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Abstract

In this paper we focus on the numerical simulation of the steady state heat conduc-
tion in a three dimensional enclosure geometry without the presence of heat source.
This physical phenomena is governed by a boundary integral equation of the second
kind. For the discretization of the boundary integral equation we have used the bound-
ary element method based on the Galerkin weighted residuals method. The system of
linear equation which subsequently arise has been solved by the conjugate gradient
method. To demonstrate the high efficiency of this method a numerical experiment
has been constructed.

Keywords: Heat conduction, Fredholm integral equation, Boundary element method,
Multigrid iterations, conjugate gradient scheme .

1 Introduction

The steady state heat conduction taking place in an enclosure Ω ∈ R3 with boundary Γ
(without the presence of internal heat source) can be described by the following boundary
integral equation (see[6])
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with the temperature at internal points is expressed in terms of the boundary temperatures
and boundary fluxes. r and p stand for the current and source points respectively. The
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 In addition to some previous work [3,4,6,11,12,15,16] involving the heat radiation integral 
equation we are aware of some other work [1,2,5,8,11,12,14,17] on heat conduction together 
with other heat transfer modes. Our main concern in this work is to focus on the numerical 
solution of the boundary integral equation (1.1). This will be achieved by introducing the 
boundary element method based on the Galerkin weighted residual method that will convert 
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the original boundary integral equation (1.1) to a system of linear equations. This linear
system will be solved iteratively using multigrid methods. In fact, multigrid methods are
among the most efficient methods for solving the linear system associated with the numerical
solution of the integral equation. The characteristic feature of the multigrid method is its
fast convergence in comparison to other iterative methods. Numerical example is considered
to demonstrate the high performance of these iterations.

2 Numerical realization of (1.1)

2.1 Construction of the system of equations

For the numerical realization of equation (1.1) we use the boundary element method based
on the Galerkin weighted residuals method. The temperature T and the heat flux q within
each boundary element are approximated as follows:

T (r) =
N∑
i=1

Tiϕi(r) (2.1)

q(r) =
N∑
i=1

qiϕi(r) (2.2)

where Ti and qi are the values of the nodal point ri of the temperature and the heat flux
respectively. ϕi are basis functions of the nodal point ri. Inserting (2.1) and (2.2) into
equation (1.1) and collocation at one nodal point pk yields a linear equation linking nodal
temperatures and heat fluxes [6],

N∑
j=1

HkjTj =
N∑
j=1

Gkjqj (2.3)

where

Hkj =
N∑
j=1

(

∫
Γ

∗
q (r, pk)ϕj(r)dΓ(r) + 0.5δkj) (2.4)

and

Gkj =
N∑
j=1

(

∫
Γ

∗
T (r, pk)ϕj(r)dΓ(r)) (2.5)

Equation (2.3) can be written for a sequence of collocation points pk, k = 1, 2, ..., N yields a
set of linear equations

HT = Gq (2.6)

The vectors T and q contain values of temperatures and heat fluxes of collocation points. H
is called the temperature influence matrix and G is called the heat flux influence matrix. The
above integrals in (2.4) and (2.5) can be evaluated numerically using numerical quadrature
[6,15,16]. This can be accomplished by transforming the integral over an arbitrary shaped
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boundary element into an integral over a unit square. Once the transformation is carried
out the value of the appropriate integral is computed using numerical quadratures. Using
shape functions ψi, one can approximate the global coordinate of the current point r laying
within a boundary element as follows :

x =
L∑
i=1

xiψi(ξ, ζ) (2.7)

y =
L∑
i=1

yiψi(ξ, ζ) (2.8)

z =
L∑
i=1

ziψi(ξ, ζ) (2.9)

where xi, yi and zi are the Cartesian coordinates of the nodal points defining the geometry
of the element. By virtue of (2.7)-(2.9), it can be readily shown [6] that the integrals in (2.4)
and (2.5) take the following form :

Hkj =

∫ 1

−1

∫ 1

−1

∗
q [r(ξ, ζ), pk]ϕj(ξ, ζ) |Nr(ξ, ζ)| dξdζ + 0.5δkj (2.10)

and

Gkj =

∫ 1

−1

∫ 1

−1

∗
T [r(ξ, ζ), pk]ϕj(ξ, ζ) |Nr(ξ, ζ)| dξdζ. (2.11)

To solve equation (2.6) the values of the temperatures and heat fluxes prescribed as

T (r) = T̃ and q(r) = q̃ (2.12)

are inserted into equation (2.6). Consequently, we arrive at the set of linear equations having
the form

Au = f (2.13)

where the entries of matrix A are defined as

A =

{
Hkj if at point rj the heat flux is known
−Gkj if at point rj the temperature is known

(2.14)

the coefficients of the vector of unknowns u are

u =

{
qk if at point rj the temperature is given
Tk if at point rj the heat flux is given

(2.15)

and the coefficients of the right-hand vectors are computed as

fk = −
∑
iT

HkiT T̃iT +
∑
iq

Gkiq q̃iq (2.16)

where T̃iT and q̃iq denote the prescribed values of temperature and heat flux respectively.
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2.2 Iteration schemes for (2.13)

Iterative methods for solving this problem are formulated as follows:

u(i+1) = Mu(i) +Nf (2.17)

where M and N are constructed in such a way that given an arbitrary initial vector u(0),
the sequences u(i), i = 0, 1, ..., converges to the solution u = A−1f . This method is called
the Picard iteration. The method (2.17) converges if and only if ρ(M) < 1. A sufficient
convergence condition is the matrix norm estimate: ||M || < 1 .

2.2.1 The conjugate gradient method

Since the matrix An is symmetric and positive definite, the conjugate gradient method (Cg-
method) can be applied to solve the linear system of equations (2.17). The Cg-method is a
very effective scheme for solving symmetric and positive definite systems. It is given by the
following algorithm, see [15].

1. Choose an initial vector u
(0)
n and compute:

r0 = Anu
(0)
n − fn, set p0 = r0

2. For κ ≥ 0 compute :

ακ =
rTκ pκ
pTκAnpκ

u(κ+1)
n = u(κ)

n + ακpκ

rκ+1 = Anu
(κ+1)
n

3. Stop the calculation if :
||rκ+1||2
||rκ||2

< ε

4. Otherwise compute :

β =
rTκ+1Anpκ
pTκAnpκ

pκ+1 = rκ+1 + βκpκ

Algorithm 2.1: Cg-method

Theorem 2.1. [15] For the positive definite matrix An the conjugate gradient method con-
verges and fulfills the following error estimate:

||e(i)||An ≤ 2

(
(κ(An)− 1)

1
2

(κ(An) + 1)
1
2

)(i)

||e(0)||An
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with
||e(i)||An = ||u(i)

n − un||An and ||e(0)||An = ||u(0)
n − un||An

3 Numerical example and results

Since the convergence requirements for the conjugate gradient method are satisfied [13], we
can now apply algorithm (2.1) to solve the linear system (2.13). For the numerical appli-
cations, we consider a cylindrical enclosure geometry whose boundary Γ has the following
parametric representation:

Γ =

→r∈ R3,
→
r=

cos 2πt
sin 2πt

4z

 , (t, z) ∈ (0, 1)2


The entries of the matrix A as well as the entries of the vector f have been computed
numerically. To keep the numerical integration error small, we handle the singularity of the
integral kernels by employing double partial derivatives, see [10]. Note that the step size hk
is associated with the dimension parameter nk, where hk = 1

nk
with nk = 2k and k is called

the level number. Table (3.1) shows the numerical results for this case. It contains both the
number of iteration steps and the CPU-time in seconds required by each iteration.

Picard Iteration Cg-Scheme
nk No. of iteration steps second No. of iteration steps second
32 10 < 1 12 < 1
64 10 < 1 13 < 1
128 10 0.75 15 < 1
256 10 2.92 15 < 1
512 10 11.38 15 < 1
1024 10 44.41 15 3.05

Table 3.1: Numerical results

4 Conclusions

The numerical results for Picard iteration and Cg-Scheme shown in Table(3.1) illustrate
clearly that both these schemes require less number of iteration steps and CPU-time in com-
parison to other iterations [1,15]. This demonstrates that one of the characteristic features
of the conjugate gradient schemes is its fast convergence. The convergence speed does not
deteriorate when the discretization is refined, where as other classical iterative methods slow
down for decreasing grid size. As consequence one obtains an acceptable approximation of
the discrete problem at the expense of the computational work proportional to the number
of unknowns, which is also the number of equations of the system. It is not only complexity
which is optimal, also the constant of proportionality is so small that other methods can
hardly surpass the conjugate gradient efficiency.
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