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Abstract: In this article, we present up to date results on the balanced model reduction techniques
for linear control systems, in particular the singular perturbation approximation. One of the
most important features of this method is it allows for an a priori L2 and H∞ bounds for the
approximation error. This method has been successfully applied for systems with homogeneous
initial conditions, however, the main focus in this work is to derive an L2 error bound for singular
perturbation approximation for system with inhomogeneous initial conditions, extending the work
by Antoulas et al. The theoretical results are validated numerically.
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1. Introduction

Linear systems have been under investigation for quite long time due to their wide range of
applications in physics, mathematics and engineering. However, the subject is such a fundamental
and deep one that there is no doubt that linear systems will continue to be a main focus of study for
long time to come.

The modeling of many physical, chemical or biological phenomena resulting from discretized
partial differential equations lead to the well-known representation of a linear time-invariant
(LTI) system

ẋ = Ax + Bu

y = Cx + Du

x(t0) = x0

(1)

where A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and Dp×m are constant matrices.
The order n of the system ranges from a few tens to several hundreds as in control problems for

large flexible space structures. A common feature of the model used is that it is high-dimensional and
displays a variety of time scales. If the time scales in the system are well separated, it is possible to
eliminate the fast degrees of freedom and to derive low-ordered reduced models, using averaging and
homogenization techniques. Homogenization of linear control systems has been widely studied by
various authors [1–4].

Related Work

Several methods have been presented in the literature to reduce order of infinite dimensional
linear time-invariant systems such as balanced truncation [5], Hankel norm approximation [6] and
singular perturbation approximation [7].
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All these methods give the stable reduced systems and guarantee the upper bound of the
error reduction.

Although balanced truncation and singular perturbation approximation methods give the same
of the upper bound of error reduction in the case when the dynamical system is homogeneous, but the
characteristics of both methods are contrary to each other.

It has been shown that the reduced systems by balanced truncation have a smaller error at high
frequencies, and tend to be larger at low frequencies. Furthermore, the reduced systems through
the singular perturbation approximation method behave otherwise, i.e., the error goes to zero at low
frequencies and tend to be large at high frequencies.

In [8], it has been shown that the reduced systems through balanced truncation method in infinite
dimensional systems preserve the behavior of the original system in infinite frequency. More often,
this condition is not desirable in applications. Therefore, it is necessary to improve the singular
perturbation approximation method so that it can be applied to infinite dimensional systems.

Many of the properties of the singular perturbation approximation method can be connected
through balanced reciprocal system, as shown in [7].

For finite time-horizon optimal problems, among the most actively investigated singularly
perturbed optimal control problems is the linear quadratic regulator problems. Most of these
approaches are based on the singularly perturbed differential Riccati equation. An alternative approach
via boundary value problems is presented in [9]. Its relationship with the Riccati aproach is analyzed
in [10].

In spirit, our approach here is similar to the recent PhD thesis [11] by one of the authors of
this article, but we consider a balanced version of the singular perturbation approximation (SPA).
For homogeneous systems, it is known that, although balanced truncation (BT) and SPA have the
same H1 error bound, the frequency characteristics of both methods are contrary to each other,
in that balanced truncation yields a smaller error at high frequencies, whereas SPA gives a better
approximation at low frequencies [12]. The error bound which we have does not depend on the
regularization parameters. Thus, we can interpolate the non-zero initial condition as an extra input
and we choose the Driac delta function δ0 /∈ L2 to estimate the error bound by applying the triangle
inequality and the two separated terms.

The paper is organized as follows: In Section 2, the linear time-invariant continuous system is
introduced. Section 3 introduces the reciprocal system of the original system together with some of its
important properties. An error bound of the inhomogeneous linear control system using the singular
perturbation approximation method is presented Section 4. Numerical results that show the validity of
theoretical results are given in Section 5 and conclusions are drawn in Section 6.

2. Preliminaries

The linear time-invariant continuous system described in Equation (1), assuming D = 0, can be
represented in the following state-space equation:

ẋ = Ax + Bu

y = Cx

x(0) = x0

(2)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the input control and y(t) ∈ <p is the output of
the system.

Let
G(s) = C(sI − A)−1B

be the transfer function of this system.
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Assumption 1. We assume that a system is asymptotically stable, the pair (A, B) is controllable and (A, C) is
observable [13].

Since this system is controllable and observable, then the controllability and observability
Gramians Wc and Wo are positive semi-definite and satisfy the Lyapunov equations

AWc + Wc AT + BBT = 0

Wo A + ATWo + CTC = 0

If we refer to [12,14,15], then the reduced order model r× r obtained by the Balance Truncation
method (BT) is represented by the following equation:

ẋr = A11xr + B1u

yr = C1xr
(3)

and the transfer function of this reduced system is defined as:

Gr(s) = C1(sI − A11)
−1B1 (4)

For zero initial condition, we have the following error bound [12,13,15,16]:

Lemma 1. We have that
‖G− Gr‖∞≤ 2(σr+1 + σr+2 + · · · · · ·+ σn) (5)

where σr+1 is the first deleted (HSV) of G(s).
If we reduced the original system using the singular perturbation approximation, then there is an

error bound available for the reduced system of transfer function Ḡr of the stable and balanced system
(A, B, C, D).

In the form of the H∞ norm, the error bound is given as [12]:

‖G− Ḡr‖∞≤ 2
n

∑
i=r+1

σi (6)

For non-zero initial condition, we obtain the following error bound using the balanced truncation
method, and then the error bound between the outputs of the original and its reduced system is [11]:

‖y− ȳ‖L2(t0,∞) ≤ ‖
√

Σ‖2
2‖X0‖2

2 + 2
n

∑
i=r+1

σi‖u‖L2(t0,∞) (7)

for all u ∈ L2(t0, ∞).

3. The Reciprocal System of a Linear Continuous Dynamical System

In this section, we introduce the reciprocal system of the original (full) system and discuss some
properties of this system. We want to find an error bound for the reduced reciprocal system by referring
to the theorem and corollary that we deduced (for more details, see [11]).

We start by defining the reciprocal system denoted by

(
Â B̂
Ĉ D̂

)
of the linear continuous

dynamical system

(
A B
C

)
described in Equation (2).
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The state space and output equations for the reciprocal system can be written as:

˙̂x = Âx̂ + B̂u

ŷ = Ĉx̂ + D̂u
(8)

where
Â = A−1, B̂ = A−1B, Ĉ = CA−1, D̂ = D− CA−1B (9)

and the initial condition of this system is given as

x̂(t0) = A−1x(t0)

Now, if the full system

(
A B
C

)
is balanced with Gramian

Σ =

(
Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · , σr)

Σ2 = diag(σr+1, · · · , σn)

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, r < n are the Hankel singular values, then the reciprocal system
is balanced with the same Gramian Σ [11] and can be partitioned in the same way as in [11] such

that the reduced reciprocal system

(
Â11 B̂1

Ĉ1 D̂

)
of order r × r is balanced with Gramian Σ1 and

asymptotically stable (see [11]).
The following Lemma shows us the balanced realization of the reciprocal system [12,17].

Lemma 2. Let the system (A, B, C, D) be the minimal and balanced realization with Gramian Σ of a linear,
time-invariant and stable system; then, the reciprocal system (Â, B̂, Ĉ, D̂) is also balanced with the same
gramain Σ.

Proof. We know that Σ satisfies the Lypunov equations

AΣ + ΣAT + BBT = 0

ATΣ + ΣA + CTC = 0

Thus, multiplying the first equation from the right by A−1 and from the left by A−T , we get

A−1(AΣ)A−T + A−1(ΣAT)A−T + A−1(BBT)A−T = 0

ΣA−T + A−1Σ + (A−1B)(A−1B)T = 0

Substituting the values in Equation (9), we have that

ÂΣ + ΣÂT + B̂B̂T = 0

The second Lyapunov equation multiplied by A−T from the right and by A−1 from the left,
gives us

A−T(ATΣ)A−1 + A−T(ΣA)A−1 + A−T(CTC)A−1 = 0

ΣA−1 + A−TΣ + (CA−1)T(CA−1) = 0
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In the same way from Equation (9), we have

ÂTΣ + ΣÂ + ĈTĈ = 0

This means that the reciprocal system (Â, B̂, Ĉ, D̂) is balanced with the same Gramian Σ.

Let Ĝ be the transfer function of the reciprocal system (Â, B̂, Ĉ, D̂); then,

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ (10)

For zero-initial condition, we have the following relation between the two transfer functions G
and Ĝ and given as:

G(s) = C(sI − A)−1B + D

= C(sI − A)−1 AA−1B + D

= C
I
s
(A−1 − I

s
)−1 A−1B + D

= −C(
I
s
− A−1 + A−1)(

I
s
− A−1)−1 A−1B + D

= −CA−1B− CA−1(
I
s
− A−1)−1 A−1B + D

= −CA−1(
I
s
− A−1)−1 A−1B + D− CA−1B

= Ĉ(
I
s
− Â)−1B̂ + D̂

= Ĝ(
1
s
)

(11)

In addition, we can write the state and output equations for the reduced reciprocal system(
Â11 B̂1

Ĉ1 D̂

)
in the form:

˙̂x1 = Â11 x̂1 + B̂1u

ŷ1 = Ĉ1 x̂1 + D̂u
(12)

where

Â11 =
(

A11 − A12 A−1
22 A21

)−1

B̂1 =
(

A11 − A12 A−1
22 A21

)−1 (
B1 − A12 A−1

22 B2

)
Ĉ1 =

(
C1 − C2 A−1

22 A21

) (
A11 − A12 A−1

22 A21

)−1

The transfer function for the reduced reciprocal system is denoted by Ĝr and defined as:

Ĝr(s) = Ĉ1(sI − Â11)
−1B̂1 + D̂ (13)

For zero initial condition, we have the following H∞ norm for the reduced reciprocal system.

Lemma 3. We have

‖Ĝ− Ĝr‖∞≤ 2
n

∑
i=r+1

σi (14)
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The proof of this Lemma can be found in [12].
If the initial condition of the full system is non-zero and given as:

x(t0) =

(
x1(t0)

x2(t0)

)
(15)

then the initial condition of the reduced reciprocal system is defined as

x̂1(t0) =
(

A11 − A12 A−1
22 A21

)−1 (
x1(t0)− A12 A−1

22 x2(t0)
)

(16)

The observability Gramian Wo can be factorized as

Wo = LT L, L ∈ <n×n

We now introduce the following theorem which contains the error bound between the outputs of
the reciprocal and its reduced systems.

Theorem 1. Given the full system

(
A B
C

)
, with non-zero initial condition x(t0). Let the observability

Gramian Wo be factorized as
Wo = LT L, L ∈ <n×n

In addition, let

Σ =

(
Σ1 0
0 Σ2

)
and

Σ1 = diag(σ1, · · · , σr)

Σ2 = diag(σr+1, · · · , σn)

where r < n and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the Hankel singular values.
If the non-zero initial conditions of the reciprocal and its reduced system is defined in

Equations (15) and (16), respectively, then for all u ∈ L2(t0, ∞), the error bound between the output ŷ of
the reciprocal system and the output ŷ1 of its reduced system is given as:

‖ŷ− ŷ1‖L2(t0,∞) ≤ ‖LÂx(t0)‖2
2 + ‖

√
Σ1 Â11

(
x1(t0)− A12 A−1

22 x2(t0)
)
‖2

2

+ 2
n

∑
i=r+1

σi‖u‖L2(t0,∞)

(17)

Proof. We apply the result in the theorem [11] to the reciprocal and reduced reciprocal systems
with non-zero initial condition and use the factorization of Wo to get the error bound and the proof
is concluded.

Corollary 1. If the reciprocal system

(
Â B̂
Ĉ D̂

)
is balanced, then the reduced reciprocal system

(
Â11 B̂1

Ĉ1 D̂

)
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is balanced with Σ1, and the error bound between the outputs ŷ and ŷ1 is:

‖ŷ− ŷ1‖L2(t0,∞) ≤ ‖
√

Σ‖2
2‖Âx(t0)‖2

2 + 2
n

∑
i=r+1

σi‖u‖L2(t0,∞) (18)

for all u ∈ L2(t0, ∞)

Proof. By referring to the corollary [11] and using the initial condition x̂(t0) = Âx(t0) for the reciprocal
system and the initial condition in Equation (16) for the reduced reciprocal system and the fact that
the observability Gramian can be factorized as Wo = LT L, L ∈ <n×n and L =

√
Σ, we obtain the

error bound.

4. Error Bound of an Inhomogeneous Linear Control System Using the Singular Perturbation
Approximation Method (SPA)

In this section, we introduce an approach to find the error bound between the outputs of
the original and the reduced systems with non-zero initial condition using the method of singular
perturbation approximation (SPA).

To obtain such an error bound, we use the approach for the reciprocal system and extend it using
the singular perturbation approximation.

Consider the linear dynamical system written in the form:(
ẋ
εż

)
=

(
A11 A12

A21 A22

)(
x
z

)
+

(
B1

B2

)
u (19)

Here, once again A ∈ <n×n, B ∈ <n×m, C ∈ <p×n and x(t0) =

(
x0

z0

)
is the initial condition.

The scalar ε represents all the small parameters to be neglected. The output equation of this
system is:

y =
(

C1 C2

)( x
z

)
(20)

If we use the singular perturbation technique to reduce the system in Equation (19), we choose
r < n such that the reduced system is given as:

˙̄x = Āx̄ + B̄u

ȳ = C̄x̄ + D̄u
(21)

and

Ā = A11 − A12 A−1
22 A21, B̄ = B1 − A−1

22 B2, C̄ = C1 − C2 A−1
22 A21, D̄ = −C2 A−1

22 B2

We assume that the block matrix A22 is bounded, invertible and stable matrix.
The relationship between the coefficient matrices of the reduced reciprocal system in Equation (12)

and the reduced system in Equation (21) obtained by the singular perturbation approximation are
given in [11].

The reduced system in Equation (21) is balanced with Σ1 and asymptotically stable [11]
We are now ready to introduce our main result to find the error bound between the output y of the

original system and the output ȳ of the reduced system using the singular perturbation approximation.
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Let G be the transfer function of the original system

(
A B
C

)
and Ĝ be the transfer function

of the reciprocal system

(
Â B̂
Ĉ Ĉ

)
, then for zero-initial condition we have proved for the reduced

system in [11] that

G(s) = Ĝ(
1
s
)

If we let Ḡ be the transfer function of the reduced system

(
Ā B̄
C̄

)
and Ĝr be the transfer

function of the reduced reciprocal system

(
Â11 B̂1

Ĉ1

)
, then we have:

Ḡ(s) = Ĝr(
1
s
)

For more details, see [11].
Now, for the non-zero initial condition x(t0), we have the following corollary for the transfer

function Gx(t0)
of the original system and the transfer function Ĝx(t0)

of the reciprocal systems.

Corollary 2. If the initial condition x(t0) is non-zero, then the relationship between the transfer function Gx(t0)

of the original system and the transfer function Ĝx(t0)
of the reciprocal systems is given as:

Gx(t0)
(s) = Ĝx(t0)

(
1
s
) (22)

Proof. The transfer function of the original system with non-zero initial condition has the form

Gx(t0)
(s) = Gx(t0)

(s) + qx(t0)
(s) (23)

when x(t0) = 0, we have:

G(s) = C (sI − A)−1 B

= CA−1
(

sI − A−1
)−1

A−1B

= Ĝ(
1
s
)

and for the value of qx(t0)
(s), we have:

qx(t0)
(s) = C (sI − A)−1 x(t0)

= CA−1
(

sI − A−1
)−1

A−1x(t0)

= q̂x̂(t0)
(

1
s
)

If we substitute these values into Equation (23), we get:

Gx(t0)
(s) = Ĝ(

1
s
)U(s) + q̂x̂(t0)

(
1
s
)

= Ĝx̂(t0)
(

1
s
)
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For the reduced system with non-zero initial condition, let Ḡx(t0)
(s) be the transfer function of the

reduced system

(
Ā B̄
C̄

)
and Ĝr

x(t0)
( 1

s ) be the transfer function of the reduced reciprocal system(
Â11 B̂1

Ĉ1

)
, then we have the following corollary that includes the relationship between these

transfer functions.

Corollary 3. The two transfer functions Ḡx(t0)
(s) and Ĝr

x(t0)
( 1

s ) for the reduced systems described in
Equations (21) and (12) with non-zero initial condition satisfy the following result:

Ḡx(t0)
(s) = Ĝr

x̂(t0)
(

1
s
) (24)

Proof. The transfer function of the reduced system with non-zero initial condition is:

Ḡx(t0)
(s) = Ḡ(s) + q̄x̄(t0)

(s) (25)

In the case when the initial condition is zero, we have:

Ḡ(s) = C̄ (sI − Ā)
−1 B̄

= Ĉ1 Â−1
1

(
sI − Â−1

1

)−1
Â−1

1 B̂1

= Ĝr(
1
s
)

We can then write the value of q̄x̄(t0)
(s) as follows:

q̄x̄(t0)
(s) = C̄ (sI − Ā)

−1 x̄(t0)

= Ĉ1 Â−1
1

(
sI − Â−1

1

)−1
Â−1

1 x0

= q̂r
x̂(t0)

(
1
s
)

Substituting these values into Equation (25), we get the result:

Ḡx(t0)
(s) = Ĝr(

1
s
) + q̂r

x̂(t0)
(

1
s
)

= Ĝr
x̂(t0)

(
1
s
)

To find the error bound between the output of the original and the reduced order model by
applying the singular perturbation approximation technique, we introduce the following theorem.

Theorem 2. Let G be the transfer function of the original system and Ḡ be the transfer function of the reduced
system using the singular perturbation approximation, then we have the following error bound between the
output y of the full system and ȳ of the reduced system:

|y− ȳ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖2
2 + ‖

√
Σ1(Ā)−1

(
x1(t0)− A12 A−1

22 x2(t0)
)
‖2

2

+ 2
n

∑
i=r+1

σi‖u‖L2(t0,∞)

(26)

where u ∈ L2(t0, ∞)
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Proof. Observe that

‖G− Ḡ‖L2(t0,∞) ≤ ‖G− Ĝ‖L2(t0,∞) + ‖Ĝ− Ĝr‖L2(t0,∞) + ‖Ĝr − Ḡ‖L2(t0,∞)

≤ ‖Ĝ− Ĝr‖L2(t0,∞)

but from Section 3, we know that the error bound is given as:

‖Ĝ− Ĝr‖L2(t0,∞) =
‖ŷ− ŷr‖L2(t0,∞)

‖u‖L2(t0,∞)

≤ ‖LÂx(t0)‖2
2 + ‖

√
Σ1 Â11

(
x1(t0)− A12 A−1

22 x2(t0)
)
‖2

2 + 2
n

∑
i=r+1

σi

Then, we have:

‖G− Ḡ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖2
2 + ‖

√
Σ1(Ā)−1

(
x1(t0)− A12 A−1

22 x2(t0)
)
‖2

2

+ 2
n

∑
i=r+1

σi

‖y− ȳ‖L2(t0,∞) ≤ ‖LA−1x(t0)‖2
2 + ‖

√
Σ1(Ā)−1

(
x1(t0)− A12 A−1

22 x2(t0)
)
‖2

2

+ 2
n

∑
i=r+1

σi‖u‖L2(t0,∞)

In the case when the full system is balanced, we have the following Corollary to obtain the error
bound between the outputs of the original and its reduced order system.

Corollary 4. If the system

(
A B
C

)
is balanced with

Σ =

(
Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · , σr)

Σ2 = diag(σr+1, · · · , σn)

σ1 ≥ σ1 ≥ · · · ≥ σn) > 0 are the Hankel singular values, and reduced system

(
Ā B̄
C̄

)
is balanced with

Σ1, then the error bound between the outputs y of the original system and ȳ of the reduced order system is:

‖y− ȳ‖L2(t0,∞) ≤ ‖
√

Σ‖2
2‖A−1‖2

2‖x(t0)‖2
2 + 2

n

∑
i=r+1

σi‖u‖L2(t0,∞) (27)

for all u ∈ L2(t0, ∞)

Proof. By referring to Section 3 and using the idea in the proof of Corollary 1, we can prove
the corollary.
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5. Numerical Examples

In this section, we include all results obtained by the singular perturbation approximation (SPA)
techniques to determine the order of the reduced models.

Open-Loop System

We start by computing the Hankel singular values of the two dynamical systems illustrated
in [11]. Figure 1a,b represents the Hankel singular values (HSVs) for the mass–spring damping and
the CD-player system of size Ns = 10 and Nc = 120, respectively.

11

�

In the case when the full system is balanced , we have the following Corollary to
obtain the error bound between the outputs of the original and its reduced order
system.

Corollary 4.4. If the system
(
A B
C

)
is balanced with

Σ =
(

Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · ,σr)

Σ2 = diag(σr+1, · · · ,σn)
σ1 ≥ σ1 ≥ ·· · ≥ σn) > 0 are the Hankel singular values, and reduced system(
Ā B̄

C̄

)
is balanced with Σ1, then the error bound between the outputs y of

the original system and ȳ of thr reduced order system is:

(4.27) ‖y− ȳ‖L2(t0,∞)≤ ‖
√

Σ‖22‖A−1‖22‖x(t0)‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞)

for all u ∈ L2(t0,∞)

Proof. By refering to section (3) and using the idea of proof (3.4), we can prove
the corollary. �

5 Numerical Examples

In this section we include all results obtained by the singular perturbation ap-
proximation (SPA) techniques to determine the order of the reduced models.
Open-Loop System:
We start by computing the Hankel singular values of the two dynamical systems
illustrated in [1, 6] . Figures (1a) and (1b) represent the Hankel singular values
(HSVs) for the mass-spring damping and the CD-player system of size Ns = 10 and
Nc = 120 respectively.

For testing purposes, we apply the singular perturbation approximation (SPA)

(a) HSVs of the mass-spring damping (b) HSVs of the CD-player

Figure 1. HSVs of the mass-spring damping and CD-player system

(a)

11

�

In the case when the full system is balanced , we have the following Corollary to
obtain the error bound between the outputs of the original and its reduced order
system.

Corollary 4.4. If the system
(
A B
C

)
is balanced with

Σ =
(

Σ1 0
0 Σ2

)

where
Σ1 = diag(σ1, · · · ,σr)

Σ2 = diag(σr+1, · · · ,σn)
σ1 ≥ σ1 ≥ ·· · ≥ σn) > 0 are the Hankel singular values, and reduced system(
Ā B̄

C̄

)
is balanced with Σ1, then the error bound between the outputs y of

the original system and ȳ of thr reduced order system is:

(4.27) ‖y− ȳ‖L2(t0,∞)≤ ‖
√

Σ‖22‖A−1‖22‖x(t0)‖22+2
n∑

i=r+1
σi‖u‖L2(t0,∞)

for all u ∈ L2(t0,∞)

Proof. By refering to section (3) and using the idea of proof (3.4), we can prove
the corollary. �

5 Numerical Examples

In this section we include all results obtained by the singular perturbation ap-
proximation (SPA) techniques to determine the order of the reduced models.
Open-Loop System:
We start by computing the Hankel singular values of the two dynamical systems
illustrated in [1, 6] . Figures (1a) and (1b) represent the Hankel singular values
(HSVs) for the mass-spring damping and the CD-player system of size Ns = 10 and
Nc = 120 respectively.

For testing purposes, we apply the singular perturbation approximation (SPA)

(a) HSVs of the mass-spring damping (b) HSVs of the CD-player

Figure 1. HSVs of the mass-spring damping and CD-player system

(b)

Figure 1. HSVs of the mass–spring damping and CD-player system: (a) HSVs of the mass–spring
damping; and (b) HSVs of the CD-player.

For testing purposes, we apply the singular perturbation approximation (SPA) method for the two
examples with zero-initial condition and compute the H∞ bound of the approximation error. The size
of the mass–spring damping system is taken to be Ns = 10 and the size of the reduced model is rs = 2.
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Figure 2 shows the maximum singular value decomposition (MSVD) σmax of (G− Gr), where G is the
transfer function of the original system, Gr is the transfer function of the reduced order model, and the

error bound is 2
10
∑

i=3
σi.

12

method for the two examples with zero-initial condition and compute the H∞

bound of the approximation error. The size of the mass-spring damping system is
taken to be Ns = 10 and the size of the reduced model is rs = 2. Figure (2) shows
the maximum singular value decomposition (MSVD) σmax of (G−Gr), where G
is the transfer function of the original system and Gr is the transfer function of

the reduced order model, and the error bound is 2
10∑

i=3
σi. Table (1) contains the

Figure 2. The MSVD and the error bound for the mass-spring
damping for the singular perturbation approximation method

values of ‖G−Gr‖∞ and 2
10∑

i=r+1
σi computed for Ns = 10 and various values of rs

by applying the balanced truncation and singular perturbation approximation to
the mass-spring damping system. To find an error bound for the CD-player, we

Table 1. The H∞ norm of (G−Gr) and the error bound.

rs ‖G−Gr‖∞ by SPA 2
10∑

i=r+1
σi

2 0.2147 0.7025
4 0.0374 0.0873
6 0.0023 0.0061
8 2.6374×10−4 6.7187×10−4

10 2.5247×10−5 6.4759×10−5

take the size of the system to be Nc = 120 and for the reduced model is rc = 14. By
applying the singular perturbation approximation method, the maximum singular

Figure 2. The MSVD and the error bound for the mass–spring damping for the singular perturbation
approximation method.

Table 1 contains the values of ‖G− Gr‖∞ and 2
10
∑

i=r+1
σi computed for Ns = 10 and various values

of rs by applying the balanced truncation and singular perturbation approximation to the mass–spring
damping system.

Table 1. The H∞ norm of (G− Gr) and the error bound.

rs ‖G−Gr‖∞ by SPA 2
10
∑

i=r+1
σi

2 0.2147 0.7025
4 0.0374 0.0873
6 0.0023 0.0061
8 2.6374 × 10−4 6.7187 × 10−4

10 2.5247 × 10−5 6.4759 × 10−5

To find an error bound for the CD-player, we take the size of the system to be Nc = 120 and for the
reduced model is rc = 14. By applying the singular perturbation approximation method, the maximum

singular value decomposition of (G− Gr) and the error bound 2
120
∑

i=9
σi are shown in Figure 3.
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value decomposition of (G−Gr) and the error bound 2
120∑
i=9

σi are showen in figure

(3). Table (2) contains the values of ‖G−Gr‖∞ and the error bound 2
120∑

i=r+1
σi

Figure 3. The MSVD and the error bound for the CD-player
forthe singular perturbation approximation

computed for Nc = 120 and various of rc by using singular perturbation approxi-
mation techniques to the CD-player system.
We see clearly that the singular perturbation approximation produces a reduced

Table 2. The H∞ norm of (G−Gr) and the error bound.

rc by SPA 2
120∑

i=r+1
σi

2 1.1726×10+3 8.8112×10+3

4 564.2177 2.1307×10+3

6 266.4908 658.1466
8 21.9202 117.6033
10 10.9294 63.0871
12 3.3050 30.4559
14 3.3658 15.9412
16 1.7800 10.3588

order model with an error tends to zero at low frequencies but the error becomes
larger at high frequencies.
Next, we want to compute the L2 bound of the approximation error between the
output y of the original system and the output yr of the reduced system with
non-zero initial condition. By applying singular perturbation approximation of the
reduced order model, we have the formulas for the error bound in equation (4.26))
denoted by Errorspa.
Figures (4) and (5) contain the output y of the original system, the output yr of the

Figure 3. The MSVD and the error bound for the CD-player for the singular perturbation approximation.

Table 2 contains the values of ‖G− Gr‖∞ and the error bound 2
120
∑

i=r+1
σi computed for Nc = 120

and various rc by using singular perturbation approximation techniques to the CD-player system.

Table 2. The H∞ norm of (G− Gr) and the error bound.

rc by SPA 2
120
∑

i=r+1
σi

2 1.1726 × 103 8.8112 × 103

4 564.2177 2.1307 × 103

6 266.4908 658.1466
8 21.9202 117.6033

10 10.9294 63.0871
12 3.3050 30.4559
14 3.3658 15.9412
16 1.7800 10.3588

We see clearly that the singular perturbation approximation produces a reduced order model
with an error tends to zero at low frequencies but the error becomes larger at high frequencies.

Next, we want to compute the L2 bound of the approximation error between the output y of the
original system and the output yr of the reduced system with non-zero initial condition. By applying
singular perturbation approximation of the reduced order model, we have the formulas for the error
bound in Equation (26) denoted by Errorspa.

Figures 4 and 5 contain the output y of the original system, the output yr of the reduced model
and the difference y− yr. For the mass spring damping, let Ns = 10 and rs = 2, and for the CD-player
Nc = 120 and rc = 14.

The L2 norm of (y− yr) can be computed for different rs. Tables 3 and 4 contain the values of
‖y− yr‖L2 and the error bounds for the mass–spring damping and the CD-player systems.

Table 3. The L2 norm of y− yr and the error bounds of the mass–spring damping.

rs ‖y− yr‖L2 SPA Errorspa

2 1.4448 × 10−7 0.7845
4 1.3092 × 10−10 0.0975
6 7.8119 × 10−11 0.0068
8 2.3580 × 10−13 7.5161×10−4

10 6.2379 × 10−15 7.3692×10−5
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reduced model and the difference y−yr. For the mass spring damping, let Ns = 10,
rs = 2 and for the CD-player Nc = 120 and rc = 14.

The L2 norm of (y− yr) can be computed for different rs . Table (3) and (4)

Figure 4. The outputs of the mass-spring damping for SPA

Figure 5. The outputs of the CD-player for SPA

contain the values of ‖y−yr‖L2 and the error bounds for the mass-spring damping
and the CD-player systems.

Figure 4. The outputs of the mass–spring damping for SPA.

14

reduced model and the difference y−yr. For the mass spring damping, let Ns = 10,
rs = 2 and for the CD-player Nc = 120 and rc = 14.

The L2 norm of (y− yr) can be computed for different rs . Table (3) and (4)

Figure 4. The outputs of the mass-spring damping for SPA

Figure 5. The outputs of the CD-player for SPA

contain the values of ‖y−yr‖L2 and the error bounds for the mass-spring damping
and the CD-player systems.

Figure 5. The outputs of the CD-player for SPA.

Table 4 contains the ‖y− yr‖L2 norm and the error bounds for the CD-player system.
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Table 4. The L2 norm of y− yr and the error bounds of the CD-player.

rc ‖y− yr‖L2 SPA Errorspa

2 530.9562 1.3932×104

4 13.6649 3.3690×104

6 13.6595 1.0406×103

8 1.0136×10−4 185.9503
10 2.6581×10−4 99.7527
22 1.4723×10−6 5.1515
30 4.9888×10−8 1.2801

6. Conclusions

In this thesis, we have studied balanced model reduction techniques for linear control systems,
specifically balanced truncation and singular perturbation approximation. These methods have been
successfully applied for systems with homogeneous initial conditions but little attention has been paid
to systems with inhomogeneous initial conditions or feedback systems.

For open-loop control problems, we have derived an L2 error bound for singular perturbation
approximation for system with non-homogeneous initial condition. The theoretical results have been
validated numerically.
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