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ABSTRACT

The first-order Markov Chain (MC) is used to predict the degradation of three types of pavements (rigid,
semi-rigid, and mix) utilising database in the five departments in the West of France. The assessment of
uncertainty in the MC evolution is presented through studying the trend of mean and standard
deviation, for components of the transition probabilities (TP) using different time steps (2, 3, 4, 5 and
6 years). The results show that the trend of rigid pavements is constant with time in terms of
coefficient of variation. For semi-rigid and mix pavements, the trend of the standard deviation was
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constant with time. These statistical properties offer the opportunity to provide uncertainty
modelling of TP. The propagation of uncertainty for 2 and 6 years time steps through the prediction
of pavement condition index is also performed for analysing the effect of the uncertainty. We
compare the profile of states obtained from each time step in view to analyse the short (2 years) and

medium term (6 years) potential of prediction.

1. Introduction
1.1. Background

For short-term planning and with limited budgets specified for
maintenance works, it is advisable to use preventive mainten-
ance strategy based on the condition state of the infrastructure.
The use of such strategy usually contributes in extending the
life cycle of pavement section (Bekheet et al. 2005), but not
the structure of the road. It is well recognised that reliability
and risk analysis offers the theoretical framework for mainten-
ance optimisation. It requires probabilistic models of
degradation.

In this paper we use the first-order Markov Chain (MC)
probabilistic model to predict the degradation of three pave-
ment types; rigid, semi-rigid, and mix, in the West departments
of France. The total number of sections is 12,256 distributed
among the three different types of pavements. The assessment
of uncertainty in the MC evolution is presented through study-
ing the trend of mean and standard deviation. These statistical
parameters offer the opportunity to provide uncertainty mod-
elling of transition probabilities (TP) for different time step.
The first-order MC property is also checked through perform-
ing the state transition sequences (STSs) and the chi-square
test. We want to assess good Markov model for the different
steps of degradation of the pavement asset through concentrat-
ing on preventive maintenance, which is presented by con-
dition state 2 or 3 (good or fair). As the preventive
maintenance is applied in good or fair condition of the asset,
then the indirect cost of the road user represented by the
delay (additional travel time) will be less than in case of long-
time corrective maintenance which will increase the delay of

the road user and consequently increased the indirect cost of
maintenance works.
The main objectives of the paper are:

(1) to provide the MC for pavement maintenance through the
identification and calculation of the transition probability
matrix (TPM). The TPM is a square matrix that is com-
posed from n x n cells, where n is the number of condition
states. In each row of the matrix, two probabilities are con-
sidered except for the first row all probabilities are calcu-
lated; Pyq, Pia, Pi3, Pig, and Pys. For the remaining rows,
the probability to stay in the same condition (diagonal
terms; P, for example to stay in the good condition)
and the probability to move to the next condition (P,3
for example from good to fair condition) are calculated.

(2) to analyse the effect of the time step for TPM computation,
five time steps (transitions) are computed: 2, 3, 4, 5 and 6
years.

(3) to apply the analyses on the three different pavement types
and model the uncertainty of assessment depending on the
time-step.

(4) to analyse the effect on condition state distribution with
time.

Our paper is composed from seven sections. The first section
is an introduction. The second section shows the data base
description and main assumptions used for MC computations.
The third section illustrates checking MC property. Effect of
time step and computation of different time steps TPMs is pre-
sented in Section 4. Section 5 shows a comparison between the
three pavement types in terms of uncertainty. Section 6
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illustrates the uncertainty propagation comparison between 2
and 6 years time steps. Finally, Section 7 presents the effect
on condition state distribution with time.

1.2. Beyond state of the art

Pavement performance is essentially concerned with the pre-
diction of the future pavement condition for the purpose of
maintaining and management the pavement network (Abaza
2015). Pavement performance has been traditionally presented
using a performance curve which shows how the pavement
condition declines over time in the absence of maintenance
and rehabilitation works (Shahin 1994, Huang 2004). The
pavement condition has been historically presented by indi-
cators such as pavement condition index (PCI), present service-
ability index, and distress rating (AASHTO 1993, Shekharan
and Gilman 2005, ASTM 2018, Shah et al. 2013). The emphasis
on developing effective models for predicting pavement per-
formance had become of great importance with the merge of
pavement management science over three decades ago. There-
fore, an effective pavement prediction model is a significant
component of any advanced pavement management system
(PMS) (Abaza et al. 2004, Jorge and Ferreira 2012, Khan
et al. 2014).

Generally, there are two types of models used in predicting
future pavement conditions: deterministic and stochastic
models (Wang et al. 1994, Li et al. 1997, Amin 2015). Both
types of model can predict the future pavement conditions;
however, the stochastic-based models have gained wider use
in pavement management applications because it makes poss-
ible the risk assessment (Hong and Wang 2003). This can be
attributed to the fact that pavement performance has been
identified as random which requires assigning different levels
of uncertainty (i.e. probability) to different pavement condition
outcomes (Abaza 2015). The stochastic model that was used by
several researchers over the last three decades had mainly relied
on deploying different forms of the discrete-time Markov
model (Butt et al. 1987, Li et al. 1996, Hong and Wang 2003,
Abaza 2006, Abaza and Murad 2009, Jiang 2010, Mandiartha
et al. 2012, Lethanh and Adey 2013). The homogenous
(steady-state) and non-homogenous (deploys different TP for
each transition) chains are the two most popular forms of the
deployed discrete-time Markov model (Abaza 2015). In our
paper, the homogeneous MC is selected and shown to be a
good candidate for the modelling of the degradations processes
we are facing. That is based mainly on the assumption that the
traffic is almost of similar type and frequency with time.

Homogenous MC is one of several methods that is devoted
to the prediction of the future pavement condition as well as
used in several PMSs (Rayya et al. 2014). The use of MC
requires calculating the TPM from the available historical
data of pavement. The MC theory relies on a discrete probabil-
istic approach that is widely used in developing probabilistic
models for predicting pavement deterioration (Rayya et al.
2014). According to Rayya et al. (2014), many researchers
have selected MC in their work (Butt et al. 1987, RIMES
1999, Silva et al. 2000, Kamalesh 2009, Costello et al. 2011,
Uchwat and MacLeod 2012). In all these studies, there is an
agreement that the principles and conditions of the MC theory

(stochastic process is discrete in time and a finite state space)
are applicable to pavement deterioration modelling. This is
based on the fact that it is common to analyse road network
condition at specific points in time (e.g. annually) and with
visual inspection, and the number of conditions states can be
made finite by defining a limited number of condition states
for the defect being modelled. Additionally, the first-order Mar-
kov property (future state of the process depends on its current
state and not past state) holds usually in pavement deterio-
ration. That means that the present condition contains
implicitly a given history (load and resistance) or that whatever
the history, a given present distribution turns always to a given
future distribution.

Through the literature, MC model is also used to predict the
future condition and performance of pavements by many
researchers (Hong and Wang 2003, Peirce 2003, Aloysius and
Diah 2005, Abaza 2006, Osama and Lana 2007, Abaza and
Murad 2009, Mandiartha et al. 2012, Uchwat and MacLeod
2012, Katkar ef al. 2013, Lethanh and Adey 2013, Rayya et al.
2014). All these studies show using first-order MC from two
consecutive inspection years without considering uncertainty
of estimation, but our paper deals with calculating the TP
from age of pavement sections, which leads to provide an
uncertainty modelling of the TP. The form of the TPM used
in the paper is composed from the diagonal probabilities in
addition to extra probabilities concerning the first row of the
TPM as follows:

pu P12 P13 Pua Pis

0 pn ps3 O 0

TPM = 0 0 P33 P34 0
0 0 0 pas  Pus
0 0 0 0 pss

The most highlighted and interested points presented in the
paper are: using the homogenous first-order MC as a stochastic
model in prediction the performance of three different pave-
ment types (rigid, semi-rigid, and mix) by calculation the
TPM for different time steps (2, 3, 4, 5 and 6 years); uncertainty
assessment using statistical parameters and comparison for t
three pavement types.

2. Database description and assumptions use for
MC computations

2.1. The data base components: when, where and what?

The data collected for the Quality Index of National Roads
(IQRN) campaign are described in the Data Collection Method
LPC n° 38-2 (LCPC 1998). The database represents the pave-
ment conditions for about 4712 sections distributed among
three types of pavements; rigid (2129 sections), semi-rigid
(1630 sections) and mix (953 sections), each section of 200 m
length distributed in the five north-west coastal departments
of France (22, 29, 35, 44, and 56). The database is obtained
from IFSTTAR (the French institute of science and technology
for transport, development and network). The main indicators
in the database were the Patrimony Note (NP) which is equiv-
alent to the PCI, the structure type (rigid, semi-rigid, and mix),
survey year (inspection year) and the year of wearing course in



the IFSTTAR Database build in 2015. Types of pavements are
defined hereafter:

Rigid pavement/concrete pavement:

This pavement is substantially constructed of cement con-
crete. The underlying courses may be treated with special cemen-
titious road binder or without any binder (aggregate alone).

Semi-rigid pavement:

This pavement is a composite pavement material composed
of a bituminous surfacing and one or more courses that are
treated with cementitious binders and which make a significant
structural contribution. The porous asphalt has air voids
between 25% and 30% (by Marshall mix design volume)
filled or flooded by special formulated high performance poly-
mer modified cement mortar material. These courses can also
be treated with hydrocarbon binders and which by their stiff-
ness or thickness cannot be considered as structurally flexible,
e.g. a bituminous concrete layer of 8 cm (rolling layer) on a
bituminous base course of 16 cm (aggregate treated with a bitu-
minous binder) on possible other layers with or without bitu-
minous binder.

Mix pavement:

This pavement has an upper part made of bituminous layers
(often only one, the rolling course) relying on a set of cement
treated layers, often only one layer, which is thick enough to
give stiffness to the pavement.

For each section and according to the type of pavement, the
NP rating is evaluated and accordingly five condition states are
identified (Very Good (VG), Good (G), Fair (F), Poor (P) and
Very Poor (VP)). The number of sections in each condition
state for each type of pavement was:

o for rigid pavements (2129 segments): 1494 VG, 355 G, 207 F,
73 P.

¢ for semi-rigid pavements (1630 segments): 1317 VG, 204 G,
89 F, 20 P.

 for mix pavements (953 segments): 782 VG, 116 G, 46 F, 9 P.

The age of each section is calculated based on the difference
between the date of surveying, here 2003, (inspection) and the
date of wearing course up to 15 years old. Table 1 illustrates the
condition states and corresponding NP values. The integer
value and the scaling comes from French institute of science
and technology for transport, development and network (IFST-
TAR) because when it set up the rules (and it is still the case
now), it was preferred to provide to inspectors a wide range
of integer numbers than the same range (for instance 0-2)
with decimal numbers. The reason comes mainly from the
risk of errors in the reporting. That is shown to be the main
human factors, when building a data base from outdoor visual
inspections Another point is the more the scale is detailed (for

Table 1. Pavement condition states and corresponding NP values (Lepert et al.
2000).

No. Condition states NP (PCl)-rating
1 Very good 20

2 Good 19

3 Fair 17-18

4 Poor 14-16

5 Very poor <=13
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instance from 3 [0 10 20] to 5 [0 5 10 15 20]) the more time it
requires. That is why this scaling is a kind of compromise
between the risk of reporting, the time and the accuracy of
the measurement from visual inspection. It is conserved until
now for reasons of consistency even in some cases, numerical
image post-treatment provides a better accuracy (O’Byrne
et al. 2013, 2014). Anyway, the results obtained from these
recent technical developments can be rated within a less accu-
rate scaling.

2.2. Assumptions

The following are the main assumptions that are used in the
analysis of the database for the different pavement types in
order to calculate the MC TPM for different time steps:

e Almost the same traffic - the roads having the same role in
the French network, this assumption is realistic;

* Given the type, the building family (structural design, thick-
ness of layers, quality of works, applied standards) is similar;
This assumption is realistic because in the time period of
building or renewal (15 years) before the survey, there was
no significant change in the design standard or material
improvement for the roads belonging to this secondary
network;

e Same climatic conditions; That is the case because depart-
ments are located in the North West part for France and
they are all costal: that means the temperature in winter
and summer, the number of freezing days and the rainfall
are very close to each other.

These assumptions allow us to rank the sections based on
homogeneous degradation process. As a consequence, the
state of section i at time ¢+ 1 describes accurately the possible
condition state of section j at the same time: we assess TPM
even if a given section is not observed every year.

A stochastic process is a Markov process if it satisfies the fol-
lowing condition: given that the present (or most recent) state
is known, the conditional probability of the next state is inde-
pendent of states prior to the present (or more recent) states
(Katkar and Nagrale 2014). The homogenous MC is a stochas-
tic process with the following properties:

e Discrete state space,
e Markovian property, and
e One step TP that remains constant over time (homogeneity).

If additionally the discrete state space has finite number of
states, then it is termed as finite state MC, we use the term
MC for finite MC in the following. Homogenous MC is com-
pletely determined once the transition matrix and sets of
unconditional probabilities for initial states are specified.
Knowledge of these two sets of probabilities allows the prob-
abilistic prediction of specific states at future times.

2.3. Verification of Markovian property with STSs

If the Markov property holds then P(j, m | i) = Pjm> namely, the
probability of going from state j to state m, given state i
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occurred previously to j (i >j > m). An analysis using available
data is developed in the following sections to illustrate the ver-
ification of the Markovian property. The MC is applied to the
available database based on pavement section age up to 15
years. Each of the cases described hereafter involves analysis
of two three-STSs. A three-STS consists of three condition
states: past, present and future. These three states correspond
to three consecutive pavement conditions rating occurring
over a 2 years period to ensure a minimum time interval for
detecting a change in condition from visual inspection and
reduce the effect of error assessment for small changes. Two
possible transition sequences, with the same present and future
states but different past states are tracked to illustrate if there is
a difference in occurrence dependent of past state history. A
frequency analysis of sequence occurrence is employed. If
there is no significant difference in frequency between the
sequences being tracked for all the transition sequences, this
may indicate the Markovian property satisfied. Transition
sequences of the condition states most frequently occurring
in the database are assumed sufficient to establish the Marko-
vian property as it applies to the entire deterioration model.
The following terminologies are required for the informal
analysis of STSs based on frequency probabilities (Katkar and
Prashant 2014):

o STS refers to a particular three states sequence of concern.
This sequence incorporates three consecutive condition rat-
ings of a pavement section to establish past-present-future
identification.

o State sequence occurrences (SSO) refer to the number of
times a specified STS appears in the available database.

o Two-state occurrences (TSO) refer to the number a specified
two-state sequence appears in the available database. The
two-states sequence involves the past state and the present
state.

Tracking these occurrences allow for the generation of fre-
quency probabilities as will be described later; for example
two possible STSs are:

(1) (44 | 5): past = 5, present = 4, future = 4. [(G, G | VG): past
= VG, present = G, future = G]

2) (44 | 4): past =4, present = 4, future=4. [(G, G | G): past
=G, present = G, future = G]

The two-states sequence of concern for (4,4 | 5) is the tran-
sition from state 5 to state 4 while for the two-states sequence of
concern for (4,4 | 4) state 4 remains unchanged from the past to
the present.

2.4. Computation of SSO and TSO from database

To illustrate the concept of frequency probability, an example
using real database is presented in Table 2. The frequency prob-
ability ratio (SSO/TSO) of the two states transition sequence for
the three pavement types is computed in Table 2. If the Marko-
vian property holds, the probability of this transition should be
independent of past states. From Table 2, taking rigid pavements
as an example, the probability of transition from state 5 (past) to

Table 2. Frequency probabilities to test Markovian properties (based on our
database).

Pavement State (SSO/ State (SSO/

type transition (1) TSO) transition (2) TSO) [A|

Rigid (4,415) 0.5877 4,44 0.6059 0.018
Semi-rigid (4,415) 0.0902 4,44 0.099 0.0089
Mix (4,415) 0.8432 4,44 0.8497  0.006

state 4 (present) and future (4) is 0.5877. Thus there is a 59%
chance of maintaining state 4 if the previous state was
5. Using 4 as the past state, we have P(4,4 | 4) = 0.6059. Now
as both probabilities are quite close, with difference |A | of
0.018, the Markovian property is achieved. The same procedure
is followed for the remaining two types of pavements and differ-
ences are 0.009 and 0.006 for semi-rigid and mix pavements,
respectively. It is probably of the same of magnitude than the
statistical error but it will be checked in the future.

From this table, it is clear that there is no significant differ-
ence (slight and acceptable difference) in the frequency prob-
abilities between the two states transitions for the three
pavement types. The results of this analysis illustrate the inde-
pendence of state-to-state deterioration transition from past
state history for the rigid pavement and are less relevant for
the two others.

Once the transition matrices are generated, the application
of MC can be employed to predict deterioration overtime. In
our case, the time steps are 2, 3, 4, 5 and 6 years as the deterio-
ration process for pavement is slow and not practical to take
lyear time interval (see justification in section 2.3). The multi-
plication of the transition matrices allows for the probabilistic
predictions of future pavement conditions. If no maintenance
is performed, the pavement section is eventually deteriorated
to condition level #1.

3. Effect of time step (computation of different time
steps TPMs) for rigid pavements

3.1. Effect of time steps

Increasing time step is more accurate for slow degradation pro-
cess and human evaluation of condition state. Moreover, the
process is less costly in terms of assessment when the time
step is increasing whereas its use in a maintenance optimisation
system leads to less accurate results (larger time discretisation).
The effect of increasing time step on the accuracy of prediction
must be quantified to discuss its benefit in maintenance optim-
isation. That is the objective of this section. To illustrate the
effect of time step, five time steps are used in calculation the
TPM: 2, 3, 4, 5 and 6 years. The TP values for rigid pavements
for the 2and 6 years time steps are illustrated respectively in
Figures 1 and 2 by considering 13 and 9 starting points respect-
ively knowing the Markov property. The tabulated data are
available and upon request from authors.

3.2. Comments on the results

As a general note, it is clear from Figures 1 and 2 that the degree
of variation is different between the five condition states. The
trend of the very good condition is the more stable compared
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Figure 1. Deterioration of rigid pavements for all condition states based on 2 years transition cycle.
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Figure 2. Deterioration of rigid pavements for all condition states based on 6 years transition cycle.

with other conditions: for example between 0.66 and 1 in Figure
1. On the contrary, the poor condition has the biggest variation
among the five conditions with range between zero and one
during the 15 years. The increasing of the scatter (except for
the VP) comes first from the assessment of condition state
and second from the database where all sections are assumed
to be similar and to represent another section at the same
age. The good and fair conditions vary from 0.2-1. The TP
values for the different time steps for semi-rigid and mix pave-
ments are available and upon request from authors. From
Figure 2, we observe first that the probabilities to stay in the
same stay decreases with the time step. Second, the trends are
more regular leading to conclude that the scatter observed
from smaller time steps is mainly due to the difficulty of assess-
ment: it is easier to assess a change in condition state for larger
time steps where degradations are more severe.

4. Comparison between the three pavement types
in terms of uncertainity of assessment

To explore in detail, quantify and model the phenomenon
identified in the previous section, we focus here on the compu-
tation of the uncertainty of assessment. In order to analyse the
influence of time step on the assessment of TP, three statistical

parameters; mean (u), standard deviation (o), and coefficient of
variation (CoV) (o/u) are calculated based on the probability to
stay in the same condition state for the five time steps (2, 3,4 5
and 6 years). Probabilistic modelling from statistics requires
some invariant with time or relationship between statistics
and time. For degradation processes, probabilistic models relies
usually on a constant CoV or a constant standard deviation
with time. A constant CoV for a constant average means that
the scatter will increase with time in comparison with a con-
stant standard deviation. That leads to a more rapid decrease
of the reliability, for a given mean value. That is why it is impor-
tant to prove this property and we are looking for this invariant
for each of the three types of pavements. For MC models, this
property is investigated both in terms of error of evaluating the
TPMs (section 4 and 5) and error of modelling in comparison
with experimental data (section 6). It is only illustrated with the
probability of very good condition (P;;) for three types of pave-
ments (rigid, semi-rigid, and mix).

4.1. Rigid pavements

Table 3 presents the values of the three statistical parameters in
the 15 years and Figure 3 illustrates the trend of the three par-
ameters with the time steps graphically. From the table and
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figure, it is clear that the mean value is decreasing with increas-
ing time step, which meets the physical meaning that the prob-
ability of the very good condition state of pavement section is
decreasing with the increasing of time step. From the evolution
of standard deviation, the probability of assessment of pave-
ment section is shown to be more accurate when increasing
time steps (5 years for example), meaning that the uncertainty
of assessment decreases when the time step increases. Finally
the CoV trend is almost constant. This property is very impor-
tant in terms of probabilistic modelling: we will consider the
CoV as constant.

4.2 Semi-rigid pavements

Table 4 presents the values of the three statistical parameters
depending of time steps and Figure 4 illustrates the trend of
the py; (avg.) and 07, parameters. Note that the number of seg-
ments being in good condition at time 10 and staying in this
state 2 years after is small for semi-rigid pavement and the
uncertainty on the estimation of oy, is significant. We plot on
Figure 5 the evolution of p;; depending of the age for time-
steps 2-6. Due to the increasing scatter after 6 years, we decided
to compute p;; from the 6 first years (1, = 6), leading to a sig-
nificant uncertainty on o;;. We add in Table 4 and Figure 4 the
upper and lower bounds of the 95% Confidence Interval (CI) of
01, computed from Equations (1) and (2); Alpha («) is 0.05 for
95% confidence. The CoV is not reported because its evolution
is not constant and consequently it doesn’t help in modelling.
The lower and upper intervals are calculated as presented in
Equations (1) and (2).

From Table 4 and Figure 4, it is clear that the mean value is
decreasing with increasing time step, which meets the physical
meaning. For the standard deviation, the trend stays in the

Table 3. Mean, standard deviation and CoV of p;; for 5 time steps (rigid
pavements).

Table 4. Mean, standard deviation and corresponding Cl of p;; for 5 time steps
(semi-rigid pavements).

Time Lower bound  Upper bound
step (At)  pqi(avg) o1 n, of Clof oy, of Cl of oy, a
(2-years)  0.9011 0.0718 6 0.0448 0.1761 [0.0448-
0.1761]
(3-years)  0.9006 0.0950 6 0.0593 0.2330 [0.0593-
0.2330]
(4-years) 0.8645 0.0856 6 0.0534 0.2100 [0.0534-
0.2100]
(5-years)  0.8462 0.0906 6 0.0565 0.2222 [0.0565-
0.2222]
(6-years)  0.8074 0.0441 6 0.0275 0.1081 [0.0275-
0.1081]

confidence interval of statistical uncertainty and no evolution
can be shown: a linear fitting gives the equation o7, = —0,006
At +0.0954. We model the trend of the standard deviation as
constant with value: 0.0718. There is no reason why the prop-
erty should be the same for all the types of pavements. Scatter of
the degradation process of semi-rigid pavements is shown to be
stable with time when it was decreasing for rigid ones.

The following equations are used to calculate the lower and
upper confidence intervals.

Lower bound = o7

(”p -1
x SQRT |:CHIINV (a/2), np — 1)} M
Upper bound = oy,
(”p -1
X SQRT [CHHNV (1—(a/2), ny — 1)}'

2)

4.3. Mix pavements

Table 5 presents the values of the three parameters in the 15

- 0
Time step At P (@v) il Cov years and Figure 6 illustrates the trend of mean and standard
(2-years) 08493 01071 01262 joviation. For the same reason as previousl (semi-rigid pave-
(3-years) 0.7931 0.1001 0.1262 : : previousty g1 p
(4-years) 0.7308 0.0837 01145 ments), we report in Table 5 and on Figure 6 the lower and
(5-years) 0.6825 0.0878 01286 upper bounds of confidence interval for 0,. Note that #, is
(6-years) 0.6414 0.0924 0.1441 . . . . .

here decreasing with time step because it was more difficult
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Figure 3. Evolution of statistics with time steps (rigid pavements).
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Figure 4. Evolution of statistics with time steps (semi-rigid pavements).

to find segments in the same very good state between 1 and 6
years than between 1 and 2 years.

From Table 5 and Figure 6, it is clear that the mean value is
decreasing with increasing time step. However, for the standard
deviation, the trend is not constant and the range of variation
seems to be significant even if a linear fitting gives the equation
011 =0.0055 At + 0.082. From Figure 6 the trend line represent-
ing the standard deviation points is still between the lower and
upper limits and the projection of the standard deviation value
at 4 years time step is equal to 0.005%0.0681 + 0.082 = 0.0823,
which is included in the confidence interval of [0.0476,
0.1195]. Accordingly, from the available data, the scatter of
the TP can be considered as independent of time and for mix
pavements, we consider ¢ as constant with value: 0.0823. This
standard deviation is close to the one obtained for semi-rigid
pavement and the property is the same. The standard deviation
of the degradation process of semi-rigid and mix pavements is
shown to be stable with time when it was decreasing for rigid
ones.

4.4. Discussion

We were looking in this section on the evolution of the prob-
ability to stay in very good condition with the time step (P;,).
That gives indirect information of the initiation of the ageing

==g==Semi-Rigid P11 (2-years)
Semi-Rigid P11 (4-years)
= Semi-Rigid P11 (6-years)

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

P11 Probability Value

1 2 3 4 5
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Table 5. Mean, standard deviation and corresponding Cl of p;; for 5 time steps
(mix pavements).

Time Lower bound  Upper bound
step (At)  pyqi(avg) on n, of Clof oy of Cl of oy, a
(2-years)  0.9040 0.0986 13 0.0707 0.1628 [0.0707-
0.1628]
(3-years)  0.8942  0.0991 12 0.0702 0.1682 [0.0702-
0.1682]
(4-years)  0.8579  0.0681 11 0.0476 0.1195 [0.0476-
0.1195]
(5-years)  0.8239 0.1015 10 0.0698 0.1852 [0.0698-
0.1852]
(6-years)  0.7960 0.1247 9 0.0843 0.2390 [0.0843-
0.2390]
== pii(avg) =l Cii
—ng— Lower Confidence Interval == Upper Confidence Interval_
. [
=090 025 3
80388 ]
£ 086 020 &
Z 084 T
5 082 015 =
g g
g 0.80 0.10 3
S 0.78 5
2 076 005 H
0.74 0.00 3
(2-years)  (3-years) (4-years) (5-years) (6-years)
At

Figure 6. Evolution of statistics with time steps (mix pavements).

process: the less Py, the quicker is the change towards lower
condition states. It was shown for all the type of pavements
that this probability was decreasing significantly from about
0.9-0.6-0.8 from 2 to 6 years time step, showing a clear med-
ium term degradation process. The effect was greater for rigid
pavements (0.9-0.6) than for others (0.9-0.8); that means
that rigid pavement show a lower aptitude to stay in very
good conditions. The second objective was to look for an invar-
iant in terms of scatter in the evaluation of P,, if it exists. Here
also it was shown that the standard deviation was higher for
rigid pavements (0.1) than for semi-rigid or mix ones (0.8).
Moreover, CoV of rigid pavement probability of transition

=== Semi-Rigid P11 (3-years)
=== Semi-Rigid P11 (5-years)

6 7 8 9 10 11

Transition (Years)

Figure 5. Evolution of p;; with segments age for 5 time steps (semi-rigid pavements).
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was constant when the standard deviation was constant for
semi-rigid or mix pavements. The first conclusion is that the
degradation process of rigid pavements is more uncertain
than the one of the others or that the assessment is more uncer-
tain. The second lesson is that the probabilistic modelling of
rigid pavements doesn’t follow the same principle than the
others.

5. Uncertainty of evaluation and its propagation for
condition index assessment

Quality of uncertainty propagation is a fundamental property
of a probabilistic models and was discussed and stated as a cri-
terion in Schoefs (2008). We first model the uncertainty of
evaluation for p;;, called error of evaluation, by a random vari-
able. We compute this error for rigid pavements only for which
the statistical uncertainty is less. The errors of evaluation for all
the p;; are gathered in the same sample; that allows increasing
the size of the sample: 52 values for 2 years (13 years *4 TP;
P11> P22> P33» Pasa) and 36 values for 6 years (9 years * 4 TP).
That helps for better modelling the overall uncertainty,
especially the distribution tails. The disadvantage is that the
error of evaluation for each p;; cannot be deduced. To achieve
this goal, each realisation of the normalised error (e), corre-
sponding to the jth value of the realisation of p;;, is calculated
using the following Equation (3)

Normalized Error (%) =

_ p'l:i(an) . 3)

_ o
Ui
The PDFs (probability density function) of this error for 2 and
6 years time steps are plotted respectively on Figure 7 left and
right. We first observe that they are symmetrical. That is
explained by the fact that the assessment of p; combines several
types of uncertainties (reporting, human error, human experi-
ence) that doesn’t lead to a more probable under or over-esti-
mation. Second the distribution for the 6 years time step is
more tighten, showing more values around the null error.
That means that the estimation is less scattered in that case;

0.35 T 3 3 T 3 T T

that meets the meaning that the estimation is easier after 6
years. The shape shows that we capture almost all the values
between —30 and +30. Thus, the propagation of p;; condition
for rigid pavements is considered using three statistical esti-
mates; mean p;;(avg), pii(avg)—30; (lower boundary), and p;;.
(avg) + 30;; (upper boundary).

The following equations were used where j is the time step:

p¥ (upper) = p (avg) + 307, 4)

pg)(lower) = pl(-{)(avg) — 30'5{). (5)

The following matrices illustrate the TPMs for mean, lower
and upper limits values for 2 and 6 years respectively. For 2
years time step, p;(avg) =0.8586, 0.7580, 0.6396, and 0.4689
for P11 P22 P33 and Dass respectively.
3P = 0.1071, 0.1952, 0.2702, and 0.4132 for pyy, pyas P33 and
Paa> respectively. The minimum probability value is considered
zero and the maximum is 1.

0.5373 0.4283 0.0327 0.0016 0
0 01724 08276 0 0
Py = 0 0 0 10
0 0 0 0o 1
0 0 0 0o 1
100 0 0
0100 0
PO =100 10 0
000 1 0
00001

For 6 years time step, p;(avg) = 0.6414, 0.5323, 0.5661, and
0.4341 for p11, P22 P3z  and  pay,  respectively.
3 = 0.0924, 0.2289, 0.2215, and 0.3503 for pi1, P P33
and ps4, respectively. The minimum probability value is

0.4 T T T /1\ T T T
0.3 , 0.35- -
0251 | 0.3+ /‘ .
/ / \
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Figure 7. PDF of random variable ¢ (left: 2 years and right: 6 years time steps) - rigid pavements.



considered zero and the maximum is 1.
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The propagation of the rigid pavements is calculated up to
30 years. The following assumptions were used:

o Initial state vector = C) = [1, 0, 0, 0, 0], where the numbers
are the probabilities of having condition rating of VG, G, F,
P, and VP at age 0, respectively.

¢ Then, the estimated condition rating at year t by MC is
C(t) = Cgy x P' x R..

Table 6 illustrates the average values for the PCI up to 30
years for 2 and 6 years time steps using first-order MC
computations.

Figure 8 illustrates the comparison between the uncertainty
propagation of the two time steps 2 and 6 years.

It appears clearly from this figure that the range of uncer-
tainty for 6 years time step is less than that for 2 years. This
result is completely compatible with the previous results in
the paper (Figure 7). The quality of assessment of pavement
condition is better defined in 6 years comparing with 2 years.
The degradation process and the severity of defects which are
usually resulted from the variation of traffic loads, climatic con-
ditions, poor in original structural design, maintenance works,
etc, are clearer in 6 years time step, and consequently the
decision towards the appropriate maintenance policy or action
is usually the suitable one. Moreover, from financial point of
view, it is more realistic to perform the inventory and inspec-
tion process using medium time steps (5 for instance). Note
that for semi-rigid and mix pavements a statistical uncertainty

Table 6. Propagation of PCl for 2 and 6 years time steps.

2 Years time step 6 Years time step

Time PCl- PCl- PCI- PCl- PCl- PCl-
(years) Lower Mean Upper Lower Mean Upper
0 20 20 20 20 20 20

2 19.48 19.84 20

4 18.58 19.65 20

6 17.06 19.41 20 19.04 19.46 19.88
8 15.36 19.11 20

10 14.30 1877 20

12 13.70 1839 20 17.06 18.83 19.76
14 13.38 17.98 20

16 13.20 1756 20

18 13.11 1715 20 15.64 18.10 19.66
20 13.06 16.74 20

22 13.03 1635 20

24 13.01 1599 20 14.00 17.30 19.56
26 13.01 15.65 20

28 13.00 1534 20

30 13.00 15.06 20 1335 16.50 19.48
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Figure 8. Uncertainty propagation of the two time steps, 2 and 6 years (rigid
pavements).

is added (section 4). The present database doesn’t allow study-
ing larger time steps than 6 years with a convenient uncertainty.
We know that preventive maintenance is a compromise
between frequency (and cost) of inspections and uncertainty
of inspection, efficiency and cost of preventive and curative
maintenances. It is shown in previous cited studies about pave-
ments maintenance and more generally for infrastructures
(Bastidas-Arteaga and Schoefs 2015, Sheils et al. 2012) or net-
works (Breysse et al. 2007) with service lifetime usually between
50 and 70 years, that optimal inspection period for preventive
maintenance is between 4 and 10 years. The proposition of this
paper (around 6 years) thus respects two criteria: reduce the
uncertainty of assessment and be short enough. Even if this
conclusion appears reasonable, the effect of the uncertainty of
assessment should be quantified in a complete maintenance
optimisation.

6. Validation of the probabilistic modelling for
condition state assessment

For a stakeholder, the key requirement of a probabilistic model
of degradation is to be reliable (see Section 5) and simulate
accurately the evolution of the condition states (error of mod-
elling). We select her the accuracy of fitting the curve of the real
cumulative distribution function (CDF) of condition states:
very good, good, fair, poor and very poor, taking values respect-
ively from 1 to 5 (Table 1). Here also, the case of rigid pave-
ments is selected. The CDF curve for the real (observed) data
and the two MC models (2 and 6 years time steps) after 6
and 12 years are presented, respectively, in Figures 9 and 10.
The curves of the MC models present the mean, lower, and
upper boundaries according to the uncertainties obtained in
Section 5. From Figure 9, it is interesting to observe that the
trend of the MC model fits well the real data for the two time
steps when the pavement is in good or fair condition, which
means that we can apply the preventive maintenance as the
uncertainty is also controlled. However, for worse condition
states, the trend of the CDF for real data is changed and the
difference between the observed and MC models is increasing
(uncertainty is increasing) till all curves are collected at the
absorbing point: the very poor condition. In Figure 10, the
same conclusion is obtained up to the good or fair condition
and the trend is changed after till reaching the absorbing
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Figure 9. Cumulative distribution function for real database, 2 and 6 years MC at 6 years time period - rigid pavements.
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Figure 10. Cumulative distribution function for real database, 2 and 6 years MC at 12 years time period - rigid pavements.

state with higher uncertainty range comparing with Figure 9.
Accordingly, the range of uncertainty is increasing with time
due to the variation in traffic loads, climatic and environmental
conditions, performing of non-registered maintenance works
and the MC model. More-over the estimation of the trend is
bad due to the few available observations (9 segments in poor
conditions for mix pavements). Even if our database seems to
be massive (around 1000 data for each type), the distribution
of these data in some condition is small. With four condition
states, the possible data for computing p;; is the total number
divided by 4, but is much less for segments in poor or fair
conditions.

The validation of the trend of the MC models compared
with the real data profile is performed by using mean square
error (MSE) in addition to the use of chi-square test for the
goodness of fit. Table 7 illustrates the MSE and Chi-square
test results based on 95% confidence interval and 2 degrees of

Table 7. Validation of MC model using MSE and chi-square test.

6 Years 12 Years
Model MSE X MSE X
Real data CDF and 2 years MC 0.0082 0.0992 0.0053 0.0651
Real data CDF and 6 years MC 0.0093 0.0096 0.0606 0.3880

freedom (y* < 3.84) as we are interested in preventive mainten-
ance which is corresponding to the condition states (1-3: very
good-fair).

Consequently, when planning the optimal time of the main-
tenance strategy, the decision makers should balance between
using the preventive maintenance with less indirect user cost
(AitMokhtar et al. 2017) represented by the additional travel
time and larger range of uncertainties from one side, and the
long-term maintenance strategy represented by the corrective
maintenance which will contribute in increasing the indirect
user cost (additional travel time) but with lesser uncertainty
from the other side. Finally, the MC model can be used to pre-
dict the future condition of an asset for preventive maintenance
strategy and as discussed before, it should be preferred to evalu-
ation TP with inspection time periods around 6 years. For strat-
egy based on larger time between inspections, such as corrective
maintenance, another complex model might be used such as
second-order MC for example.

7. Conclusions

In our paper the first-order MC probabilistic approach was
used for pavement degradation modelling. This work is based



on the post-treatment of a survey of networks with age between
1 and 15 years. An example of Markov property verification
was introduced using STSs. The MC was identified though
the calculation of the TPM for different time steps and three
pavement types: namely rigid, semi-rigid and mix. Two uncer-
tainties were modelled: the uncertainty of evaluating TPM’s
and the error of MC modelling. The first one was evaluated
and modelled for two time steps (2 and 6 years) while the
second was assessed from the propagation of uncertainty in
comparison with real evolution after 6 and 12 years. Accord-
ingly, based on the previous discussion and analysis, the follow-
ing points can be concluded for modelling:

e The mean value of TPM’s is decreasing with increasing of
time step.

¢ The CoV is suitable used to model the uncertainty of evalu-
ation of rigid pavements TPMs with time step, as the stan-
dard deviation is decreasing with time step.

¢ The TPMs of the semi-rigid and mix pavements follow a
different behaviour except the mean value: it is decreasing
with increasing time step, which meets the physical meaning
that the probability of the very good condition state of pave-
ment section is decreasing with the increasing of time step.
Standard deviations are shown to be constant and very
close for these two types of pavements: 0.0718 for semi-
rigid pavements and 0.0823 for mix pavements.

¢ The error of modelling is very fair for pavements in very
good, good and fair condition states, if the statistical error
is small (rigid pavements in the paper).

Based on the previous discussion and analysis in Section 6, it
is concluded that:

e Increasing time step will contribute in decreasing the uncer-
tainty of evaluation. Accordingly, to capture uncertainty in
traffic volume, change in climatic and weather conditions,
defects in pavement surface, etc., it is recommended to use
6 years time step TPM instead of 2 years to predict the future
rigid PCI especially for preventive maintenance policy. The
decision maker should balance between getting precise
information and bigger uncertainty in case of short time
step (2 years for example) or getting less precise modelling
and less uncertainty in case of large time step (6 years for
example).

e The propagation of uncertainty helps in identifying the
proper time step, the effect of the uncertainty of assessment
and showing the error of modelling. It results that the first-
order MC model is suitable for preventive maintenance pol-
icy, when the degradation doesn’t reach poor or very poor
condition states.

e Values of TPMs and their uncertainty are provided. That
gives the opportunity for comparison with other networks
and to analyse the effect on preventive maintenance optim-
isation with a risk analysis. Even if a database seems to be
massive (1000 data), the distribution of these data in con-
dition states should be analysed. With four condition states
for instance, the possible data for computing p;; is the total
number divided by 4.
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