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[1] We present a computationally efficient algorithm which combines the finite element method
with Padé approximation. The combination is used to solve the problem of transverse magnetic and
transverse electric scattering from homogeneous lossy dielectric cylinders over a continuous range
of the complex permittivity variable by requiring the finite element solution only at a single
complex permittivity value. The proposed method is based on (1) assuming a power series
expansion for the unknown solution vector, the excitation vector, and the system matrix, (2)
substituting this into the system matrix equation, and (3) finding the recursion relation for the
solution vectors. INDEX TERMS: 0669 Electromagnetics: Scattering and diffraction; 0644
Electromagnetics: Numerical methods; KEYWORDS: Padé approximation, finite element method,
electromagnetic wave scattering

1. Introduction

[2] Several frequency domain methods are available

in the literature for the solution of electromagnetic

scattering by dielectric cylinders of arbitrary cross

section [Abu-Zaid et al., 1999; Peterson and Castillo,

1989]. One of the disadvantages of these frequency

domain techniques, however, is the computational cost

involved in getting the solutions over an interval of a

predefined parameter, such as frequency or permittivity.

It is required to calculate the fields for each such

distinct parameter value to obtain the complete behav-

ior over the interval, and in order to get an accurate

representation of the overall response, one needs to

repeat the calculations at finer increments of complex

permittivity (or frequency). This can be computation-

ally intensive, and the total CPU time needed to

compute the fields can be highly prohibitive. To over-

come this problem, we replace the unknown solution

vector with its complex permittivity (or frequency)

power series, and then suitable Padé approximants

are obtained from the coefficients of the power series

[Baker and Graves-Morris, 1996]. The method was

originally developed to calculate frequency response

[Jiao et al., 1999; Kuzuoglu and Mittra, 1999; Gong

and Volakis, 1996; Zhang and Jin, 1998]. It has been

observed that such an approximation provides an out-

put response that is highly accurate over a wide range

by solving the scattering problem only at a single

complex permittivity (or frequency) value. In this

paper, we will be interested only in complex permit-

tivity changes at a fixed frequency. A following paper

will involve frequency variations at constant complex

permittivity. Work is also in progress for both permit-

tivity and frequency variations in their respective

intervals.

2. Formulation

[3] Consider an infinitely long homogenous and lossy

dielectric cylinder with an arbitrary cross section. Either

a transverse magnetic (TM) or a transverse electric (TE)-

polarized plane wave is incident on the scatterer at an

angle jinc with respect to the +x axis. The situation is

depicted in Figure 1. Based on the total field formulation,

the scalar wave equation is written as [Peterson and

Castillo, 1989; Jin, 1993]

TM polarization r � 1

mr
rEz

� �
þ k2oe

0

rEz ¼ 0;

TE polarization r � 1

e0r
rHz

� �
þ k2omrHz ¼ 0; ð1Þ

where V = V1[V2, x; yð Þ 2 V, e0r is the complex relative

permittivity of the scatterer, ko is the free space wave
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number, and mr is the relative permeability of the scatterer.

Multiplying (1) by a weighting function W(x, y),

integrating over the domain V, and then using some

identities yields the following weak equations [Peterson

and Castillo, 1989; Jin, 1993]:

TM polarization

ZZ
V1


rW � rEz þ k20mre
0
rWEz

� �
dV1

þmr

ZZ
V2


rW � rEz þ k2oWEz

� �
dV2

þmr

Z
@V

W rEz � _
n

� �
dl ¼ 0; ð2aÞ

TE polarization

ZZ
V1


rW � rHz þ k20mre
0
rWHz

� �
dV1

þe0r

ZZ
V2


rW � rHz þ k2oWHz

� �
dV2

þe0r

Z
@V

W rHz � _
n

� �
dl ¼ 0; ð2bÞ

The line integrals on @V are readily obtained by means of

the absorbing boundary conditions [Peterson and Cas-

tillo, 1989]. In the context of finite element method (FEM)

discretization of (2a) and (2b), there results a matrix

equation of the form [Peterson and Castillo, 1989; Jin,

1993]

K e0r
� 	

C e0r
� 	

¼ b e0r
� 	

; ð3Þ

where K(e0r) is an N � N complex matrix, C(e0r) is the

N � 1 unknown solution vector, b(e0r) is the N

excitation vector, and N is the total number of nodes

in the grid. The problem of interest here is to find C(e0r)
for a finite range of complex permittivity values by

solving (3) only at a single complex permittivity value,

say e0rc. To accomplish this task, let us start by assuming

that the unknown vector C(e0r) has a power series

expansion about e0rc of the form

C e0r
� 	

¼
X1
i¼0

ci e0r 
 e0rc
� 	i

: ð4Þ

Then our immediate goal is to derive recursive

formulas for the unknown expansion vectors ci. Noting

that the system matrix K can be written as a finite

polynomial in e0r, it is easy to obtain its power series

expansion as

K e0r
� 	

¼
X1
i¼0

Di e0r 
 e0rc
� 	i

: ð5Þ

Similarly, the right-hand-side vector, namely b, is also

expanded as

b e0r
� 	

¼
Xdp
i¼0

Fi e0r 
 e0rc
� 	i

; ð6Þ

dp ¼
0 for TM polarization

1 for TE polarization

�
;

where Di and Fi are known expansion matrices and

vectors, respectively. Substitution of (4), (5), and (6)

into (3) and left multiplication by Do

1 gives

�
Iþ e0r 
 e0rc

� 	
D
1

o D1

X1
i¼0

ciðe0r 
 e0rcÞ
i

#"
ð7Þ

¼ D
1
o

Xdp
i¼0

Fiðe0r
e0rcÞ
i:

Expanding (7) and equating terms of similar powers,

we obtain the recursive formula

co ¼ D
1
o Fo i ¼ 0;

ci ¼ D
1
o F1dp 
 D
1

o D1ci
1 i � 1:
ð8Þ

[4] A technique that extends the convergence

range of the power series expansion is the so-called

Padé approximation, which allows us to obtain a

representation of C(e0r) which is valid over a much

wider range of complex permittivity than does the power

series. Once the power series coefficient vectors ci are

obtained, Padé approximants are found according to what

follows. Consider a single component of the vector C(e0r)
and denote it by C j(e0r). If we express C j(e0r) by its

truncated power series around e0rc, then the [L/M ] Padé
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Figure 1. Cross section of the cylindrical geometry under
consideration.
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approximants are obtained by representing C j(e0r) as the
quotient of two polynomials [Baker and Graves-Morris,

1996]

C j e0r
� 	

�
XN
i¼0

c
j
i ðe0r 
 e0rcÞ

i ¼

PL
i¼0

pi e0r 
 e0rc
� 	i

PM
i¼0

qi e0r 
 e0rc
� 	i ¼

PL

QM

;

ð9Þ

where ci
j is the jth component of the ith power series

coefficient vector ci, QM(0) � 1, and N = M + L.

Upon expanding (9), we obtain M + N + 1 equations.

From the last M equations we solve for the q,

specifically,

c
j
L c

j
L
1 � � � c

j
L
Mþ1

c
j
Lþ1 cL

j � � � c
j
L M

..

. ..
. ..

.

c
j
LþM
1 c

j
LþM
2 � � � c

j
L

2
66664

3
77775

q1
q2

..

.

qM

2
6664

3
7775 ¼ 


c
j
Lþ1

c
j
Lþ2

..

.

c
j
LþM

2
66664

3
77775:

ð10Þ

Then from the first L + 1 equations, the p are found

by a simple matrix multiplication as

c j
o 0 � � � 0

c
j
1 c j

o � � � 0

..

. ..
. ..

.

c
j
L c

j
L
1 � � � c j

o

2
6664

3
7775

1

q1

..

.

qL

2
6664

3
7775 ¼ 


po
p1

..

.

pL

2
6664

3
7775: ð11Þ

3. Numerical Results

[5] To demonstrate the efficiency of the method, a

number of examples are carried out on a 350 MHz

Pentium II processor and 64 Mb memory personal

computer. The computer code employs isoparametric

eight-noded quadrilateral elements and numerical inte-

gration for double and line integrals. In all examples, the

grid is truncated by a second-order circular absorbing

boundary of radius ro
[6] As a first check, we consider a dielectric circular

cylinder illuminated by a 300 MHz TM-polarized

plane wave with zero incidence angle. The radius of

the cylinder is 0.1lo, the total number of nodes is 112,

mr = 1, and ro = 0.2lo. The problem is solved around

the expansion point e0rc = 4 
 j0.27 with [3/4] Padé

approximants combined with FEM; it requires 22.19 s

to obtain the solution. The problem is solved directly

with FEM by changing er from 1 to 30 in steps of 0.5

(i.e., 59 real permittivity points) while fixing the

imaginary part (e0r = er 
 j0.27); the solution is

obtained in 957.85 s. The results are compared with

the exact Mie series solution as shown in Figures 2

and 3. The same circular scatterer is illuminated by a

300 MHz TE-polarized plane wave, and in order to

have a better idea about the computation time, the

number of nodes is increased to 344. The expansion

point is taken as e0rc = 15 
 j0.06. The [3/3] Padé

approximation combined with FEM requires 82.8 s,

while the direct FEM solution with er stepped from 1

to 30 in increments of 0.5 (e0r = er 
 j0.06) consumes

3029.7 s. The result is compared with exact Mie series

and shown in Figure 4.
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Figure 2. Amplitude of electric field versus relative permit-
tivity at (x, y) = (
0.1, 0) for a circular cylinder. FEM, solid
circles; exact Mie series solution, open circles; Padé approx-
imation, solid curve; power series, pluses .
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Figure 3. Phase of electric field versus relative permittivity at
(x, y) = (
0.1, 0) for a circular cylinder. Symbols are as in
Figure 2.
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[7] To extend the validity of the technique to non-

circular scatterers, we considered an ellipse with 0.4lo
major axis and 0.2lo minor axis, ro = 0.3lo and e0rc = 11


 j0.3; the grid contains a total of 769 unknowns. The

excitation is a TM-polarized plane wave at 600 MHz

with zero incidence angle. The FEM combined with [4/4]

Padé approximation requires 218.93 s. A direct FEM

solution is obtained by changing er from 1 to 25 by 0.5

increments in 5757.6 s. The field magnitude is shown in

Figure 5.

[8] In addition to expanding about the real part of e0r
and fixing the imaginary part, we choose in this last

example to expand about the conductivity s of the

scatterer; that is, we fix the real part of e0r and change

the imaginary part. To illustrate, a rectangular scatterer of

0.2lo length along the x axis and 0.4lo length along the y
axis is considered, with ro = 0.3lo and a 300 MHz TM-

polarized plane wave impinging from jinc = 0. The

expansion point is chosen as e0rc = 4 
 j6 which is

equivalent to a conductivity of 0.1; the single-point [3/3]

Padé approximants combined with FEM require 207.56 s

for a total of 769 unknowns. The direct FEM solution is

obtained by stepping the conductivity from 0 to 2 in steps

of 0.1 (21 conductivity values), which corresponds to

changing the imaginary part of e0r from 0 to 120. The

solution is obtained in 2525.9 s. The result is shown in

Figure 6.

4. Concluding Remarks

[9] FEM by itself is a very powerful solution method

for its capability to handle arbitrarily shaped geometries.

Its computational efficiency increases considerably,

however, when its combined with Padé approximation

technique. This is obvious from the examples consid-

ered above. This combination provides an accurate and

economical way for solving two-dimensional electro-

magnetic wave scattering problems over a wide range

of complex permittivity values. The beauty of the

technique is that it requires inverting a sparse matrix

only once, so the overall cost in CPU time is extremely

reduced. It is needless to mention that Padé approx-

imation provides a much wider range of convergence

over the power series. The small increase in memory
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Figure 4. Amplitude of magnetic field versus relative
permittivity at (x, y) = (
0.1, 0) for a circular cylinder.
Symbols are as in Figure 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

zE

s

Figure 6. Amplitude of electric field versus conductivity at
(x, y) = (
0.2, 0) for a rectangular cylinder. Symbols are as in
Figure 5.
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Figure 5. Amplitude of electric field versus relative
permittivity at (x, y) = (
0.3, 0) for an elliptic cylinder.
FEM, solid circles; Padé approximation, solid curve; power
series, pluses.
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requirements is not a real drawback of the method,

because of the fact that all matrices involved in the

calculations are largely sparse, which is a distinguishing

feature of FEM. No serious attempt was made to decide

which type of Padé approximants is better, but it seems

that the diagonal approximants (L = M ) give the best

possible approximation.
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