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The magnetization of two interacting electrons confined in a coupled double quantum dot pre-
sented in a magnetic field has been calculated by solving the relative Hamiltonian using variational
and exact diagonalization methods. We have investigated the dependence of the magnetization
on temperature, magnetic field strength, confining frequency and barrier height. The singlet-triplet
transitions in the ground state of the quantum dot spectra and the corresponding jumps in the
magnetization curves have been shown. The comparisons show that our results are in very good
agreement with reported works.
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1. INTRODUCTION
Quantum dots (QDs), or artificial atoms, had been the sub-
ject of interest research due to their physical properties
and great potential device applications such as quantum
dot lasers, solar cells, single electron transistors and quan-
tum computers.1–5 The application of a magnetic field per-
pendicular to the dot plane will introduce an additional
structure on the energy levels and correlation effects of the
interacting electrons confined in a quantum dot. Different
approaches had been used to solve the two electrons QD
Hamiltonian, including the effect of an applied magnetic
field, to obtain the eigenenergies and eigenstates of the
QD-system. Wagner, et al.6 had studied this interesting QD
system and predicted the oscillations between spin-singlet
(S) and spin-triplet (T) ground states. Taut7 had man-
aged to obtain the exact analytical results for the energy
spectrum of two interacting electrons through a coulomb
potential, confined in a QD, just for particular values of
the magnetic field strength. In Refs. [8, 9] the authors
had solved the QD-Hamiltonian by variational method
and obtained the ground state energies for various values
of magnetic field ��c�, and confined frequency ��0�. In
addition, they had performed exact numerical diagonal-
ization for the Helium QD-Hamiltonian and obtained the
energy spectra for zero and finite values of magnetic field
strength. Kandemir10�11 had found the closed form solution
for this QD Hamiltonian and the corresponding eigenstates
for particular values of the magnetic field strength and
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confinement frequencies. Elsaid12–16 had used the dimen-
sional expansion technique, in different works, to study
and solve the QD-Hamiltonian and obtain the energies
of the two interacting electrons for any arbitrary ratio of
coulomb to confinement energies and gave an explanation
to the level crossings.
Maksym and Chakraborty17 had used the diagonaliza-

tion method to obtain the eigenenergies of interacting elec-
trons in a magnetic field and show the transitions in the
angular momentum of the ground states. They also had
calculated the heat capacity curve for both interacting and
non-interacting confined electrons in the QD presented in a
magnetic field. The interacting model shows very different
behavior from non-interacting electrons, and the oscilla-
tions in these magnetic and thermodynamic quantities like
magnetization �M� and heat capacity �Cv� are attributed
to the spin singlet-triplet transitions in the ground state
spectra of the quantum dot. De Groote et al.18 also had cal-
culated the magnetization, susceptibility and heat capacity
of helium like confined QDs and obtained the additional
structure in magnetization. In a detailed study, Nguyen
and Peeters19 had considered the QD helium in the pres-
ence of a single magnetic ion and applied magnetic field
taking into account the electron–electron correlation in
many quantum dots. They had shown the dependence
of these thermal and magnetic quantities: Cv, M and �
on the strength of the magnetic field, confinement fre-
quency, magnetic ion position and temperature. They had
observed that the cusps in the energy levels show up as
peaks in the heat capacity and magnetization. In Ref. [20],
the authors had used the static fluctuation approxima-
tion (SFA) to study the thermodynamic properties of two
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dimensional GaAs/AlGaAs parabolic QD in a magnetic
field. Boyacioglu and Chatterjee21 had studied the mag-
netic properties of a single quantum dot confined with a
Gaussian potential model. They observed that the magne-
tization curve shows peaks structure at low temperature.
Helle et al.22 had computed the magnetization of a two-
electron lateral quantum dot molecule (QDM) in a high
magnetic field at zero temperature and the results show
the oscillation and smooth behavior in the magnetization
curve for both, interacting and non-interacting confined
electrons, respectively.
In an experimental work,23 the magnetization of elec-

trons in GaAs/AlGaAs semiconductor QD as function of
applied magnetic field at low temperature 0.3 K had been
measured. They had observed oscillations in the magneti-
zation. To reproduce the experimental results of the mag-
netization, they found that the electron-electron interaction
should be taken into account in the theoretical model of
the QD magnetization. Furthermore, the density functional
method (DFT) had been used to investigate the magneti-
zation of a rectangular QD in the applied external mag-
netic field.24 Climente, Planelles and Movilla had studied
the effect of coulomb interaction on the magnetization of
quantum dot with one and two interacting electrons.25

Very recently, Avetisyan et al.26 had studied the magne-
tization of anisotropic QD in the presence of the Rashba
spin-orbit interaction for three interacting electrons in the
dot. In Ref. [27], the authors have studied the electron–
electron correlations in many electron single quantum dot
confined by parabolic potential in the presence of single
magnetic ion and perpendicular magnetic field. They have
obtained the energies and have studied the thermodynamic
quantities such as the heat capacity, the magnetization and
the susceptibility. They have found that the cusps in the
curves of these heat quantities are due to the transitions
in the angular momentum of the energy levels of the QD.
Dybalski and Hawrylak28 had also studied the electronic
properties of two electrons in a strongly coupled double
quantum dot. They have analyzed the singlet-triplet gap
with the barrier height potential and with an external mag-
netic field. The authors had solved the full Hamiltonian of
DQD, by using the variational method to calculate sepa-
rately the energy matrix elements of SQD term and barrier
potential term. Next, the exact diagonalization method is
implemented to compute the corresponding energies of the
full DQD Hamiltonian. The author of Ref. [29] had used
the Huns-Mulliken molecular orbit approach to calculate
the energy levels of two electrons confined in two later-
ally coupled quantum dots, under the influence of applied
magnetic field. They had showed that the jumps of the
magnetization are due to the singlet-triplet transitions in
the energy levels.
The purpose of this work is to calculate the magneti-

zation as a thermodynamic quantity for a coupled double
quantum dots presented in a magnetic field taking into
account the electron–electron coulomb interaction term.

Since, the eigenvalues of the electrons in the DQD are
necessary input quantities to calculate the statistical aver-
age energies of the DQD system, to achieve this target
we have implemented the variation and exact diagonal-
ization methods to obtain the desired eigenenergies. The
computed eigenenergies spectra have been used to study
theoretically the dependence of the magnetization curve of
the coupled DQD as a function of magnetic field strength,
confining frequency barrier height and temperature.
The rest of this paper is organized as follows: the

Hamiltonian theory and computation techniques of two
interacting and confined electrons in DQD are presented in
Section 2. In Section 3, we show how to calculate the mag-
netization from the mean energy expression. Final section
will be devoted for numerical results and conclusion.

2. THEORY OF COUPLED DOUBLE
QUANTUM DOT HAMILTONIAN

Consider two interacting electrons inside a double quan-
tum dots confined by a parabolic potential of strength �o

under the effect of an applied uniform magnetic field of
strength �c, taken to be along z-direction, in addition to a
coupled Gaussian barrier of width � and height Vo. This
model can be characterized by the Hamiltonian (HDQD),

HDQD =
2∑

j=1

{
1

2m∗

[
p�rj�+

e

c
A�rj�

]2}
+ 1

2
m∗�2

or
2
j

+ e2

∈� �r1− r2�
+Vo�e

−x21/�
2 + e−x22/�

2
� (1)

where rj and p�rj� are the position and momentum of the
electron inside the QD. In addition, x1 and x2 represent
the position of each quantum dot along the x-direction.
HDQD can be considered as the sum of the single quan-

tum dot Hamiltonian (HSQD� and the potential barrier term
Vb = Vo�e

−x21/�
2 + e−x22/�

2
� as follows,

HDQD =HSQD+Vb (2)

It is obvious that the single quantum dot Hamiltonian,
HSQD can be obtained fron Eq. (2) by making the barrier
potential term vanishes, Vb = 0. Using the standard coor-
dinate transformation and adopting the symmetric gauge,
the single quantum dot Hamiltonian, can be separated into
a center of mass Hamiltonian, HCM, and a relative Hamil-
tonian part, Hr as shown below,

HCM = 1
2M

[
PR+

Q

c
A�R�

]2

+ 1
2
M�2

0R
2 (3)

Hr =
1
2�

[
pr +

q

c
A�r�

]2

+ 1
2
��2

0r
2+ e2

	�r � (4)

where M is the total mass = 2m, Q is the total
charge= 2e, � is reduced mass = m/2, and q is the
reduced charge= e/2.
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The corresponding energy of the HSQD Eq. (4) is:

ESQD = ECM +Er (5)

The center of mass Hamiltonian has the harmonic oscil-
lator form with well known fully analytical solution for
wave function and energy given, respectively, as,


n2�m2
�R� = �−1�n2

��m2+1�
√
�

[
n2!

�n2+�m2��!
]1/2

× e−�2R2/2R�m2 �L�m2 �
n2

��2R2�eim2
 (6)

Encm �mcm
= �2ncm+�mcm�+1��

√
�2

c

4
+�2

o+mcm

��c

2
(7)

Where ncm, mcm are the radial and azimuthal quantum
numbers, respectively and Lm

n is the associate Laguerre
polynomials.8

The relative Hamiltonian part Eq. (4) does not have an
analytical solution for all ranges of �0 and �c, due to
the existence of both coulomb and parabolic terms, so the
variational method has been used as an accurate method to
get the energy spectra (Er ) for the relative Hamiltonian in
terms of a variational parameter. The adopted variational
wave function and the corresponding energy equation are
given in the Appendix A.

The calculation the energy matrix elements of the
Vb-barrier term using the variational method had been
given in Ref. [28] and will not be repeated here. The com-
bined terms of the single quantum dot Hamiltonian energy
and barrier energy matrix elements will be diagonalized to
give the full matrix elements of the DQD Hamiltonian.28

We would like to emphasize again that our aim in this
work is to investigate the effect of barrier height and con-
fining frequency on the magnetization properties of the
DQD, so only the essential steps which lead to the main
eigenenergy equation of the full DQD Hamiltonian will be
shown in the Appendix B.

3. MAGNETIZATION OF DQD
We have computed energies of the DQD system as essen-
tial input data to calculate the magnetization (M) of the
DQD.

The magnetization of the DQD system is evaluated as
the magnetic field derivative of the mean energy of the
DQD.

M�T �B��o�Vo���=
−��E�T �B��0��

�B
(8)

where the statistical average energy is calculated as:

�E�T �B��o�Vo���� =
∑N

�=1E�e
−E�/kBT∑N

�=1 e
−E�/kBT

(9)

We use Eqs. ((8) and (9)) to investigate the dependence
of the magnetization of the double quantum dots on very

rich and tunable physical parameters, namely: the temper-
ature (T ), magnetic field strength (�c), confining poten-
tialc �0, barrier height (Vo) and barrier width (�).

4. RESULTS AND DISCUSSION
The computed results for two interacting electrons in
double quantum dots made from GaAs material (m∗ =
0�067me�R

∗ = 5�825 meV) are presented in Figures 1–7.
Figure 1(a) shows the calculated eigenenergy spectra of
DQD for angular momentum m = 0, 1 and 2 as a func-
tion of magnetic field strength �c = 0�0 to 4.0, confining
frequencies �0 = 2/3R∗ and barrier heights V0 = 1R∗.
In Figure 1(b) we had plotted also the computed energy

results of this work against the strength of the magnetic
field for �0 = 2/3R∗, �= 0�5R∗, Vo = 1R∗ for small range
of �c = �0�1R∗� to show the level crossing more clearly.
The energy level plot shows obviously the transition in
the angular momentum of the ground state of the DQD
system as the magnetic field strength increases. The ori-
gin of these transitions is due to the effect of coulomb
interaction energy in the QD systems.22 The singlet-triplet
transitions in the angular momentum of the DQD system
manifest themselves as cusps in the magnetization curve
of the DQD. Our energy spectra results show very good
agreement compared with the corresponding one displayed

(a)

(b)

Fig. 1. (a) The computed energy spectra of two interacting electrons
in double quantum dots against the strength of the magnetic field for
�0 = 2/3R∗ , � = 0�5R∗ , Vo = 1R∗ for the range of �c = �0�4R∗�, and
angular momentum m= 0�1�2. (b) The computed energy spectra of two
interacting electrons in double quantum dots against the strength of the
magnetic field for �0 = 2/3R∗, � = 0�5R∗ , Vo = 1R∗, for the range of
�c = �0�1R∗�, and angular momentum mr = 0�1�2.

J. Comput. Theor. Nanosci. 14, 1–6, 2017 3
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(a)

(b)

Fig. 2. (a) The statistical energy of two interacting electrons in double
quantum dots against the strength of the magnetic field for �0 = 2/3R∗ ,
� = 0�5R∗, Vo = 1R∗, (b) The statistical energy of two interacting elec-
trons in double quantum dots against the strength of the magnetic field
for �0 = 2/3R∗ , � = 0�5R∗, Vo = 1R∗. The curve shows a cusp at �c =
0�5R∗ .

in Figure 3 of Ref. [28] where the authors had used the
combined variational and exact diagonalization methods to
solve the DQD Hamiltonian.28 In addition we have plotted
the statistical energy against the strength of magnetic field
for wide range and small range of �c in Figures 2(a, b),
respectively. These figures show clearly the origin of the
cusps in the statistical energy curves that cause the corre-
sponding cusps in the magnetization curve of the DQD.

Fig. 3. The magnetization (in unit of �B = e�/2m∗ = 0�87 mev/T for
GaAs) at T = 0�01 K, of the two interacting electrons in DQD against
the magnetic field strength for �o = 2/3R∗, �= 0�5R∗, Vo = 1R∗.

Fig. 4. Comparison between the magnetization (in unit of �B� of the
two interacting electrons in SQD (dashed) for �o = 2/3R∗ and the mag-
netization of the two interacting electrons in DQD (solid) for �o =
2/3R∗��= 0�5R∗�Vo = 1R∗ against the magnetic field strength calculated
at T = 0�01 K.

In Figure 3, we have computed magnetization curve for
DQD against the magnetic field strength �c = 0�0 to 4.0.
The curve clearly shows the cusps at �c = 0�5 and 2, which
are attributed to the effect of electron–electron interaction
in the DQD Hamiltonian. In Figure 4, we have compared
the magnetization curves for both DQD and SQD. The
magnetization curves for both SQD and DQD show zero
magnetization for zero magnetic field and low temperature
value, T = 0�01 K. Furthermore, the cusp in the magneti-
zation curve of DQD is shifted to lower magnetic value.
Furthermore, we have investigated the effect of the bar-

rier height V0 on the magnetization curve. We have plotted
in Figure 5 the magnetization curves independently calcu-
lated at three different barrier heights namely, V0 = 0�5, 1.0
and 1.5. The comparison clearly shows the gradual shift
of the magnetization jumps to lower magnetic field as the
barrier height increases.
In addition we have studied the effect of temperature

on the magnetization curves of DQD system as function

Fig. 5. The magnetization (in unit of �B = e�/2m∗ = 0�87 mev/T for
GaAs) at T = 0�01 K, of the two interacting electrons in DQD against
the magnetic field strength for �o = 2/3R∗ , � = 0�5 R∗. (a) Vo = 0�5R∗

(dashed/dotted curve). (b) Vo = 1 R∗ (solid curve), (c) Vo = 1�5 R∗

(dashed).

4 J. Comput. Theor. Nanosci. 14, 1–6, 2017
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(a)

(b)

(c)

Fig. 6. (a) The magnetization (in unit of �B = e�/2m∗ = 0�87 mev/T for
GaAs) of the two interacting electrons in DQD against the magnetic field
of long range strength for Vo�o = 2/3R∗��= 0�5R∗�Vo = 1R∗, (a) at T =
0�01 K (solid curve), (b) at T = 0�1 K (dashed), (c) at T = 1 K (dotted).
(b) The magnetization (in unt of �B = e�/2m∗ = 0�87 mev/T for GaAs)
of the two interacting electrons in DQD against the magnetic field of short
range strength showing the first cusp, for �o = 2/3R∗�� = 0�5R∗�Vo =
1R∗. (a) at T = 0�01 K, (b) at T = 0�1 K, (c) at T = 1 K. (c) The mag-
netization (in unit of �B = e�/2m∗ = 0�87 mev/T for GaAs) of the two
interacting electrons in DQD against the magnetic field strength showing
the second cusp, for Vo�o = 2/3R∗�= 0�5R∗�Vo = 1R∗. (a) at T = 0�01 K
(solid curve), (b) at T = 0�1 K (dashed curve), (c) at T = 1 K (dotted
curve).

of the magnetic field strength calculated at three differ-
ent temperatures T = 0�01, 0.1 and 1 K as shown in
Figures 6(a)–(c). We have seen from the figure that the
temperature shows an effect on the cusps of the magne-
tization curves. To show this effect more clearly we have
focused in Figures 6(b, c), on the first and second mag-
netization cusps, respectively. We have noticed from the

Fig. 7. The energy of DQD for fixed values of �0 = 2/3R∗�� =
0�5R∗�Vo = 1R∗ against the number of basis and various confining
cyclotron frequencies �c = 0�5R∗ .

figures that the heights of the peaks due to transition jumps
are reduced, broadened and shifted to higher magnetic
value as the temperature increased.
In all computational steps we have ensured the con-

vergency of the energy spectra have been achieved. For
example we have shown, in Figure 7, the computed energy
results of DQD for fixed values of �0 = 2/3R∗, �= 0�5R∗

and V0 = 1R∗ against the number of basis for �c = 0�5. The
figure clearly shows the stability behavior in the energy of
the DQD system as the number of basis increase.
In conclusion, we have applied the exact diagonal-

ization and variational calculation methods to solve the
Hamiltonian for two interacting electrons confined in a
double-quantum dot presented in a magnetic field. We have
investigated the dependence of the magnetization of the
DQD on the magnetic field strength, confining frequency,
barrier width, barrier height and temperature.

APPENDICES
Appendix A: Energy Variation Calculations of SQD
The purpose of this appendix is to give the main expres-
sions that have been used to compute the eigenenergy
expressions of the DQD.
The adopted one parameter variational wave function is

taken as:


�r� = 4
√
�
um���e

im


√
2�

√
�

(A1)

where,

um��� = �1/2+�m��1+���e−��2/2� (A2)

�=√
�r� and �= 1

4

√
�2

c

4
+�2

0 (A3)

Our wave function,

um���= Cm�
1/2+�m��1+���e−��2/2� (A4)

with normalization constant can, Cm, be expressed in terms
of standard gamma function, ��x� angular momentum, m,
and parameters: �, and �min.

28

We proceed to obtain the energies of the relative part
of the single quantum dot Hamiltonian by calculating the
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energy matrix elements Er = �
�Hr �
� as,

Er���=−1
2
m�c+2�

a+b�+c�2

d+e�+f�2
(A5)

where a, b and c are constants in terms of quantum num-
bers m and �.
The energy eigenvalues of Hr can be found by mini-

mizing the energy formula Eq. (A5) with respect to the
variational parameter � to give

�min�m

= 2cd−2af −√
�2cd−2af �2−4�bd−ae��ce−bf �

2�−ce+bf �

(A6)

So, the energy expression of the SQD Hamiltonian in
terms of the variational parameter, �min, which satisfies the
minimization condition is:

Er��min�=−1
2
m�c+2�

a+b�min+ c�2
min

d+ e�min+ f�2
min

(A7)

Appendix B: Energy Calculations of DQD by
Variational and Exact Diagonalization Methods
To compute the full energy spectra of the DQD system we
have set Vo > 0 in the Hamiltonian model Eq. (1), so the
potential of the barrier is

Vb = Vo�e
−x21/�

2 + e−x22/�
2
� (B1)

The matrix element of the DQD can be evaluated in terms
of elliptic functions, angular quantum number, m, and bar-
rier width, �.
The combined terms of the single quantum dot energy

(Em��m�) and barrier energy matrix elements will give the
full matrix elements of the DQD Hamiltonian. We had
implemented the diagonalization technique to obtain the
eigenergies of the HDQD,

Hm�n = �Em��m�+ECM��m�n+�um�Vb�un� (B2)

where, ECM, is the center of mass Hamiltonian as define
previously in Eq. (8).
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