is used in any layer. Another approach
for regularization is dropout. It is a form of regularization
to reduce overfitting by randomly dropping out nodes during
training. This technique is computationally cheap and provides
an effective regularization method in deep neural networks
and it improves the generalization of deep neural networks.
Dropout reduces dependency between layers. The net effect is
a voting effect by the model combination. In this paper, we
applied a dropout with a probability of 0.5. The dropout layer
is placed after the batch-normalization layer.

e) Cost and optimizer function:: The cost or fitting
function indicates how well the network has been trained. It
computes the difference between the expected values and the
desired output, with the objective of minimizing this differ-
ence. Cost functions of various forms have been employed. We
used cross-entropy, which is commonly used in deep learning
problem classification.

D. Performance Measures
The evaluation metrics typically used in the binary clas-

sification include: Accuracy, Precision, Recall, f1-score, and
AUC-ROC. The calculation of these measures is based on the
outcome of the classification model which can be written in
a confusion matrix form. In case of binary classification, the
confusion matrix is a table with 4 different combinations of
predicted and actual values. The elements of the matrix TP,
TN, FP, and FN correspond to the True Positive, True Neg-
ative, False Positive, and False Negative counts, respectively.
These measures are defined as follows:

• Accuracy: The fraction of correct predictions:
accuracy = TP + TN/(TP + TN + FP + FN)

• Precision: The fraction of the actually positive samples
out of the predicted positive samples. It provides a mea-
sure of the accuracy of positive predictions: Precision =
TP/(TP + FP )



Fig. 4. Learning curve, accuracy (left) and loss (right)

• Sensitivity or Recall or True Positive Rate (TPR): The
fraction of the correctly predicted positive values out of
the actually positive samples. It measures the ability of
the classifier to find all the positive samples: Recall =
TP/(TP + FN)

• Specificity or True Negative Rate (TNR): The fraction
of negative test results that are correctly identified as
negative (true negative). It measures the effectiveness
of a classifier in the identification of negative labels:
Specificity = TN/(TN + FP )

• F1–score: Combines the precision and recall into a sin-
gle metric that provide a simple way to compare two
classifiers. F1-score is defined as the harmonic mean of
Precision and Recall. As a result, the classifier will only
get a high F1-score if both recall and precision are high:
F1 = 2 ∗ ((precision ∗ recall)/(precision+ recall))

• AUC-ROC: The classification model predicts the class
of an input sample by predicting the probability of the
sample belonging to the class. Based on the threshold
value the class of the sample is determined. Therefore, by
varying the threshold value for the classification model,
the sensitivity and the specificity will be changed. Then
we can select the threshold value depending on whether
we want to lower the False Negatives or False Positives.
By changing the threshold the confusion matrix result
will change. And so by plotting the sensitivity vs the
specificity at different threshold values, we get the ROC
curve which can be used to chose the desired threshold
value. Both sensitivity and specificity are used to plot
the Receiver Operating Characteristics Curve (ROC). The
Area Under the ROC curve gives another useful measure.
The calculation of the AUC curve is done by using a
set of thresholds to compute pairs of True Positive Rate
(TPR) and False Positive Rate (FPR). The well accepted
interpretation of the AUC values follows the academic
point system: 0.9-1.0 (Excellent), 0.8-0.9 (Good), 0.7-0.6

(Acceptable), 0.6-0.7 (Poor discrimination), 0.5-0.6 (Fail
– no discrimination).

The generalization of binary classification measures to
multi-class classification can be achieved by applying them
to each class independently (one–versus–rest ) and then aver-
aging the results [21]. For each class Ci, the binary confusion-
matrix has the elements tpi, fni, tni, fpi. The overall measure
is calculated by two ways: 1) macro-averaging, the overall
measure is just the average value of the measures calculated for
each class C1; ...;Cl, and 2) micro-average, the sum of counts
(tpi, tni, fpi, fni) is calculated first and then the overall
measures are computed as in the binary classification using
the accumulative values. Macro-averaging gives equal weight
to each class and suitable when classes are equal. Micro-
averaging favors bigger classes and more suitable when the
classes are not equal.

ROC-AUC score extends to problems with three or more
classes by using two averaging strategies, one-vs-rest (ovr) and
one-vs-one (ovo) approach. In the one-vs-rest approach, the
average of the ROC-AUC scores is computed by calculating
the average of ROC-AUC against all other classes. In the one-
vs-one approach, the average is computed pair wise for all
possible combinations of the classes.

IV. RESULTS

The proposed classifier is implemented in Python language
using the Keras-Tensorflow Implementation. Keras and Ten-
sorflow are open source software libraries for deep learning.
In training the CNN, we used the RTX 2060 super GPGPU
graphics card to speed up the training process. Our computa-
tional system consists of a workstation running Intel 6 core
I7 and 16 GB of RAM. TensorFlow is accelerated by using
CUDNN[4] on the RTX graphics card. The complete code and
the version of the software is available on Githup [22].



TABLE I
CROSS VALIDATION USING IMAGES OF SIZE 64 X 64

Fold Loss Accuracy PrecisionM RecallM F1− scoreM auc− ovoM
1 0.06567 98.74% 98.93% 98.39% 98.65% 99.90%
2 0.11017 96.88% 97.22% 97.22% 97.22% 99.75%
3 0.07448 98.25% 98.54% 98.54% 98.54% 99.89%
4 0.04350 98.21% 98.42% 98.01% 98.21% 99.94%
5 0.10646 97.37% 97.90% 97.22% 97.52% 99.85%
6 0.05019 98.42% 98.69% 98.27% 98.48% 99.92%
7 0.10238 96.88% 97.41% 97.19% 97.30% 99.78%
8 0.32400 95.58% 96.58% 93.68% 94.85% 97.67%
9 0.04585 98.53% 98.78% 98.60% 98.69% 99.93%

10 0.02431 99.12% 99.07% 99.18% 99.12% 99.98%
Average 0.09470 97.80% 98.15% 97.63% 97.86% 99.66%

stdev 0.08577 0.01092 0.00837 0.01542 0.01237 0.00702

A. Training and model selection

Training a CNN is the process of determining the optimal
values of the weight parameters (kernels) by minimizing an
objective function using the training set. The cross-entropy
objective function, which is commonly used for classification,
was applied. For back propagation, we used the Adam mini-
batch gradient descent optimizer. We used all of the Adam
algorithm’s default hyperparameters except the learning rate,
which we approached using the “Cosine annealing learning
rate scheduler with periodic restarts” method described in [22]
and implemented in [23]. After experimenting with various
batch sizes, we discovered that as the batch size increases,
performance measures improve up to a batch size of 128 for
the 64 × 64 images. Due to the memory restriction in our
training system, we did not test for more than 128 batch size
for 64 × 64 images and 48 for 128 × 128 image sizes. This
can be explained due to our augmentation technique, which
replaces each signal with 57 overlapping signals, it’s possible
that the majority of data in small batches will come from
one or two classes. As a result, the gradient descent updated
step will be dependent solely on these classes. As a result,
increasing batch size improves the possibility that multiple
classes will be included in the batch, thus reducing this effect.

The number of epochs varies between executions due to
the use of early stopping. We used a rate of 0.5 for dropout.
Tensorflow version 2.4.1 and Sklearn version 1.0 were used to
build the model. To address the problem of a limited amount
of data in the detection of epilepsy, we applied the data
augmentation technique described in §III-B. Each EEG sub-
signal is treated as a separate instance in this training method.
Each sub-signal image is identified as normal (0), interictal (1),
or ictal (2) . The learning curve for a given training instance
is depicted in Figure 4. As illustrated Figure 4(left), the figure
reveals that the training and validation accuracies are near to
one another, indicating that the model is not overfit. Figure 4
(right) depicts the training and validation losses at the end
of each training epoch, with both the validation and training
losses decreasing as the training progresses.

B. Model Selection

To select the best model that can classify the EEG signals
into three classes with highest accuracy, we considered two

different image resolution, 128×128 pixel resolution and 64×
64 pixels. To properly evaluate and tune the parameters of
the proposed CNN classifier, 10-fold stratified group cross-
validation was used during the evaluation

All 10-fold cross validations are generated at random, with
10% of each group included in a test set and the remaining
90% included in a training set. The signals were then aug-
mented with the previously established augmentation scheme.
The average performance for each measure is then calculated
using the ten distinct testing sets. Table I displays the results of
a 10-fold cross validation experiment with an image resolution
of 64× 64. In this situation, the average accuracy is 97.80%,
while all other measurements are greater than 97.5%. It was
obvious that raising the batch size improved accuracy and all
other metrics. For example, as we increased the batch size
from 10 to 32 to 48 to 64, the accuracy climbed from 96
percent to 97 percent to 97.8 percent. As demonstrated in
Table II, the performance results did not improve as anticipated
for the 128×128 resolution, where the accuracy is 97.6 percent
and all other performance indicators are above 97 percent. In
this situation, the batch size is 48, which is the maximum that
our machine can handle.

We did not consider the 2-class cases in this paper because
the literature reported very good accuracy close to 100 percent
in these cases. As a result, the focus of this work is solely on
the more difficult problem, which is the three-class problem:
normal (AB) vs epileptic inter-ictal (CD) vs ictal (E). Our
experimental results effectively indicated that the proposed
CNN classifier can achieve acceptable classification accuracy
using adjusted EEG images without any manual EEG signal
pre-processing such as noise filtering, feature extraction, and
feature reduction methods.

In comparison to the state-of-the-art, Zhang et al. [4]
reported an accuracy of 97.4 percent on the three cases, while
Ihsan et al [7] reported an accuracy of 96.1 percent when
using 1D CNN alone and an accuracy of 99.1 percent when
utilizing ensemble learning with voting algorithm. Without
the use of any ensemble learning scheme, our results reaches
an accuracy of 97.8 percent. We are now exploring several
ensemble learning algorithms and anticipate that our findings
will improve significantly.



TABLE II
CROSS VALIDATION USING IMAGES OF SIZE 128× 128

Fold Loss Accuracy PrecisionM RecallM F1− scoreM auc− ovoM
1 0.0322 98.84% 99.04% 98.86% 98.95% 99.98%
2 0.0971 97.16% 97.66% 97.25% 97.44% 99.81%
3 0.0718 97.37% 97.84% 97.81% 97.81% 99.89%
4 0.0645 97.75% 97.91% 97.49% 97.68% 99.89%
5 0.0805 97.30% 97.12% 97.75% 97.41% 99.84%
6 0.0291 99.12% 99.27% 99.18% 99.23% 99.98%
7 0.0719 97.72% 97.96% 97.28% 97.60% 99.85%
8 0.0469 97.96% 98.37% 98.25% 98.28% 99.99%
9 0.3061 95.40% 95.74% 95.03% 95.31% 98.79%
10 0.3358 97.30% 97.83% 96.08% 96.85% 98.85%

average 0.1136 97.59% 97.87% 97.50% 97.66% 99.69%
stdev 0.1115 0.01016 0.009863 0.01230 0.01095 0.004614

V. CONCLUSION AND FUTURE WORK

A 2D CNN classifier is used in this paper to classify
three types of EEG signals: normal, ictal, and interictal.
Because the number of epilepsy signals was small, we used
an augmentation scheme based on a fixed-sized overlapping
window. Furthermore, our model was refined utilizing cutting-
edge deep learning techniques such as batch normalization,
dropout, and a dynamic learning rate scheduler. To properly
validate the proposed classifier, the performance was assessed
using a 10-fold stratified group cross-validation approach. As a
consequence, our CNN classifier attained an average accuracy
of 97.8 percent, a precision of 98.15 percent, a recall of 97.63
percent, and a f1-score of 97.86 percent. The key advantage of
employing 2D CNN is that the input signal does not need to
be processed for feature extraction and feature reduction using
any signal processing techniques, and the results exceed state-
of-the-art epilepsy detection techniques. This method attempts
to simulate an expert neurologist by viewing a 2D image
of the EEG signal. The fundamental disadvantage of this
strategy is the lack of training data and the need for training-
intensive computing, in addition to parameter tweaking. We
are currently developing and assessing numerous ensemble
learning algorithms in order to improve our outcomes.
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