
 

Quantum pseudodots under the influence of external vector and scalar fields 

M Eshghi, S M Ikhdair 

Citation:Chin. Phys. B . 2018, 27(8): 080303. doi: 10.1088/1674-1056/27/8/080303 

Journal homepage: http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb   

 

What follows is a list of articles you may be interested in  

 

Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function 

in external magnetic fields 

M Eshghi, R Sever, S M Ikhdair 

Chin. Phys. B . 2018, 27(2): 020301. doi: 10.1088/1674-1056/27/2/020301 

Approximate energies and thermal properties of a position-dependent mass charged particle 

under external magnetic fields 

M Eshghi, H Mehraban, S M Ikhdair 

Chin. Phys. B . 2017, 26(6): 060302. doi: 10.1088/1674-1056/26/6/060302 

The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory 

ring-shaped potential 

H. Hassanabadi, M. Kamali 

Chin. Phys. B . 2013, 22(10): 100304. doi: 10.1088/1674-1056/22/10/100304 

New approach for deriving the exact time evolution of density operator for diffusive anharmonic 

oscillator and its Wigner distribution function 

Meng Xiang-Guo, Wang Ji-Suo, Liang Bao-Long 

Chin. Phys. B . 2013, 22(3): 030307. doi: 10.1088/1674-1056/22/3/030307 

Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic 

oscillator interaction 

Sameer M. Ikhdair, Majid Hamzavi 

Chin. Phys. B . 2012, 21(11): 110302. doi: 10.1088/1674-1056/21/11/110302 

 

-------------------------------------------------------------------------------------------------------------------- 

http://cpb.iphy.ac.cn/EN/abstract/abstract72458.shtml
http://cpb.iphy.ac.cn/
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn/EN/abstract/abstract71464.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract71464.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract70145.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract70145.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract55830.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract55830.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract52459.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract52459.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract50698.shtml
http://cpb.iphy.ac.cn/EN/abstract/abstract50698.shtml


Chin. Phys. B Vol. 27, No. 8 (2018) 080303

Quantum pseudodots under the influence of external vector
and scalar fields

M Eshghi1,† and S M Ikhdair2,3

1Department of Physics, Imam Hossein Comprehensive University, Tehran, Iran
2Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine

3Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey

(Received 10 January 2018; revised manuscript received 29 April 2018; published online 10 July 2018)

We study the spherical quantum pseudodots in the Schrödinger equation by using the pseudo-harmonic plus harmonic
oscillator potentials considering the effect of the external electric and magnetic fields. The finite energy levels and the wave
functions are calculated. Furthermore, the behavior of the essential thermodynamic quantities such as, the free energy, the
mean energy, the entropy, the specific heat, the magnetization, the magnetic susceptibility, and the persistent currents are
also studied by using the characteristic function. Our analytical results are found to be in good agreement with the other
works. The numerical results on the energy levels as well as the thermodynamic quantities have also been given.
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1. Introduction

Calculation of the physical quantities in many physical
sciences is the essential work we need to perform. As a conse-
quence, the exact solutions of the Schrödinger and Dirac wave
equations have become the essential part from the beginning
of quantum mechanics[1] and such solutions have also become
useful in the fields of atomic and nuclear physics.[2–9]

Currently, recent researches on the nanometer scale
have opened new fields in fundamental sciences of physics,
chemistry, and engineering such as optoelectronic devices,
high performance laser and detectors,[10,11] which are termed
nanoscience.[12] One of the areas in nanoscience is the class of
spherical quantum pseudodots (QPDs). In fact, the spherical
QPDs confinement is one of the most appealing explored ap-
plications of semiconductor structures when it is doped with
shallow donor impurities. Namely, the impurities are used
in both transport and optical properties of physics. However,
some researchers have extensively studied topics like confined
donors or acceptors in nanostructures.[13–16] The structure of
the QPDs is mainly confined by the quantum potentials and it
is also as a result of the recent advances made in semiconduc-
tors, where both electrons and valence holes can be confined
in all three dimensions.[17]

One of these interaction potentials used is the pseudo-
harmonic potential.[18,19] The confined pseudo-harmonic po-
tential is generally applied to explain the ro-vibrational states
of diatomic molecules and nuclear rotation and vibration. Fur-
ther, an electron placed in such a potential field is being af-
fected by an external electric field, which is equivalent to a

pseudo-harmonic oscillator in an external dipole field or a
charged pseudo-harmonic oscillator in the presence of a uni-
form electric field. Such a system has an essential role in quan-
tum chemical applications.[20]

On the other hand, confined harmonic oscillator poten-
tial can be used to obtain exactly the Schrödinger equation
with the pseudo-harmonic and harmonic oscillator potentials,
and also to find any l-state solutions in the view of molec-
ular physics phenomenon. However, in quantum physics, in
obtaining the exact solutions of the Schrödinger equation for
the molecular potentials can be considered as being one of
the main problems.[1] It is well known that the topic of ro-
tational and molecular vibrational spectroscopy is one of the
essential areas of molecular physics and it can be counted as
one of the main implements for other scientific areas such as
environmental sciences[21] and biology.[1] However, the har-
monic oscillator could be served as a background to describe
the molecular vibrations.[22] However, to improve the theory
of molecular vibrations the anharmonic oscillators can be ap-
plied to solve exactly the Schrodinger equation and provide a
more reliable model for diatomic molecules.[23]

Here in the present work, one of these interaction po-
tentials used is the pseudo-harmonic oscillator potential[18,19]

plus a harmonic oscillator potential taking the form:

V (r,z) =V0

( r
r0
− r0

r

)2
+Kz2, (1)

where the two parameters V0 and r0 stand for the height po-
tential and the zero point, respectively, with K > 0 being an
oscillator constant.
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These confinements lead to the formation of discrete en-
ergy levels, drastic change of optical absorption spectra, and
so forth.[24–30]

On the other hand, the study of the thermodynamic prop-
erties of low-dimensional semiconductor structure is of a great
importance, in particular, determining the behavior of the ther-
modynamic quantities such as the specific heat, the entropy,
the free energy, the mean energy, the magnetization, and the
persistent current.

Over the past few years, several researchers have studied
the thermodynamic properties of various models, see for ex-
ample, Refs. [31]–[34].

In this work, we solve the Schrödinger equation with the
pseudo-harmonic plus harmonic oscillator interaction poten-
tial to deal with spherical QPDs being exposed to external
electric and magnetic fields. We obtain the finite state energy
spectra and their corresponding wave functions. Further, we
calculate the essential thermodynamic functions and the ther-
modynamic quantities by using the finite energy spectrum. Fi-
nally, we compare our analytical results with those obtained by
other authors, and give a few remarks on the present results.

The organization of the present paper is as follows. In
Section 2, we present the solution of the Schrodinger equation
with the pseudo-harmonic plus harmonic oscillator potentials
exposed to the external electric and magnetic fields for the sake
of obtaining energy levels and their wave functions. Section 3
is devoted for our results and discussions. Finally, we end with
our concluding remarks in Section 4.

2. Theory and calculations

Here we solve the Schrödinger equation with the pseudo-
harmonic plus harmonic oscillator interaction potentials so
that to calculate the finite bound state energy levels and
their corresponding wave functions of the electrons (holes) of
spherical QPDs in the presence of external electric and mag-
netic fields as[

1
2µ

(
𝑝− e

c
𝐴
)2

+V (r)+ e𝜀 ·𝑧
]

ψ(r) = Eψ(r), (2)

where 𝜀= ε ẑ is the applied electrostatic field along the z axis,
µ is the effective electronic mass, A is the vector potential
which can be found by means of the magnetic field and the
energy E = Er +Ez. Let us assume that the vector potential
has the simple form: A = (0,Br/2+ΦAB/2π,0) where this
potential has recently been used in quantum dots and quan-
tum pseudodots.[35,36] By substituting Eq. (1) into Eq. (2), the
Schrödinger equation reduces into the following forms:[

d2

dr2 +
1
r

d
dr
− γ2

r2 −ω
2r2 +η

]
f (r) = 0, (3)[

d2

dz2 −
(
−2µ

}2 Ez−
2µe · ε
}2 z+

2µ

}2 z2
)]

G(z) = 0, (4)

where the eigenvalues, Ez, can be found as

Ez =
}
2

√
K
µ
(nz +1)− }2 e2ε2

4K
, nz = 1,2, . . . . (5a)

Furthermore, we have used the following identifications:

ω
2 = 2µV0/}2r2

0 + e2B2/4}2c2,

η = 2µ (En +2V0)/}2− eB(m+ξ )/}c,

γ
2 = 2µV0r2

0/}2 +(m+ξ )2 ,

ξ = ΦAB/Φ0, Φ0 = hc/e. (5b)

Now, making the change of variables as ζ = ωr2, and
hence equation (3) can be simply rewritten as[

d2

dζ 2 +
1
ζ

d
dζ
− γ2

4ζ 2 +
η

4ωζ
− 1

4

]
f (ζ ) = 0. (6)

The asymptotic behavior in the solution of Eq. (3) when r→ 0
can be determined via the centrifugal term whereas the asymp-
totic behavior of our solution at r→ ∞ can be determined by
the oscillating terms. That is, the radial wave function f (r)
needs to be finite, using the boundary conditions f (0)→ 0
and f (∞) → 0. Therefore, to make the solution satisfying
the above conditions, we are supposed to cast the solution of
the wave function f (ζ ) to be f (ζ ) = exp(−ζ/2)ζ |γ|/2F(ζ ).
Upon substituting this wave function into Eq. (6), we obtain
the confluent hypergeometric differential equation,

[
ζ

d2

dζ 2 +(|γ|+1−ζ )
d

dζ
−
(
|γ|
2

+
1
2
− η

4ω

)]
F(ζ ) = 0. (7)

The above equation has the solution: F(ζ ) = (|γ|/2+1/2−η/4ω, |γ|+1;ζ ). When ζ → ∞, then F(ζ ) is required to become
zero. We further need the confluent hypergeometric series with F(ζ ) to be finite. Notice that when the independent term of
Eq. (7) is zero or negative, this requirement is verified. Therefore, the quantum condition of the polynomial confluent function
requires that −n = |γ|

/
2+ 1

/
2−η

/
4ω . Plugging in the values of parameters γ , ω , and η , we can finally obtain the energy

spectrum as follows:

Er =
}ωc

2
(m+ξ )−2V0 +

√
}2ω2

c +
8V0}2

r2
0µ

n+
1
2
+

1
2

√
(m+ξ )2 +

2µV0r2
0

}2

 , n = 0,1,2, . . . , (8a)
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where ωc = eB
/

µc is the cyclotron frequency and m is the projection of the angular momentum on the z axis. If we replace
γ→ β in Eq. (5b), namely, γ2= 2µV0r2

0
/
}2 +(m+ξ )2, ξ → α in Eq. (5b), namely, ξ = ΦAB

/
Φ0 with Φ0 = hc

/
e, and µ→m∗,

we have

Er = }
(

ω
2
c +

8V0

r2
0m∗

) 1
2
(

n+
β +1

2

)
+}ωc

m+α

2
−2V0. (8b)

Therefore, equation (8a) is the same as Eq. (7) of Ref. [19]
by Çetin who has calculated the energy states and wave func-
tion for an electron confined by a pseudo-harmonic potential
both including harmonic dot and antidot potentials under the
magnetic and AB flux fields.

Here, we only apply the electrostatic field along the z axis
and investigate the thermal properties of spherical QPDs as a
complementary study to Çetin work.

Now, under the following two special cases of interest, at
first if we put ΦAB = 0 into Eqs. (8a) and (8b), then it turns out
to become Eq. (11) of Refs. [37] and [38]. In these works, the
authors have calculated the light interband absorption coeffi-
cient and the threshold frequency in a quantum pseudodot sys-
tem under the influence of an external magnetic field as when
B(r) = Br/2. Secondly, when we put both fields ΦAB = 0 and
B = 0, then equation (8) turns into Eq. (18) of Ref. [17].

It is worth noting that in the absence an applied elec-
trostatic field along the z axis, the finite energy levels for
equation (8) in our solution are identical to the ones already
found in Eq. (25) of Ref. [35]. It is worthwhile remarking
that Ikhdair and Hamzavi have also calculated the interband
light absorption coefficient in a quantum pseudodot system
with a magnetic field by employing the Nikoforov–Uvarov
method.[35]

After making use of Eqs. (5a) and (8a), the total energy
levels can be obtained as

Enm = n}+a, n = 1,2, . . . , (9a)

with the quantum number

n =

√(
eB
µc

)2

+
8V0

r2
0µ

nr +
1
2

√
K
µ

nz

and

a =
1
2

√
}2

(
eB
µc

)2

+
8V0}2

r2
0µ

×

1+

√(
m+

eΦAB

hc

)2

+
2µV0r2

0
}2


+

}
2

eB
µc

(
m+

eΦAB

hc

)
−2V0−

}2 e2ε2

4K
+

}
2

√
K
µ
. (9b)

Here formula (9b) is showing a relationship between param-
eters r0, V0, and K in the present potential model. Therefore,

the solutions of Eq. (9b) are valid for the potential parameters
satisfying the restriction given in Eq. (9a). However, the re-
lation between the potential parameters (9b) depends on the
azimuthal quantum number m which means that the potential
has to be different for various quantum numbers.

Further, the pseudo-harmonic potential plus oscillator po-
tential has a major influence on the energy levels. In the ab-
sence of such interaction, the energy levels are obtained as
follows:

Enm =
e}B
2µc

[
2n+1+

∣∣∣∣m+
eΦAB

hc

∣∣∣∣+ 1
2

(
m+

eΦAB

hc

)]
, (9c)

n = 1,2, . . . .

In Figs. 1–4, we show the variation of the bound state
energies for different parameters. We use selected parameter
values c = e = r0 = }= K = µ = nr = nz = 1, V0 = 5 in plot-
ting these figures.

0           2           4           6           8 

B/T

100

200

300

400

500

600

700

E

Φ=
5 T

Φ
=

10 T

Φ
=

1
5
 TΦ

=
2
0
 T

Fig. 1. (color online) The variation of the bound states energies versus the
magnetic field for various Aharonov–Bohm flux fields.

For example, in Fig. 1, we plot the pseudodot energy
states versus the magnetic field taking ΦAB = 5,10,15,20 with
ε = 5 and m = 1. In this figure, it is seen that the energy is
changing with the magnetic field. Notice that for a fixed value
of the magnetic field, the energy increases with the increasing
flux field strength.

In Fig. 2, we draw the pseudodot energy spectrum versus
the magnetic field when choosing the radial quantum number
values taking ΦAB = 5, ε = 5, and m = 1. In this figure, we see
that the pseudodot energy spectrum is increasing with the in-
creasing of the magnetic field. Also, for a specific value of the
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magnetic field, a linear variation of the energy with the radial
quantum numbers is shown.

           .           .          .          . 

B/T











E

n r
/

n r
/

n r
/

n r
/



Fig. 2. (color online) The variation of the bound states energies versus the
magnetic field for various nr .

In Fig. 3, we draw the pseudodot energy spectrum versus
the electric field when choosing the different azimuthal quan-
tum number values with ΦAB = 5 and B = 2. It is noticed that
for a fixed value of the electric field, the energy increases with
the increasing values of the azimuthal quantum number.

0             1              2             3              4             5 

ε/V

124

128

132

136

140

E

m/↩

m/↩

m/

m/

Fig. 3. (color online) The variation of the bound states energies versus the
electric field for various m.

Figure 4 shows the pseudodot energy states versus the
magnetic field, which increases linearly with the increasing
values of the magnetic field for the various values of the az-
imuthal quantum number.

Now, in working out the thermal properties of spherical
QPDs, let us start by defining the fundamental object in sta-
tistical physics, that is, the canonical partition function Z. Us-
ing the energy spectrum of the electrons (holes) of spherical
QPDs, Eq. (9), we have

ωn =
Ω

2
(2n+Ξ) , (10)

where ωn = Enm
/
}, Ω = 1 and Ξ = 2a

/
}.

Using the characteristic function (X = lnZ) as follows:

X = −
∞

∑
n=1

ln [1− exp(−βωnm)]

= −
∞

∑
n=1

ln [1− exp(−2πδ (2n+Ξ))], (11)

where δ = Ωβ
/

4π andβ = 1
/

T with supposing kB = 1.

        .        .        .       .        . 
B/T











E

m
/

↩
m

/
↩

m
/


m

/


Fig. 4. (color online) The variation of the bound states energies versus the
magnetic field for various m.

In fact, in the canonical ensemble the thermodynamics
of a system such as an ideal gas of the electrons (holes) in a
pseudodot at temperature, T , is found from its partition func-
tion, Z = ∑E exp(−βE), with β = 1/kBT where kB and E
denote the Boltzmann constant and the energy eigenvalues of
the system, respectively.[35] Now, an energy value E can be ex-
pressed in terms of the single-particle energies, ε; for instance,
E = ∑k nkε , where nk is the number of particles in the single-
particle energy state k. Therefore, we can write the partition
function of a gas system as

Z = 1
/ ∞

∏
n=1

(1− e−βεn).

Now, the logarithm of Z is known as the characteristic func-
tion and denoted by G = lnZ. In fact, a characteristic func-
tion is simply the Fourier transform, in probabilistic language.
Defining the characteristic function of a random variable X̃ as
follows:[40,41]

X̃ =
∫

∞

−∞

e iωx dx, (12)

Also, the characteristic function mentions a particular rela-
tion between the partition function of an ensemble in statis-
tical physics. Now, we suppose that Z is the partition function,
then, it satisfies Z = exp(±βQ) where Q is a thermodynamic
quantity. Here, Q is called the characteristic function of the
ensemble corresponding to P. In the micro-canonical ensem-
ble, the partition, Ω (U,V,N) is as Ω (U,V,N) = exp(βT S),
the canonical ensemble, the partition function is written as
Z (T,V,N) = exp(−βA), the partition function is written for
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the grand canonical ensemble as Ξ (T,V,µ) = exp(−βΦ)

and the isothermal–isobaric ensemble, the partition function
is written as ∆ (N,T,P) = exp

(
−β G̃

)
, with its characteris-

tic function as T S, A, Φ , and G̃, respectively. In this area,
a list of some common distributions functions and the corre-
sponding characteristic have been given in Ref. [42]. Also, the
work statistics for a single non-relativistic particle have been
determined by Yi and Talkner,[43] and N-particles by evaluat-
ing the characteristic function with the help of the relation into
Refs. [44] and [45].

At this stage, we can obtain the following relation after
expanding the logarithm in Eq. (11) as follows:

∂X
∂δ

=−2π

∞

∑
k=1

e−2πkδ (2n+Ξ)
∞

∑
n=0

(2n+Ξ), (13)

and further using the formula e−x = (1/2π i)
∫

C dsx−sΓ (s)
with x = 2πkδ (2n+Ξ) in Refs. [46] and [47], the derivative
of X is obtained as follows:

∂X
∂δ

=−1
i

∫ ds

C
(2πδ )−s

Γ (s)ζ (s)
(2n+Ξ)1−s

∑
n

. (14)

Now, equation (14) can be written in terms of the Euler,
Riemann, and Riemann’s generalized functions as follows:

∂X
∂δ

=−1
i

∫ ds

C
(2πδ )−s

Γ (s)ζ (s)21−s
ζ

[
s−1,

Ξ

2

]
. (15)

In eq. (15), we expand ζ
[
s−1, Ξ

2

]
up to the third order term

in (Ξ −1), then, by substituting expanding into Eq. (15), we
have

∂X
∂δ

=− π

94δ 2

[
1
4
−
(
π

2−8
)
(Ξ −1)+(7ζ [3]−8)(Ξ −1)2

]
− π

12
[3Ξ (Ξ +2)+2]+

Ξ +1
2δ

, (16)

It is worth mentioning that we have used the residues for the poles s−0,1,2 of Eq. (16). At the end, in the first-order approxi-
mation in 1

/
2−a

/
}, we can write the new characteristic function of Eq. (16) as follows:

X =

(
1
2
− a

}

)[
ln
(

4π

β

)
+

β

2
−
(

2− π2

4

)
π2

3β

]
− ln

(
4π

β

)
− 11β

48
+

π2

6β
. (17)

Upon using the new characteristic function, the mean energy is calculated as:

U = T 2 ∂X
∂T

=

(
1
2
− a

}

)
.

[
T − 1

2
−
(

π2

4
−2
)

π
2T 2
]
−T +

11
48
− π2T 2

6ϑ
. (18)

The specific heat can be obtained as (CV =−∂U
/

∂T )

CV =

(
1
2
− a

}

)
.

[
−3+

2
T
+

2π2

3

(
π2

4
−2
)

T
]
+1+

5
12T
− π2

3
T. (19)

Further, we can calculate the free energy (F =−ln(Z)
/

β ) as follows:

F =

(
1
2
− a

}

)
.

[
− 2

T 2 +
2π2

3

(
2− π2

4

)
T
]
− 5

12T 2 +
π2

3
. (20)

The entropy is defined as
(
S =−∂F

/
∂T
)

and yields

S = 4
(

1
2
− a

}

)
1

T 3 −
5

6T 3 . (21)

As a reminder, this physical quantity has been applied in a
wide variety of fields and plays a vital role in thermodynam-

ics. Moreover, it is central to the second law of thermodynam-
ics and helps measure the amount of order and disorder and/or
chaos as well. It can be defined and measured in many other
fields than thermodynamics.

Now, the persistent current (I =−∂F
/

∂Φ)[48] can be ob-
tained as follows:

I =
[

2
T 2 −

2π2

3

(
2− π2

4

)]
√√√√√√√√

}2 e2B2

µ2c2 +
8V0}2

r2
0µ(

m+
eΦAB

hc

)2

+
2µV0r2

0
}2

(
m+

eΦAB

hc

)
πe

}2c
+

e2Bπ

}c

 . (22)

The magnetization (M =−∂F
/

∂B)[39,48] of the present system can be obtained as follows:

M =

[
2

T 2 −
2π2

3

(
2− π2

4

)]

}e2B

1+

√(
m+

eΦAB

hc

)2

+
2µV0r2

0
}2


2µ2c2

√
}2 e2B2

µ2c2 +
8V0}2

r2
0µ

+

e
(

m+
eΦAB

hc

)
2}c

 . (23)
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Finally, the magnetic susceptibility[49–51] is calculated as

χ =

[
2

T 2 −
2π2

3

(
2− π2

4

)]

×


3}3 e4B

1+

√(
m+

eΦAB

hc

)2

+
2µV0r2

0
}2


2µ4c4

(
}2 e2B2

µ2c2 +
8V0}2

r2
0µ

)3/2 +

3}5e6B3

1+

√(
m+

eΦAB

hc

)2

+
2µV0r2

0
}2


2µ6c6

(
}2e2B2

µ2c2 +
8V0}2

r2
0µ

)5/2

 . (24)

3. Results and discussion
Here, we present the results of our study. We take the

parameters values as c = e = r0 = } = K = µ = 1, V0 = 5
while plotting the figures. Therefore, we plot Figs. 5–8 using
Eqs. (18)–(21), respectively. In these figures, the thermody-
namic quantities such as mean energy, specific heat, free en-
ergy, and entropy quantities are changing with increasing val-
ues of temperature T . For example, in Fig. 5, this changing is
as deceasing, but in Figs. 6–8, theses changes are as increasing
for different azimuthal quantum numbers m.

.         .         .         . 

T/K

-70

-65

-60

-55

-50

U

m/↩
m/↩
m/
m/

Fig. 5. (color online) The variation of the mean energy function versus the
temperature for various m.

.      .     .      .      .      . 

T/K

0

100

200

300

400

500

C
V

m/↩
m/↩
m/
m/

Fig. 6. (color online) The variation of the specific heat function versus the
temperature for various m.

On the other hand, figures 9–14 show that the mean en-
ergy, specific heat, persistent current, magnetization, magnetic
susceptibility, and entropy quantities are changing with in-
creasing the pseudodot size for several values of the magnetic
field.

.      .      .      .     . 

T/K

↩

↩

↩

↩

↩

↩

↩

F

m/↩

m/↩

m/

m/

Fig. 7. (color online) The variation of the free energy function versus the
temperature for various m.

.            .           .           . 
T/K

↩

↩

↩

↩

↩

S

m/↩

m/↩

m/

m/

Fig. 8. (color online) The variation of the Entropy function versus the tem-
perature for various m.

It is interesting that this variation decreases in the case of
Figs. 10, 11, and 14, but it increases in the case of Figs. 9,
12, and 13. Further, in Fig. 9, it reaches a maximum slowly at
around some B for B≤ 8, and in Fig. 12, it increases exponen-
tially. In Fig. 13, it reaches a maximum as a Gaussian form
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at around some B for 1.5 < B≤ 4, then, it decreases exponen-
tially. Also, in Fig. 10, it reaches a minimum at around some
B for B≥ 2 and in Fig. 11, it decreases exponentially.

                                         
r


/nm

-700

-600

-500

-400

-300

-200

U

B/ T

B/ T

B/ T

B/ T

Fig. 9. (color online) The variation of the mean energy function versus the
pseudodot size for various magnetic fields.

                                         

r

/nm













C
V

B/ T

B/ T

B/ T

B/ T

Fig. 10. (color online) The variation of the specific heat function versus the
pseudodot size for various B.

In Figs. 5–14, it is seen that the large influence of both
the azimuthal quantum number and magnetic field are more
apparent, respectively.

                                         
r


/nm









I

B/ T

B/ T

B/ T

B/ T

Fig. 11. (color online) The variation of the persistent current function versus
the pseudodot size for various B.

                                                 
r


/nm











M

B/ T

B/ T

B/ T

B/ T

Fig. 12. (color online) The variation of the magnetization function versus
the pseudodot size for various B.

                                               
r


/nm















χ B/ T

B/ T

B/ T

B/ T

Fig. 13. (color online) The variation of the magnetic susceptibility function
versus the pseudodot size for various B.

We have noticed from Fig. 9 that as B increases further,
the mean energy begins to decrease linearly as well, but in
Fig. 10, the specific heat begins to increase linearly as well.

                              
r


/nm

↩

↩

↩

↩

S
/





B/ T

B/ T

B/ T

B/ T

Fig. 14. (color online) The variation of entropy function versus the pseu-
dodot size with the various magnetic fields.

Figure 15 shows that the free energy decreases with in-
creasing the value of the two fields for several of the pseudodot
sizes, respectively.
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Notice that for a fixed value of the magnetic and AB flux
fields, the free energy decreases when the pseudodot size is
increasing. Namely, it is obvious to state that the influence of
the pseudodot size is more apparent.

                                                  

Φ/T

-400

-300

-200

-100

F

r
 /

 nm
r
/ nm

r
/ nm

r
/ nm

Fig. 15. (color online) The variation of free energy function versus
Aharonov-Bohm flux field with the various pseudodot size.

                                                 

Φ/T















I

m/↩

m/↩

m/

m/

Fig. 16. (color online) The variation of the persistent current function versus
the AB flux field for various m with r0 = 5.

m/↩

m/↩

m/

m/

                                                 

Φ/T















M

Fig. 17. (color online) The variation of magnetization function versus the
AB flux field for various m with r0 = 5.

Figures 16–18 show that the persistent current, magne-
tization, and magnetic susceptibility increase with increasing

value of the AB flux field for several different azimuthal quan-
tum numbers. It is seen that the large influence of the az-
imuthal quantum number is more apparent for magnetic sus-
ceptibility.

m/↩

m/↩

m/

m/

      .     .     .     .     . 

Φ/T

.

.

.

.

.

χ

Fig. 18. (color online) The variation of magnetic susceptibility function ver-
sus the AB flux field for various m with r0 = 20.

4. Concluding remarks
We solved the non-relativistic equation with the pseudo-

harmonic plus harmonic oscillator potentials under the influ-
ence of the magnetic and AB flux fields to study the spherical
QPDs. Our results in Eq. (8a), are found to be the same as
Eq. (7) of Ref. [19].

We calculated the bound states energies and the corre-
sponding wave functions. The finite bound state energies are
used to obtain the partition function and then to obtain the
main thermodynamic quantities for pseudodot systems. Our
results are compared with the results obtained by other authors
and found to be in good agreement.

It is worth remarking that the magnetic susceptibility
function reaches its maximum value at the pseudodot size of
r0 ' 4nm when the magnetic field B = 2T . However, when
the magnetic field strength increases this maximum value will
decrease as shown in Fig. 13. On the other hand, the maxi-
mum of the entropy function curve decreases with the increas-
ing of the pseudodot size r0 for different magnetic field values
as shown in Fig. 14.

Finally, our results of the energy states are plotted versus
the various parameters of this model in Figs. 1–18.
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