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We calculate the magnetic susceptibility of two interacting electrons confined in a coupled double quantum

dot presented in a magnetic field by solving the relative Hamiltonian using the combined variational and exact
diagonalization methods. We have investigated the dependence of the magnetic susceptibility on temperature,
magnetic field strength, confining frequency, and barrier height. The singlet–triplet transitions in the ground state
of the quantum dot spectra and the corresponding jumps in the magnetic susceptibility curves have been shown.
The comparisons show that our results are in very good agreement with reported works.
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1. Introduction

Quantum dots (QDs), or artificial atoms, had been the
subject of interest research due to their physical proper-
ties and great potential device applications such as quan-
tum dot lasers, solar cells, single electron transistors, and
quantum computers [1–5]. The application of a magne-
tic field perpendicular to the dot plane will introduce
an additional structure on the energy levels and corre-
lation effects of the interacting electrons confined in a
quantum dot. Different approaches have been used to
solve the two electrons QD Hamiltonian, including the
effect of an applied magnetic field, to obtain the eigen-
energies and eigenstates of the QD-system. Wagner et
al. [6] studied this interesting QD system and predicted
the oscillations between spin-singlet (S) and spin-triplet
(T) ground states. Taut [7] managed to obtain the ex-
act analytical results for the energy spectrum of two in-
teracting electrons through a Coulomb potential, confi-
ned in a QD, just for particular values of the magne-
tic field strength. In Refs. [8, 9] the authors had solved
the QD-Hamiltonian by variational method and obtained
the ground state energies for various values of magnetic
field ωc, and confined frequency ω0. In addition, they
had performed exact numerical diagonalization for the
helium QD-Hamiltonian and obtained the energy spectra
for zero and finite values of magnetic field strength. Kan-
demir [10, 11] found the closed form solution for this QD
Hamiltonian and the corresponding eigenstates for par-
ticular values of the magnetic field strength and confi-
nement frequencies. Elsaid [12–16] used the dimensio-
nal expansion technique, in different works, to solve the
QD-Hamiltonian and obtain the energies of the two in-
teracting electrons for any arbitrary ratio of Coulomb to
confinement energies and gave an explanation to the level
crossings.
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Maksym and Chakraborty [17] implemented the dia-
gonalization method to obtain the eigenenergies of inte-
racting electrons in a magnetic field and show the tran-
sitions in the angular momentum of the ground states.
They also had calculated the heat capacity curve for both
interacting and non-interacting confined electrons in the
QD presented in a magnetic field. The interacting model
shows very different behavior from non-interacting elec-
trons, and the oscillations in these magnetic and thermo-
dynamic quantities like magnetization M and heat ca-
pacity Cv are attributed to the spin singlet–triplet tran-
sitions in the ground state spectra of the quantum dot.
De Groote et al. [18] also computed the magnetization,
susceptibility and heat capacity of helium like confined
QDs and obtained the additional structure in magnetiza-
tion. In a detailed study, Nguyen and Peeters [19] con-
sidered the QD helium in the presence of a single mag-
netic ion and applied magnetic field taking into account
the electron–electron correlation in many quantum dots.
They showed the dependence of these thermal and mag-
netic quantities Cv, M, and χ on the strength of the
magnetic field, confinement frequency, magnetic ion po-
sition, and temperature. They observed that the cusps in
the energy levels show up as peaks in the heat capacity
and magnetization.

In Ref. [20], the authors used the static fluctuation ap-
proximation (SFA) to study the thermodynamic proper-
ties of two-dimensional GaAs/AlGaAs parabolic QD in
a magnetic field. Boyacioglu and Chatterjee [21] studied
the magnetic properties of a single quantum dot confined
with a Gaussian potential model. They observed that the
magnetization curve shows peaks structure at low tem-
perature. Helle et al. [22] computed the magnetization of
a two-electron lateral quantum dot molecule (QDM) in a
high magnetic field at zero temperature and the results
show the oscillation and smooth behavior in the magne-
tization curve for both, interacting and non-interacting
confined electrons, respectively.

In an experimental work [23], the magnetization
of electrons in GaAs/AlGaAs semiconductor QD as
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function of applied magnetic field at low temperature
0.3 K was measured. They observed oscillations in the
magnetization. To reproduce the experimental results of
the magnetization, they found that the electron–electron
interaction should be taken into account in the theore-
tical model of the QD magnetization. Furthermore, the
density functional method (DFT) was used to investigate
the magnetization of a rectangular QD in the applied ex-
ternal magnetic field [24]. Climente et al. studied the
effect of Coulomb interaction on the magnetization of
quantum dot with one and two interacting electrons [25].

Very recently, Avetisyan et al. [26] studied the mag-
netization of anisotropic QD in the presence of the
Rashba spin–orbit interaction for three interacting elec-
trons in the dot. In Ref. [27], the authors have studied
the electron–electron correlations in many-electron sin-
gle quantum dot (SQD) confined by parabolic potential
in the presence of single magnetic ion and perpendicu-
lar magnetic field. They have obtained the energies and
have studied the thermodynamic quantities such as heat
capacity, the magnetization and the susceptibility. They
have found that the cusps in the curves of these heat
quantities are due to the transitions in the angular mo-
mentum of the energy levels of the QD. Dybalski and
Hawrylak [28] also studied the electronic properties of
two electrons in a strongly coupled double quantum dot
(DQD). They have analyzed the singlet-triplet gap with
the barrier height potential and with an external magne-
tic field. The authors solved the full Hamiltonian of DQD
by using the variational method to calculate separately
the energy matrix elements of SQD term and barrier po-
tential term. Next, the exact diagonalization method is
implemented to compute the corresponding energies of
the full DQD Hamiltonian. The authors of Ref. [29] used
the Huns–Mulliken molecular orbit approach to calculate
the energy levels of two electrons confined in two laterally
coupled quantum dots, under the influence of an applied
magnetic field. They showed that the jumps of the mag-
netization are due to the singlet–triplet transitions in the
energy levels.

The purpose of this work is to calculate the magnetic
susceptibility as a thermodynamic quantity for a coupled
double quantum dots presented in a magnetic field taking
into account the electron–electron Coulomb interaction
term. Since, the eigenvalues of the electrons in the DQD
are necessary input quantities to calculate the statisti-
cal average energies of the DQD system, to achieve this
target we have implemented the variation and exact dia-
gonalization methods to obtain the desired eigenenergies.
The computed eigenenergies spectra were used to study
theoretically the dependence of the magnetic susceptibi-
lity curve of the coupled DQD as a function of magne-
tic field strength, confining frequency barrier height and
temperature.

The rest of this paper is organized as follows: the
Hamiltonian theory and computation techniques of two
interacting electrons in DQD are presented in Sect. 2.
In Sect. 3, we show how to calculate the magnetic

susceptibility from the mean energy expression. Fi-
nal section will be devoted for numerical results and
conclusion.

2. The double quantum dots Hamiltonian

Consider two interacting electrons inside a double
quantum dots confined by a parabolic potential of
strength ω0 under the effect of an applied uniform mag-
netic field of strength ωc, taken to be along z-direction,
in addition to a coupled Gaussian barrier of width ∆ and
height V0. This model can be characterized by the Ha-
miltonian (HDQD):

HDQD =

2∑
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where rj and p (rj) are the position and momentum of the
electron inside the QD. In addition, x1 and x2 represent
the position of each quantum dot along the x-direction.
HDQD can be considered as the sum of the single quan-

tum dot Hamiltonian (HSQD) and the potential barrier
term Vb = V0
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)
as follows:

HDQD = HSQD + Vb. (2.2)
It is obvious that the single quantum dot Hamiltonian,
HSQD can be obtained from Eq. (2.2) by making the bar-
rier potential term vanish, Vb = 0. Using the standard
coordinate transformation and adopting the symmetric
gauge, the single quantum dot Hamiltonian can be se-
parated into a center of mass Hamiltonian, Hcm, and a
relative Hamiltonian part Hr as shown below:
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where M is the total mass = 2m, Q is the total
charge = 2e, µ is reduced mass = m

2 , and q is the re-
duced charge = e

2 .
The corresponding energy of the HSQD Eq. (2.2) is
ESQD = Ecm + Er. (2.5)

The center of mass Hamiltonian (2.3) has the harmonic
oscillator form with well-known fully analytical solution
for wave function and energy given, respectively, as,

ψncm,mcm (R) = (−1)ncm λ|mcm+1|
√
π

√
ncm!

(ncm + |mcm|)!

×e−λ
2R2/2R|mcm|L|mcm|ncm (λ2R2)e imcmφ, (2.6)

Encm,mcm = (2ncm + |mcm|+ 1) ~ω +mcm
~ωc
2
, (2.7)

where λ =
√

m∗ω
~ , and ω =

√
ω2

0 +
ω2
c

4 are constants.
ncm, mcm are the radial and azimuthal quantum num-
bers, respectively, and Lmn is the associate Laguerre po-
lynomials [8].
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The relative Hamiltonian part Eq. (2.4) does not have
an analytical solution for all ranges of ω0 and ωc, due to
the existence of both Coulomb and parabolic terms, so
the variational method has been used as an accurate met-
hod to get the energy spectra (Er) for the relative Hamil-
tonian in terms of a variational parameter. The adopted
variational wave function and the corresponding energy
equation are given in Appendix A.

The calculations of the energy matrix elements of the
Vb-barrier term using the variational method were given
in Ref. [28] and will not be repeated here. The combined
terms of the single quantum dot Hamiltonian energy and
barrier energy matrix elements are diagonalized to give
the full matrix elements of the DQD Hamiltonian [28].
We would like to emphasize again that our aim in this
work is to investigate the effect of barrier height and
confining frequency on the magnetic susceptibility of the
DQD, so only the essential steps which lead to the main
eigenenergy equation of the full DQD Hamiltonian will
be shown in Appendix B.

3. Magnetic susceptibility of DQD

We have computed energies of the DQD system as es-
sential input data to calculate the magnetic susceptibility
of the DQD. The magnetic susceptibility of the DQD sy-
stem is evaluated as the second magnetic field derivative
of the mean energy of the DQD:

χ(T,B, ω0, V0,∆) = −∂
2〈E(T,B, ω0)〉

∂2B
, (2.8)

where the statistical average energy is calculated as

〈E(T,B, ω0, V0,∆)〉 =
∑N
α=1Eα e

−Eα/kBT

sumN
α=1 e

−Eα/kBT
, (2.9)

where α denotes the quantum numbers of the coupled
quantum dots energy states obtained by diagonalizing
the DQD full Hamiltonian (Eq. (B2)). We use Eqs. (2.8)
and (2.9) to investigate the dependence of the magnetic
susceptibility of the double quantum dots on very rich
and tunable physical parameters, namely: the tempera-
ture (T ), magnetic field strength (ωc), confining potential
(ω0), barrier height (V0) and barrier width (∆).

4. Results and discussions

The computed results for two interacting electrons in
double quantum dots made from GaAs material (m∗ =
0.067me, R∗ = 5.825 meV ) are presented in Figs. 1
to 6. Figure 1a shows the calculated eigenenergy spectra
of DQD for angular momentum m = 0, 1 and 2 as a
function of magnetic field strength ωc = 0.0 to 4.0, confi-
ning frequencies ω0 = 2

3R
∗ and barrier heights V0 = 1R∗.

The calculated energy results are in excellent agreement
with previous reported work [28]. In Fig. 1b we have
plotted also the computed energy results of this work
against the strength of the magnetic field for ω0 = 2

3R
∗,

∆ = 0.5R∗, V0 = 1R∗ for small range of ωc = {0, 1R∗} to
show the level crossing more clearly. The energy level plot

Fig. 1. The computed energy spectra of two inte-
racting electrons in double quantum dots against the
strength of the magnetic field for ω0 = 2

3
R∗, ∆ = 0.5R∗,

V0 = 1R∗, angular momentum m = 0, 1, 2 and for the
range of ωc = {0, 4R∗} (a) and {0, 1R∗} (b).

Fig. 2. The statistical energy of two interacting elec-
trons in double quantum dots against the strength of
the magnetic field for ω0 = 2

3
R∗, ∆ = 0.5R∗, V0 = 1R∗.

The curve in part (b)shows a cusp at ωc = 0.5R∗.

shows obviously the transition in the angular momentum
of the ground state of the DQD system as the magnetic
field strength increases. The origin of these transitions
is due to the effect of the Coulomb interaction energy
in the QD systems [22]. The singlet–triplet transitions
in the angular momentum of the DQD system manifest
themselves as cusps in the magnetic susceptibility curve
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Fig. 3. The magnetic susceptibility χ at T = 0.01 K,
of two interacting electrons in SQD against the magne-
tic field strength for different confinements: ω0 = 2

3
R∗

(dashed line) and ω0 = 0.9R∗ (solid line).

Fig. 4. Comparison between the magnetic susceptibi-
lity χ curves at T = 0.01 K of the two interacting elec-
trons in SQD (dashed line) with confinement ω0 = 2

3
R∗

and DQD (solid line) for ω0 = 2
3
R∗, ∆ = 0.5R∗,

V0 = 1R∗ against the magnetic field strength.

of the DQD. Our energy spectra results show very good
agreement compared with corresponding one in Fig. 3 of
Dybalski’s results where the authors used the variational
method to solve the DQD Hamiltonian [28]. In addi-
tion we have plotted the statistical energy against the
strength of magnetic field for wide range and small range
of ωc in Fig. 2a and b, respectively. The figures show
clearly the origin of the cusps in the statistical energy
curves that causes the corresponding cusps in the mag-
netic susceptibility curve of the DQD.

Fig. 5. The magnetic susceptibility χ at T = 0.01 K, of
the two interacting electrons in DQD against the mag-
netic field strength for ω0 = 2

3
R∗, ∆ = 0.5R∗. Dotted

curve: V0 = 0.5R∗, solid curve: V0 = R∗, dashed curve:
V0 = 1.5R∗.

Fig. 6. (a) The magnetic susceptibility χ of the two
interacting electrons in DQD against the magnetic field
strength for ω0 = 2

3
R∗, ∆ = 0.5R∗, V0 = R∗, at T =

0.01 K (solid curve), at T = 0.1 K (dotted curve), at
T = 1 K (dashed curve). Part (b) shows the presence of
first cusp, part (c) shows the presence of second cusp.

In Fig. 3, we have investigated the effect of the parabo-
lic confinement strength, ω0, on the magnetic susceptibi-
lity curves for SQD. The magnetic susceptibility curves
show that: as the confinement strength increases from
ω0 = 2

3 = 0.667R∗ (dashed curve) to ω0 = 0.9R∗ (solid
curve), the number of peaks in the susceptibility curves
decreases from 3 to 2 peaks and shifts to the right, to-
wards a high magnetic field strength. This peak behavior
in the magnetic susceptibility curve can be explained as
follows. As the parabolic confinement ω0 increases, the
confinement energy of the electrons in the QD increases
also and in this case a magnetic field with high strength
is required to make the transition.

In Fig. 4, we have compared the magnetic susceptibi-
lity curves for both DQD (solid curve) and SQD (dashed
curve). The comparison shows that the number of peaks
reduced from three peaks in the SQD to only two peaks
in the DQD. This peak reduction behavior is attributed
to the enhancement in the confinement of the electron
energies in the DQD as the height of the potential bar-
rier V0 increases. We have used a similar argument to
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understand the behavior of magnetic susceptibility for
SQD case presented in Fig. 3.

Furthermore, we have investigated the effect of the
barrier height V0 on the magnetic susceptibility curve.
We have plotted in Fig. 5 the magnetic susceptibility
curves calculated at different barrier heights namely,
V0 = 0.5 (dotted curve), 1.0 (solid curve) and 1.5 (dashed
curve). The comparison clearly shows the gradual shift
of the magnetic susceptibility jumps to higher magnetic
field as the barrier height decreases.

In addition we have studied the effect of tempera-
ture on the magnetic susceptibility curves of DQD sy-
stem as function of the magnetic field strengths with
different ranges calculated at three different tempe-
ratures T = 0.01 K (solid curve), 0.1 K (dotted
curve) and 1 K (dashed curve) as shown in Fig. 6a–
c. We have seen from the figure that the tempera-
ture shows an effect on the cusps of the magnetization
curves. To show this effect more clearly we have fo-
cused in Fig. 6b and c, on the first and second mag-
netization cusps, respectively. We have noticed from
the figures that the high-field magnetic susceptibility
peak shifts to lower magnetic fields with increase of the
temperature.

In conclusion, we have applied the combined exact dia-
gonalization and variational calculation methods to solve
the Hamiltonian for two interacting electrons confined
in a double-quantum dot presented in a magnetic field.
We have investigated the dependence of the magnetiza-
tion of the DQD on the magnetic field strength, confining
frequency, barrier width, barrier height, and tempera-
ture.

Appendix A: Energy calculations of SQD
by variation method

This appendix gives the main expressions that have
been used to compute the eigenenergy expressions of the
DQD.

The adopted one parameter variational wave function
is taken as

ψ (r) = 4
√
α
um (ρ) e imφ

√
2πρ

, (A1)

where

um (ρ) = Cmρ
1/2+|m| (1 + βρ) e

−
(
ρ2

2

)
, (A2)

ρ =
√
αr, and α =

1

4

√
ω2
c

4
+ ω2

0 , (A3)

with normalization constant Cm, which can be expres-
sed in terms of standard gamma function Γ (x), angular
momentum m, and parameters α, and βmin [28].

We proceed to obtain the energies of the relative part
of the single quantum dot Hamiltonian by calculating the
energy matrix elements Er = 〈ψ|Hr|ψ〉 as

Er(β) = −
1

2
mωc + 2α

a+ bβ + cβ2

d+ eβ + fβ2
, (A4)

where a, b and c are constants in terms of quantum num-
bers m and α.

The energy eigenvalues of Hr can be found by mini-
mizing the energy formula Eq. (A4) with respect to the
variational parameter β to give

βmin,m = (A5)

2cd− 2af −
√
(2cd− 2af)

2 − 4 (bd− ae) (ce− bf)
2 (−ce+ bf)

.

So, the energy expression of the SQD Hamiltonian in
terms of the variational parameter, βmin, which satisfies
the minimization condition, is

Er(βmin) = −
1

2
mωc + 2α

a+ bβmin + cβ2
min

d+ eβmin + fβ2
min

. (A6)

Appendix B: Energy calculations
of double quantum dot

To compute the full energy spectra of the DQD system
we have set V0 > 0 in the Hamiltonian model Eq. (2.1),
so the potential of the barrier is

Vb = V0

(
e−x

2
1/∆

2

+ e−x
2
2/∆

2
)
. (B1)

The matrix element of the DQD can be evaluated in
terms of elliptic functions, angular quantum number m,
barrier height V0 and barrier width ∆. The combined
terms of the single quantum dot energy Em(βm) and
barrier energy matrix elements will give the full matrix
elements of the DQD Hamiltonian. We implemented
the diagonalization technique to obtain the eigenergies
of the HDQD:

Hm,n = (Em (βm) + Ecm) δm,n + 〈um〉 , (B2)
where Ecm is the center of mass Hamiltonian as defined
previously in Eq. (2.7).
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