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State-space formulation of two-dimensional electromagnetic 
scattering from dielectric cylinders 
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Abstract. A numerical method is presented for the problem of transverse magnetic or transverse 
electric scattering from infinitely long, lossy dielectric cylinders of arbitrary cross section. The 
method is based on the solution of a system of linear ordinary differential equations in the state- 
space form. The solution is achieved by finding the state transition-matrix and the zero-state 
response of the respective system. Numerical results are presented for cylinders of various cross 
sections, and they are compared with the results obtained by either exact or approximate numerical 
methods. 

1. Introduction 

There have been various numerical approaches to the 
problem of electromagnetic scattering by dielectric 
cylinders of arbitrary cross section, among which may 
be cited the well-known moment method [Richmond, 
1965], the conformal mapping solution [Shafai, 1970], 
the phase and amplitude functions solution [Shafai, 
1971], the unimoment method [Change and Mei, 1976], 
the coupled surface integral equations method [Wu and 
Tsai, 1977], the mode-matching method [Okuni, 1990], 
and the equivalent source method [Shigesawa, 1990]. 
Richmond [1965] and Wu and Tsai [1977] solved the 
relevant integral equations numerically by discretiza- 
tion and matrix inversion. Shafai [1971] defined suit- 
able phase and amplitude functions (which are related 
to the unknown radial functions of the infinite series 

representation of the fields) and numerically solved 
them to find the unknown fields. The unimoment 

method is a combined solution of an internal f'mite ele- 

ment problem and an external cylindrical harmonic ex- 
pansion [Okuni, 1990; Shigesawa, 1990] and are essen- 
tially generalized multipole techniques. Recently, some 
new ways of solving the dielectric scattering problem 
were published [Riechers, 1990; Leviatan and Boag, 
1988; Cangellaris and Lee, 1990; Tosun, 1994]. 
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The method of solution presented here may be called 
the state-space method because of its similarity to a 
more general three-dimensional vector scattering prob- 
lem [Hizal and Tosun, 1973]. It is essentially a polari- 
zation-source formulation [Bates, 1972] in which the 
volume induction theorem is the starting point. 

In state-space formulation, the fields are represented 
by an infinite series of cylindrical harmonics with posi- 
tion-dependent expansion coefficients. The infinite-di- 
mensional system of differential equations for these co- 
efficients is next projected into a f'mite-dimensional 
subspace, and the resultant system acquires a state- 
space form. This procedure yields a f'mite-dimensional 
two-point boundary value problem whose solution is 
achiebed with the well-known techniques of linear 
system theory. 

The excitation is chosen to be a uniform plane wave 
or a line source parallel to the cylinder axis. The for- 
mulation is done for both transverse magnetic and 
transverse electric polarizations but numerical results 
are given only for the TM case. The material parame- 
ters of the scatterer (c•,c) are allowed to vary over the 
cross section but not with the axial distance. 

With the widespread availability of really powerful 
computational techniques, the electromagnetic scatter- 
ing problem is no longer an unsolvable one. Yet novel 
ways of solving such problems seem to maintain con- 
tinuous popularity in the related literature. We hope in 
this respect that the method proposed in this paper will 
have a similar role. 
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2. Formulation 

2.1. TM Excitation Case 

We consider an infinitely long dielectric cylinder 
with an arbitrary cross section, as shown in Figure 1. A 
TM-polarized plane wave is incident on the scatterer 
with an angle •o with respect to the +x axis. We de- 
note the cross-sectional surface of the cylindrical scat- 
terer by ,4 and denote its boundary contour by C. 

The scatterer is assumed to be nonmagnetic, so 

/• =/•o everywhere. The scattered field E• due to the 
induced conduction and polarization currents can be 
written as [Harrington, 1961] (time dependence is 
e j•øt ) 

-----• eq(P' )Ho(2)(koR) dA' (1) 
where (p,q)) are the cylindrical coordinates of the ob- 
servation point, (p',q)') are those for the source point on 
the cross section of the cylinder, k o is the free-space 

wave number, k o =co•/eoAto,Z o = 120•r(C•), and H o 

is the zeroth-order Hankel function of second kind, 

R = [p2 + p,2_2pp, cos(•_•,)]¾2 
Jeq(P,•) = Joœ' [gz/(P, •) + gz s (P, •)] 

e'= C-Co -J-- 

Equation (1) is valid everywhere, that is, for (p,{) lo- 
cated both inside and outside C. If we locate (p,q>) 
somewhere in C, (1) can be written as 

•0<p<•o oZo ' =--T- ,:, 

where, on A l, p'<p, and onA2, p<p' and 
A• U A: - A. The partitioning of the surface integral 
in (1) into two parts in (2) is legitimate because this is 
actually equivalent to decomposing the support of J eq 

into two complementary sections. Now, if the addition 
theorem for the Hankel function, namely, 

no2(ko) = 
Z Jm (koP')H(m 2) (kop) eim(•-•'), P' < P 

m =.-oo 

Z Jm (koP)H(m 2) (kop') ejm(½-½'), P' > P 
m = --oo 

is used in (2), we get 

2 oo 

EzS (P'+) : Z Z Si• (P)ZmP (køp)eJmq• 
i=1 m=-oo 

(3) 

where p=l+6,1; 60' is the Kronecker delta; 
Zlm (koP) = Jm (koP) is the Bessel function of first kind, 
ruth order; and Z2(kop)= H(2)(kop). In the addition m m 

theorem, when p = p', the series must diverge if they 
reliably represent H22)(koR), because p=p' means 
R=0, and H• •) (koR) has a singularity there. However, 
H (2) (koR) has a removable singularity in (1) since the o 

rate of decrease of the area element is greater than the 

rate of increase of H22) (koR) . In obtaining (3), the or- 
der of integration and summation operators has been 
interchanged. The validity of this is based on the fact 
that the series in the addition theorem are uniformly 
convergent in the variable p'. 

S'• (p) in (3) are called the scattering coefficients, 
deftned by 

c 
oZo Sn(P) :--- F eq(P' )Zim(koP ' dA' (4) 

Ai 

where i=1 or 2. Since 

Jeq(P,•): j(oœ' [g• (p, •)+ gj (p, •)] 
Figure 1. The geometry of the problem. using (3) for Ej, we can represent it as 
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Jeq(p,{b) = jcoe' E•(p,{b)+ y'• $•(p)ZmP(koP)e •mv 
q=l 

(5) 

with p=l+8 ql' 

On the other hand, the electric field of the incident 
wave has the following series expansion in terms of 
cylindrical harmonics: 

E• (p, •) = Z emJm (køp)eJmO (6) 
m=-oo 

where 

e m = jme-JmOo 

for plane wave (of unit amplitude) incidence, and 

koZo H(m2)(koD)e-JmOo e m =-• 
4 

for line source (of unit amplitude) located at (D,q•o). 

(Here we assume D)p 2 = enscribing radius, that is, the 
smallest radius of a circle touching the cross section 
from outside). 

When (6) is used in (5), there results the following 

representation for J,q: 

Jeq (P,•)= Z[ Smq (P)ZmP (koP) + emZmq (koP)C•q • ] ejm• 
q=l m=-oo 

(7) 

Next, we substitute (7) into (4), with the result 

So(P)=- 4 &jcoœ' •q(p')Zi(koP' ) 
q- enZ • (kop')•ql ] e jn•' }Z• (koP')e-Jm•'d• ' (8) 

Since A• depends on p, i.e., 

II ..... dA'= • I ..... p' dp' dO' and ll ..... dA'= • I ..... p' dp' dO' 
n• o O(p') & p O(p') 

equation (8) represents a system of integral equations of 
Volte•a •e for the u•own expansion coefficients 

S • (p) for •1 and 2. •is can be conve•ed to a sys- m 

tem of linear differential equations by differentiating 
both sides of (8) with respect to p. •e result is 

2 

dS• _ • • [W•(p)S•(p)+ enW•(p)•ql ] (9) 
dP q=l n=-m 

where the functions WJ• q (p) are defined as 

W,•amq (p) = (-1) k -• PZnP(koP)Zma(koP)Inm(P) (10) 

with p = 1 + •ql and 

[nm(P) = --eJ(n-m)qJdq } (11) 
O(p) œø 

We call Into shape factors. To see how they arise in 
(10), we refer to (8) and rewrite it explicitly as (say, for 
k=-l) 

S•m (P) = - 4 floe' (p')Hn (2)(kop') 
0 •(p') t.n=-o• 

+ Sn 2 (P')Jn (mop') + enJn (koP')]}Jm (koP')eJ(n-m)•'P 'dp' dq•' 
or 

Sm(p) = 
o• p 

oZo Z lfnm(P')P'O' I 4 
n=-m0 •(p') 

(12) 

where 

fnm(tf ) = [Snl (p') Sn2 (koP') + Sn2 (p') Jn(koP ') 
enJn(koP')]Jm(koP') 

Now differentiating both sides of (12) with respect to p 
gives 

sl(p) _ oZo ½, I ' dp 4 f"'" (p) p ico•' e •("-'")r d• n=• •(p) 

(13) 

from which (9) follows immediately for k=-l. The case 
where k=-2 is similar. We calculate I• with reference 
to Figure 2 as follows: 

fl rl œ'r eJ(n-m)qJ d4 (14) 3 j(n-m)fJ d• + Inm (P) = œ'r e 

where off" r •' •C'•/•C' o . 
In (14), e' r can be allowed to vary with respect to p 

and q). I• contain the shape information about the 
scatterer. For example, for an elliptic cross section (of 
semimajor and semiminor lengths a and b, respec- 
tively), I• will take the form (assuming e'r constant 
over A) 
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•)3 

Figure 2. The definition of the shape factors. 

[ I -[ 2•re'r6nm'l P<Pl Into (p)= 2e, r •r6nr n 1+(-1) (n-m) sin[(n-m)•l) 
where 

2a2b 2 

•= -• arccos + B with , a 2 + b 2 

When the infinite series in (9) is truncated at a finite 
number N, there results a linear system of differential 
equations of finite order in the state-space form. It is 
obvious from (4) that 

S'm(0) = 0 Sin=(0) 0 
0 Sm = = 0 

Since the conditions on S•m are specified at two differ- 
ent points, the resultant problem is actually a two-point 
boundary value problem. 

where H•' is the scattered field, H, is the total field, 
and 

r= •-l-j• 
oe o C0oe o 

rl= c-j-- 

Deœming the operator 9t as 

Idlnr/ d 1 dlnr/ d / 91 =ko2r - k (17) 

(12) can be written as 

2 s 2 s 
Vt Hz + ko Hz = -91Hz (18) 

where V, denotes the transverse delta operator. 
We can write the solution to (14) as 

Hz•(p,•) = •-f Hz(p',•')Ho(2)(koR)dA ' (19) 
A 

where R and H (2) (koR) have the same meaning as for o 

the TM case. Using the addition theorem for H (•) (koR) o 

in (15) results in the following infinite series repre- 
sentation for Hj' 

where 

2 oo 

Hj(p,•) = Z Z Sim(p)Zmp(kop)ejm• 
i=1 rn =-oo 

(2O) 

i 1 II•tHz(p,,•,)Zim(koP,)e_dm•,dA, (21) 

The linear system of differential equations for S' m (p) is 
similarly deduced: 

dWmk = Z [Qnkqm (P)Wnq © + emQnkm2 (P)Sql ] 
dR q=l n=-oo 

(22) 

2.2. TE Excitation Case 

If the incident radiation is a plane wave having a 
transverse E field and a z-directed H field, the wave 
equation for the scattered magnetic field can be shown 
to have the following form: 

1 dlnr/&Hz, ) 
(16) 

where the functions Q•O (p) are now appropriate for nrtl 

TE excitation and they involve Bessel and Hankel 
functions, their derivatives and proper shape functions. 

The explicit forms of Qn•m q (p) are given as 

kq ( 1)k+• P Zm q (koP)in•m 

where 
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gm q = Jm (koP)(•ql q- S(m 2) (koP)(•q2 

Inqm (p) = l•(p) Yn • (lø,q3)eJ(n-m)4dq 3 
with 

(P, = fn (P, q)Zn r + g(P' q)Zn r 
where 

fn = 
jn din •/ 

,o 2 tY• 

g(p, q3) : -k o 
c•ln •7 

r =1+•1 

The conditions on S'm are the same as for the TM case. 

ated by solving (23) with e=0, numerically with the ca- 
nonical initial condition vectors; that is, to find the jth 
column of [•], we use the initial condition vector 

[00 .... 10 ...... 0] r , where 1 is at the jth place from the 
top. 

Next, we evaluate (24) at x=x 2 and use (15), 

[$1(;2) 3 I (I)l 1 (X2) = (i)21(X2) CI)22(x2)JLs2(0)J LZ2(x2 
(25) 

Here SI(x2) ands 2 (x•) can be obtained by solving (25), 
with the result 

S 1 (X2) -- --(I)12 (X2).(I)• (x2).Z 2 (x 2 ) q- Z 1 (X 2 ) (26) 

3. Numerical Solution of the Two-Point 

Boundary Value Problem 

3.1. Solution for the System of Equations 

The system of linear differential equations in (9) and 
(22) can be cast into the following matrix form: 

s (0) = (27) 

This completes the solution. For far-field pattern cal- 
culations, only s•(x2) is needed. Near-field calculations 
require s2(0) as well. 

•2 = y21 y22 s 2 +•y22 e (23) 

1 82 where s and are (2N + l) x 1 column vectors; Y/J' de- 
note either W/J' or Q/J, depending on whether we have 
TM or TE excitations, respectively, and they are 
(2N + 1) x (2N + 1) complex square matrices; e is the 
(2N+l)xl excitation vector whose elements (for the 
TM case) are e n = jne-Jn•ø for a plane wave and 
e n =-(koZo/4)Hn(2)(koD)e -jn4ø for a line source, respec- 
tively. Dotted character denote differentiation with 
respect to x, with x =/Cop ß 

The solution to (23) can be written symbolically as 

[$1 (X)1= I (I)l 1 (X) (I)12 (X)]Is 1 (o)1+ [ zl (X)1 $2(X)J L(I)21 ( x ) (I)22 (X)JL$2 (0)J Z2 (x)J 
(24) 

In (24), (•')mn are the state-transition submatrices, 

[Zl z2] r is the zero-state response to (23), and T de- 
notes the transpose. To find [Zl z2] r at any x, (23) is 
solved numerically from x=0 to x with zero initial con- 
dition vector. The columns of the [cI)] matrix are gener- 

3.2. Handling the Singularity in the Characteristic 
Matrix 

In generating the matrix [Y] numerically, care must 
be taken against the singularities that arise in some 
elements of yqk when x --> 0. A closer look into (10) 
shows that W •2 are well behaved near x=0 (the starting •tm 

point in the solution of the differential equations). Al- 
though Wn'm • , W 2• and W 22 behave well around x=0 for nra ' nm 

n=m=0, they show a singular behavior for some values 
of n and m. This is because 14 ,'tt W 2t and 14/n contain nra ' nra nra 

the Hankel functions but 14 ,'t2 do not. Since S t are ab- 
nra n 

solutely zero at x=0, the singularity problem is not an 
analytical one. So it must be handled numerically. This 
is done by isolating the point x=0 from numerical cal- 
culations. The numerical integration in the solution of 
(23) is to start at a value which is different from zero (if 
the scatterer is not of a shell shape) but which should be 
small enough. In actual computations, we chose 

= 10 -6 , and this value proved to be quite satis- Xinitial 

factory in the sense that beyond this limit down, the fi- 
nal values of the scattering coefficients do not change 
appreciably. 
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4. Numerical Applications 

4.1. The Method of Solution 

What we have obtained in (23) is a system of first- 
order linear differential equations of size 
(4N + 2)x (4N + 2). To solve this system, the fifth-or- 
der Runge-Kutta-Fehlberg method (which integrates 
the system over the interval x• to x2 with specified ini- 
tial conditions and self-controlled step size) is used. It 
should be noted that the final expression for the scat- 
tering coefficients, namely, equations (26) and (27), in- 
clude only the submatrices [I•)12(X2) ] and [I•)22(X2)]o 
This means that instead of generating the whole [O] 
matrix numerically, we need only half of it. This obvi- 
ously means a lighter computational burden. If the 
whole [O] matrix were required, we would solve (23) 
numerically (4N+3) times ((4N+2) times to generate [• 
] matrix, one time to obtain the zero-state response 
vector). Now, however, the solution to (23) is required 
only (2N+2) times ((2N+l) times, with e=0, to generate 
half of the [•] matrix, and one time to obtain the zero- 
state response vector). 

4.2. Parameters of Interest 

The parameter of interest for describing the far-field 
behavior of the scatterers is the echo width per wave- 
length, defined as 

•= S ,0 2 
A _---oo r• 

For near-field calculations we consider the magnitude 

of the E field, namely, levi, as the parameter of inter- 
est. 

4.3. Convergence of the Numerical Technique 

The scattering parameters are sensitive to the trunca- 
tion number. It is natural to expect that as the truncation 
number is increased, the results should tend to be in- 
variant and more correct. This was actually observed 
numerically on all the examples considered. No effort 
has been made on the analytical aspects of the conver- 
gence problem because this requires a detailed func- 
tional analysis on the properties of the operators in- 
volved in the solution technique. A priori estimation of 
the required truncation number and the error bounds in 
relation to this truncation number are actually funda- 
mental problems in the area of resonant scattering. We 

believe that any serious attempt in this respect is a very 
important study in itself. We therefore restricted our 
work to the numerical tests on the convergence prob- 
lem. It has been observed that the state-space method is 
a well convergent one. This was proved to be the case 
on the numerous examples treated. Some of the con- 
vergence results are shown in the respective figures. 
The question of how fast the method converges de- 
pends on the optical size, shape details, and the inho- 
mogeneity of the scatterer. The nearest integer to twice 
the maximum optical size (physical size of the scatterer 
cross section in terms of wavelength) can be taken as a 
measure of the required truncation number. This choice 
proves to be satisfactory in the sense that increasing the 
truncation number beyond it has no appreciable effect 
on the scattering parameters. On the other hand, two 
scatterers of equal optical size may show different con- 
vergence properties depending on the variation of mate- 
rial parameters on their respective cross sections. 

It is not easy to make deftmite statements about 
comparative computation times for the state-space 
method and others because different solution tech- 

niques are usually tested on different machines, and, 
most of the time, no detailed computational time be- 
havior is documented. However, it is believed that the 
state-space method is computationally comparable to 
the other existing methods. 

4.4. Scatterers Considered and Validation 

The state-space method was first tested on problems 
for which exact solutions are available. These include a 

solid circular dielectric cylinder and a circular dielectric 
shell, TM wave scattering from such shapes has an ex- 
act eigenfunction expansion solution provided that the 
permittivity is constant over the cross section. Excellent 
agreement was established between the state-space re- 
sults and the exact ones. For a circular shell the state- 

space differential equation system becomes decoupled 
in the scattering coefficients. A sample result is given 
in Figure 3. 

There have been results in the literature on cross- 

sectional shapes other than circles. To test the state- 
space method for a noncircular cross-sectioned cylin- 
der, we took again a circular cross section, but this time 
we located the coordinate origin not at the center of the 
circle but somewhere off center. Since this problem has 
an exact solution, we found it to be representative 
enough for a meaningful comparison. The exact and 
state-space results are compared in Figure 4. 
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Figure 3. Dielectric circular shell, where x• = 0.5n:, x 2 = 0.6n:, oC' r = 4, cr = 0, and ½i,c = 0. solid 
line indicates state space, and circles indicate Eigenfunction. 
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Figure 4. Off-centered circular dielectric cylinder, where a = 1, d = 0.5, oC' r = 2, cr = 0, and 9J•,c = hr. 
Solid line indicate state space, and circles indicate analytical solution. 
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Figure 5. Semicircular dielectric ring, where x, = 0.5•r, x 2 = 0.6•r, oc' r = 4, cr = 0, and ½•. = •r. 
Solid line indicates state space, and circles indicate data from Richmond [ 1965]. 
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Figure 6. Luneburg lens, where x, = 0, x 2 = 0.4•r, oc' r = 2 - x 2/x22 , cr = 0, and ½•,c = 0. Solid line 
indicates state-space, and the circles indicate the boundary condition transfer method. 
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Figure 7. Square dielectric cylinder (convergence), where a = 1.2•r, oø r = 2, cr = 0, and 4i,c = •r. 
Solid line indicates N=5, large circles indicate N=4, small circles indicate N=3, and asterisks indicate unimo- 
ment. 
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Figure 8. Square dielec•ic cylinder, where a: 1.2•, s,: 2, and • = O. Solid line indicates 
and circles indicate •,,: •/4. 
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Figure 9. Elliptic dielectric cylinder (convergence), where a = 0.4zc, b = 0.6zc, oC' r = 2, cr = 0, and 
½i,c = zr. Solid line indicate N=5, plus signs indicate N=4, small circles indicate N=3, and large circles indi- 
cate unimoment. 
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Figure 10. Lossy circular dielectric cylinder, where f = 300MHz, x 2 = 1.26zc, oC' r = 4, cr = 0.05, 
and ½i,c = zc. Solid line indicates state-space, circles indicate boundary condition transfer method, and as- 
terisk represents Wu and Tsai [ 1977]. 
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Figure 11. Lossy dielectric elliptic cylinder (convergence), where a = 2, b = 1, •r =4, or=0.1, 
½inc = 0, and f = 300 MHz. Solid line indicates N=5, plus signs indicate N=3, and dots indicate N=2. 

0.8 

• 0.5- .' 
.-o ß 

o•0.4 "+ + "' 
ß 0.3 •, .... .-- + + ",.. .... 

+ 

0.1 

I I I 
0 100 200 300 

angle (degrees) 

Figure 12. Lossy dielectric elliptic cylinder, where a = 2, b = 1, 
f = 300MHz. Solid line indicates cr = 0.1, plus signs indicate 
cr = 0.001, and asterisks denote }flu and Tsai [1977] ( cr = 0.01 ). 
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The next cross-sectional shape considered is a half- 
circular dielectric shell of constant permittivity. Figure 
5 shows the comparison between Richmond's [1965] re- 
sults, which are obtained by the method of moments, 
and the results obtained by the state-space method. The 
agreement is very good. As an example of a scatterer 
having a variable permittivity on the cross section, we 
considered a Luneburg lens excited with a plane wave. 
The results obtained were compared with those found 
by the boundary condition transfer method [Tosun, 
1994]. This comparison is shown in Figure 6, with 
good agreement. Figures 7 and 8 show the comparison 
between unimoment [Change and Mei, 1976] and state- 
space methods for a dielectric cylinder of square cross 
section for different incident angles of a plane wave. 
Also shown in Figures 7 and 8 is the convergence be- 
havior of the state-space method for various truncation 
numbers. An elliptic cross-sectioned dielectric cylinder 
under plane wave excitation conditions was also con- 
sidered. The results are compared with those found by 
the unimoment method in Figure 9. The convergence 
test is also shown. 

Results for a lossy circular cylinder obtained with 
the state-space method were found to be in excellent 
agreement with those found with the boundary condi- 
tion transfer method [Tosun, 1994] (Figure 10). 

We also considered a lossy elliptic cylinder excited 
with a plane wave. The convergence test results are 
given in Figure 11. Figure 12 shows the results for dif- 
ferent values of scatterer conductivity and the compari- 
son with Wu and Tsai [1977], which shows very good 
agreement. 

5. Conclusion 

The problem of electromagnetic scattering by pene- 
trable bodies has been formulated as a reradiation 

problem using the volume equivalence theorem. A set 
of linear differential equations is obtained for the posi- 
tion-dependent expansion coefficients of the unknown 
electric field. This system is in the state-space form, for 
which highly developed and efficient solution tech- 
niques are available. The cross-sectional shape of the 
cylindrical scatterers is introduced into the calculations 
through the so-called shape factors, which arise in the 
elements of the characteristic matrix of the system of 
differential equations. The formulation is actually a 
two-point boundary value problem. In actual solution, 
however, only initial-value problems need to be solved. 
Numerical evaluation of the state-transition matrix and 

the zero-state response are such initial-value calcula- 
tions. 

The state-space method can treat scatterers which are 
quite inhomogeneous in their material composition and 
complicated in their geometrical details. However com- 
plicated these factors are, the only changes occur in the 
elements of the characteristic matrix [Y]; the field rep- 
resentation in terms of Bessel and Hankel functions (of 
real argument) and the solution procedure to œmd the 
scattering coefficients all remain unchanged. If the 
cross-sectional shape C is known analytically, in other 
words, if the polar equation of C is known, then the 
shape factors are found by evaluating an integral. If the 
complex permittivity function varies in C, this integral 
is calculated numerically. 

The fields are actually represented by a weighted 
sum of cylindrical harmonics. The weights arrange 
themselves according to where the fields are evaluated. 
In other words, the weights are position-dependent 
scattering coefficients. Their variation with the radial 
variable p exposes the complete information about the 
scattering process. 

A further numerical elaboration of the state-space 
method for both TM and TE scattering is under investi- 
gation and is hoped to be presented in a future paper. 

The state-space method is intended to have a place of 
its own in the large spectrum of solution techniques for 
electromagnetic scattering by dielectric cylinders of ar- 
bitrary cross section. 

References 

Bates, R.H.T., and F.L. Ng., Polarization source formulation 
of electromagnetic fields, Proc. IEEE, AP-20, 1568-1574, 
1972. 

Cangellaris, A.C., and R. Lee, The bymoment method for two 
dimensional electromagnetic scattering, IEEE Trans. An- 
tennas Propag. AP-38, 1429-1437, 1990. 

Change, S.K., and K.K. Mei, Application of the uni-moment 
method to electromagnetic scattering by dielectric cylin- 
ders, IEEE Trans. Antennas Propag. AP-24, 35-41, 1976. 

Harrington, R.F., Time-Harmonic Electromagnetic Fields, 
McGraw-Hill, New York, 1961. 

Hizal, A., and H. Tosun, State-space formulation of scattering 
with application to spherically symmetric objects, Can. J. 
Phys., 51,549-558, 1973. 

Leviatan, Y., and A. Boag, Generalized formulations for elec- 
tromagnetic scattering from perfectly conducting and ho- 
mogeneous material bodies -Theory and numerical solu- 
tion, IEEE Trans. Antennas Propag., AP-36, 1722-1743, 
1988. 

Okuno, Y., The mode-matching method, in Analysis Methods 



ABU ZAID ET AL.: FORMULATION OF ELECTROMAGNETIC SCATTERING 309 

for Electromagnetic Wave Problems, edited by E. Yama- 
shita, pp. 107-137, Artech House, Norwood, Mass., 1990. 

Richmond, J.H., Scattering by a dielectric cylinder of arbitrary 
cross-section shape, IEEE Trans. Antennas and Propag., 
AP-13, 334-341, 1965. 

Riechers, R. G., The application of lanczos S-expansion 
method to the solution of TM scattering from a dielectric 
cylinder of arbitrary cross-section, IEEE Trans. Antennas 
propag., AP-38, 1204-1212, 1990. 

Shafai, L., Electromagnetic fields in the presence of cylindri- 
cal objects of arbitrary physical properties and cross-sec- 
tions, Can. J. Phys., 48, 1789-1798, 1970. 

Shafai, L., Scattering by cylindrically symmetric objects, 
method of phase and amplitude functions, Int. J. Electro- 
magn., Theor. Exp. First Ser., 31, 117-125, 1971. 

Shigesawa, H., The equivalent source method, in Analysis 
Methods for Electromagnetic Wave Problems, edited by E. 

Yamashita, pp. 177-211, Artech House, Norwood, Mass., 
1990. 

Tosun, H., Novel differential formulation of electromagnetic 
scattering by dielectric cylinders of arbitrary cross-section, 
IEE Proc. Microwaves Antennas Propag., 141, 1994. 

Wu, T., and L. L. Tsai, Scattering by arbitrarily cross-sec- 
tioned layered lossy dielectric cylinders, IEEE Trans. An- 
tennas Propag., AP-24, 518-524, 1977. 

N. A. Abu Zaid, A. Y. Niazi, H. Tosun, Department of 
Electrical and Electronic Engineering, Eastern Mediterranean 
University, Gazimagusa, Mersin 10, Turkey. (e-mail: nzaid• 
eenet.ee.ernu.edu.tr; oztoprak•cc.emu.tr; haluk•eenet. ee. 
emu.edu.tr) 

(Received March 11, 1997; revised April 20, 1998; 
accepted September 3,1998.) 


