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TRIVIAL EXTENSIONS SUBJECT TO SEMI-REGULARITY
AND SEMI-COHERENCE

K. ADARBEH AND S. KABBAJ *)

AssTrRACT. In this paper, we investigate the transfer of Matlis’ semi-regularity and
semi-coherence in trivial ring extensions issued from rings (with zero-divisors). We
use the obtained results to enrich the literature with new examples of semi-regular
or semi-coherent rings issued as trivial extensions and validate some questions left
open in the literature.

1. INTRODUCTION

Throughout, all rings are assumed to be commutative with identity element and
all modules are unital. A ring R is coherent if every finitely generated ideal of R is
finitely presented (equivalently, if every finitely generated submodule of a free R-
module is finitely presented). Common examples of coherent rings are Noetherian
rings, valuation rings, semi-hereditary rings, and von Neumann regular rings (i.e.,
every module is flat). For more details on coherence, see [16, 17].

In [29], Matlis proved that the class of coherent rings is precisely the class of
rings for which the endomorphism ring of any infective module is a flat module.
He then, in [30], called a ring R semi-coherent if homg(M, N) is a submodule of a flat
R-module for any injective R-modules M and N. Integral domains and coherent
rings are semi-coherent. He also called a ring R semi-regular if any R-module can be
embedded in a flat module (equivalently; if every injective R-module is flat). He
proved that a reduced ring is semi-regular if and only if it is von Neumann regular;
and a Noetherian ring is semi-regular if and only if it is self-injective (i.e., quasi-
Frobenius); showing thus that von Neumann regular rings and quasi-Frobenius
rings are both extreme examples of semi-regular rings. Also, he showed that a
ring R is semi-regular if and only if R is coherent and Ry, is semi-regular for every
maximal ideal M of R.

The notion of semi-regular ring was extensively studied in the literature in
commutative and non-commutative settings and was very often termed as IF
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ring (cf. [9, 10, 12, 23, 40]). Finally, recall that an R-module E is fp-injective if
Exty(M,E) = 0 for every finitely presented R-module M [15, IX-3]; and R is self
fp-injective if it is fp-injective over itself. Also, R is semi-regular if and only if R is
self fp-injective and coherent [23, Theorem 3.10] or [9, Theorem 2].

Let A be a commutative ring and E an A-module. The trivial ring extension
of A by E is the ring R := A E with the underlying group being A X E and the
multiplication is defined by (a,e)(b, f) = (ab,af + be). It is also called the (Nagata)
idealization of E over A and is denoted by A(+)E. This construction was introduced
by Nagata in 1962 [32] in order to facilitate interaction between rings and their
modules. The literature abounds of ideal-theoretic and ring-theoretic studies of
trivial ring extensions (or idealizations); see, for instance, [1, 5,11, 13, 18, 19, 20, 26,
27,33,34, 35, 36,37, 38, 41]. For basic details on trivial extensions (or idealizations),
see Glaz’s and Huckaba’s respective books [16, 22], and also D. D. Anderson &
Winders’ survey paper [4]. For homological aspects of trivial extensions and other
similar commutative extensions, see for instance [1, 8, 25, 28, 31, 42].

In 2009, Kourki [26] studied properties of the trivial ring extension R := A~ E,
including when R is a semi-Goldie ring (i.e., it does not contain a direct sum
of infinitely many nonzero ideals), when R is finitely cogenerated (i.e., its socle
is finitely generated and essential in it); and when R is quasi-Frobenius. Very
recently, we characterized semi-regular trivial ring extensions issued from integral
domains [3, Theorem 2.10]. Also, our work on Zaks’ conjecture on rings with semi-
regular proper homomorphic images features necessary and sufficient conditions
for trivial ring extensions issued from local rings to inherit residually the notion of
semi-regularity (i.e., all proper homomorphic images are semi-regular) [2].

In this paper, we investigate the transfer of the notions of Matlis” semi-regularity
and semi-coherence in trivial ring extensions issued from rings (with zero-divisors).
We use the obtained results to enrich the literature with new examples of semi-
regular or semi-coherent rings issued as trivial ring extensions and validate some
questions left open in the literature.

Throughout, for a ring A, let Q(A) denote its total ring of quotients, Z(A) the
set of its zero-divisors, and Max(A) the set of its maximal ideals. For an ideal I of
A, Ann(l) will denote the annihilator of I. For the reader’s convenience, Figure 1
displays a diagram of implications summarizing the relations among the main
notions involved in this work.

2. TRANSFER OF SEMI-REGULARITY

This section investigates the transfer of semi-regularity in trivial ring extensions
issued from (local) rings (i.e., with zero-divisors). A ring R is arithmetical if every
finitely generated ideal of R is locally principal [14, 24]; and R is a chained ring
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FiGURE 1. A ring-theoretic perspective for semi-regularity and semi-coherence

if R is local and arithmetical (i.e., its ideals are linearly ordered with respect to
inclusion) [6, 7, 22]. Recall also that a ring is quasi-Frobenius if it is Noetherian
and self-injective.

Throughout, for a ring A and an A-module E, let E; denote the set of torsion
elements of E; namely

Et={eeE|ae=Oforsome0¢aeA}.

The first result of this section establishes conditions under which some trivial
extensions of local rings inherit semi-regularity. It also establishes a correlation
with the notions of quasi-Frobenius ring and chained ring. Recall, for convenience,
that prime (resp., maximal) ideals of a trivial extension A E have the form p< E,

where p is a prime (resp., maximal) ideal of A [22, Theorem 25.1(3)].

Theorem 2.1. Let (A, m) be a local ring, E a nonzero A-module with mE; =0 (e.g., E
torsion free or &-vector space), and R := A E. The following statements are equivalent:
(1) R is semi-reqular;
(2) R is quasi-Frobenius;
(3) A s a chained ring, m*> = 0, and E = A.
Moreover, if any one condition holds, R is principal if and only if A is a field.

Proof. A quasi-Frobenius ring is semi-regular [30, Proposition 3.4]. So, we will
prove the implications (1) = (3) = (2).

(1) = (3) Assume R is semi-regular and let us envisage two cases.
Case 1: Suppose E; = E. In this case, observe that mE = 0. We first prove, by way
of contradiction, that A is a field. Deny and let 0 # x € m. Then,

Anng(x,0) = Anngy(x)= E.
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Moreover, the facts x # 0 and Anny(x) < E # 0 yield, respectively,
Anng(x) €m and Anng(Anng(x)=< E) S mx E.

By semi-regularity of R, we obtain
Ax< 0 = R(x,0)
Anng(Anng(x,0))
= Anng(Anng(x)< E)
(AnnA(AnnA(x)) N m) < E.

It follows that E = 0, the desired contradiction. Therefore, A is a field. Next, let e
be a nonzero vector in E. Clearly, semi-regularity of R combined with the fact that
e is torsion free yields

0 Ae R(0,¢)
Anng(Anng(0,¢))
Anng(Anny(e) = E)
Anng(0x E)

= Ox E

()

so that E = Ae = A, as desired.
Case 2: Suppose E; G E and let e € E\ E;. The same arguments used in (*) yield
E = Ae = A. Therefore, we may assume that R := Ax A with mZ(A) =0.

If Z(A) = 0, then, for any 0 #a € A, Aa = A again by (+), hence A is a field.

If Z(A) # 0, then m C Z(A), hence m = Z(A), whence m? = 0.

It remains to prove that A is a chained ring. Next, let ¢ be a nonzero arbitrary
element of m. Observe that, for (x, y) € Anng(m A), (x,y)(0,1) = 0 yields x = 0, and
(0,y)(t,0) =0 yields y € m. So, we have

O, (f) = Anng(Anng(0,t))

Anng(mx A)
= Oxm

so that m = (t). Now, let I be a nonzero proper ideal of A (i.e.,, 0 &I € m) and let
0#a €l Necessarily, I = m = (1), proving that A is a chained ring (in fact, principal).

(3) = (2) Assume A is a chained ring, m?> =0, and E = A. Observe first that
the assumption m? = 0 forces mZ(A) =0. So, we may assume that R := Ax A.
Also, notice that the only ideals of A are (0) and m, and then A is necessarily
principal. Hence A is Artinian. Moreover, Anny(m) = m and so the socle of A is
square free by [26, Lemma 3.1]. Therefore, by Kourki’s result [26, Theorem 3.6], R
is quasi-Frobenius.

For the proof of the last statement of the theorem, recall first from [4, Theorem
4.10] that, given a ring A and a nonzero A-module E, the trivial extension A< E is
principal if and only if A is principal and E is cyclic with

Anny(E) = My ---M,



TRIVIAL EXTENSIONS SUBJECT TO SEMI-REGULARITY AND SEMI-COHERENCE 5

for some idempotent maximal ideals M;,...,M, of A. Now, assume R:=Ax A,
where (A, m) is a chained ring with m? = 0. We proved above that A is necessarily
principal. Then, the aforementioned result yields R is principal if and only if
0 = Anny(A) = m? = m if and only if A is a field, completing the proof of the
theorem. o

For the special case of trivial extensions of local rings by vector spaces over their
residue fields, we obtain the following result.

A

Corollary 2.2. Let (A, m) be a local ring, E a nonzero £-vector space, and R := A= E.

Then, the following statements are equivalent:
(1) R is semi-reqular;
(2) R is quasi-Frobenius;
(3) R s a chained ring;
(4) Ais a field and dima E = 1.

Proof. Combine Theorem 2.1 with [5, Theorem 3.1(3)] which handles the equiva-
lence (3) & (4). O

Of relevance to the above corollary is [10, Theorem 10], which established nec-
essary and sufficient conditions for a chained ring to be semi-regular.

A von Neumann regular ring is a reduced semi-regular ring [30, Proposition 2.7].
Matlis noticed that “(von Neumann) regular rings and quasi-Frobenius rings are
seen to have a common denominator of definition—they are both extreme examples
of semi-regular rings.” One may easily appeal to trivial extensions (since these
constructions are not reduced) to provide more examples discriminating between
von Neumann regularity and semi-regularity, as shown below. Also, recall that
the classic examples of quasi-Frobenius rings are semi-simple rings and quotient
rings of principal domains modulo nonzero finitely generated ideals. Theorem 2.1

provides, readily, examples of original quasi-Frobenius rings, as shown below.

Example 2.3. é = % is a quasi-Frobenius ring that is neither von Neumann

regular nor principal.

Further, one may provide new examples of semi-regular rings. To proceed
further, we need to recall the following fact: if S is a multiplicatively closed subset
of the trivial extension R := Ax E and S, := SN A, then the universal property of
localization yields

STIR=S;1A SJIE.

Example 2.4. Let A be any non-Noetherian von Neumann regular ring (e.g., infinite
direct product of fields). Then R := Ax A is a semi-regular ring that is neither von
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Neumann regular nor quasi-Frobenius. Indeed, for every m € Max(A),
R A = A< An

is semi-regular by Corollary 2.2. Moreover, R is coherent by [16, Remark, p. 55].
By [30, Proposition 2.3], R is semi-regular. However, R is neither von Neumann

regular (since not reduced) nor quasi-Frobenius (since not Noetherian).

Recall that semi-regularity is a local property in the class of coherent rings [30,
Proposition 2.3]. Outside this class, the question was left open. The next example
addresses this question. In this vein, recall that coherence is not a local property.
Glaz provided an example of a locally Noetherian ring that is not coherent [16,
Example, p. 51]. The next example features also a new locally Noetherian (in fact,
locally principal) ring which is not coherent.

Example 2.5. Let k be a field, A := [[;enFi and [ := @ie]NFi/ where F; =k VY ieNN.
Then R := Ax ’% is a locally principal quasi-Frobenius ring and, a fortiori, locally
semi-regular; which is not coherent and, a fortiori, not semi-regular. Indeed, let P
be a prime ideal of R; that is,

A
P:=px T
for some prime ideal p of A. Then, we have
AP
Rp = Apx E
which is isomorphic to kif I € p or to k< kif I Cp and, in this case, Rp is a principal
quasi-Frobenius ring by Corollary 2.2. Finally, observe that

= A
Anng(0,1) = I T
is not finitely generated in R since I is not finitely generated in A. So, R is not

coherent, as desired.

If A is non-local, then the assumption “mE; =0, Vm € Max(A)” forces E; =0
and then the hypothesis E # 0 implies that A is a domain. So, a global version for

Theorem 2.1, which also agrees with [3, Theorem 2.10], reads as follows.

Corollary 2.6. Let A be a domain, E a nonzero torsion-free A-module, and R := A E.
Then, R is semi-reqular if and only if A is a field and E = A.

3. TRANSFER OF SEMI-COHERENCE

This section investigates the transfer of semi-coherence in trivial ring extensions
issued from rings (i.e., with zero-divisors). The first result establishes the transfer
of semi-coherence to trivial extensions over flat modules.
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Proposition 3.1. Let A be a ring, E a nonzero flat A-module, and R := A= E. Then, R is
semi-coherent if and only if A is semi-coherent.

Proof. Notice first that A canbe viewed as a subring of R := Ax E and hence Ris a flat
A-algebra (since E is by hypothesis flat). Assume A is semi-coherent and let M, N
be two injective R-modules. Then, by [39, Theorem 3.44], M (= Homg(R,M)) and
N (2 Homg(R, N)) are injective A-modules. Hence, Hom4 (M, N) is a submodule of
a flat A-module F. So, we obtain

Hompg(M,N) C Homs(M,N) CFC F®s R

where the first containment holds because A C R and the third containment holds
since F is A-flat. Moreover, F®4 R is R-flat. It follows that R is semi-coherent.

Conversely, assume R is semi-coherent and let M, N be two injective A-modules.
By the adjoint isomorphism, Hom (R, M) and Homy, (R, N) are injective R-modules.
Next, consider the following mapping

¢ : Homy (M,N) — Hompg (HomA(R,M),HomA(R,N))
defined by @(u)(f) =uo f, for every u € Homy (M,N) and f € Homa (R, M). Clearly,
@ is a linear map of A-modules. Moreover, we claim that ¢ is injective. Indeed, let
u € Homy (M, N) with ¢(u) = 0 and let x € M. Consider the following A-map
f:R—M; (ae) = ax.
Then, we have
0=p@)(f)1,0) = u(f(1,0)) = u(x)
which yields u = 0, as desired. By hypothesis, we have
Homg (Homy (R, M), Hom4 (R, N)) C F

where F is a flat R-module, which is also a flat A-module since R is A-flat. Conse-

quently, A is semi-coherent, completing the proof of the result. |

Next, we show how one can use the above results to provide new exam-
ples discriminating between the notions of semi-coherence, coherence, and semi-
regularity. For this purpose, we first establish a lemma on coherence (which
generalizes [25, Theorem 3.1(1)]).

Lemma 3.2. Let A be a domain, E a torsion free A-module, and R := A= E. Then, R is
coherent if and only if A is coherent and E is finitely generated.

Proof. Assume that R is coherent. Then A, being a retract of R, is coherent by [16,
Theorem 4.1.5]. Moreover, let 0 # ¢ € E. By [16, Theorem 2.3.2(7)], Anng(0,¢) is
finitely generated. Since E is torsion free, we get

Anng(0,e) =0 E.
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It follows that E is finitely generated. Conversely, assume A is a coherent domain
and E is a finitely generated A-module. Then, E is a submodule of a finitely
generated free A-module [39, Lemma 4.31], which is then coherent [16, Theorem
2.2.3]. Therefore, E is coherent. It follows that R is coherent by [16, Remark, p.
55]. O

Example 3.3. Let A be a domain which is not a field with quotient field K. Then:

(1) K= K? is a coherent ring which is not semi-regular by Lemma 3.2 and
Corollary 2.2.

(2) A= Kis a semi-coherent ring which is not coherent by Proposition 3.1 and
Lemma 3.2.

Recall that a ring R is mininjective (also called mini-injective) if every R-
homomorphism from a simple ideal of R to an R-module extends to R. Harada
proved that an Artinian mininjective ring is quasi-Frobenius [21, Theorem 13].
Next, we provide an example which shows that, unlike self semi-injectivity and
self fp-injectivity, mininjectivity does not coincide with semi regularity in the class
of coherent rings. Moreover, in [30, Proposition 2.2], Matlis proved that, for a
ring R, if Q(R) is semi-regular, then R is semi-coherent; and the converse was left
open. The example shows that the converse does not hold, in general, even for R
coherent.

Example 3.4. Let A be a coherent domain (e.g., Priifer) and let R := Ax AZ. Then:

(1) Ris coherent by Lemma 3.2.

(2) Ris mininjective by [26, Lemma 3.1 & Theorem 3.3].

(3) Q(R) is not semi-regular. Indeed, one can easily check that Z(R) = 0= AZ.
Hence, for S := R\ Z(R), we obtain S, := SNA = A\ {0} and thus

QR) = S; 1A S;1A% = K K?

where K := Q(A). By Example 3.3, Q(R) is not semi-regular, and hence
neither is R by [30, Proposition 2.1].

We close this section with observing that the assumption “mE; = 0” in Theo-
rem 2.1 is (convenient but) not inevitable in order to construct quasi-Frobenius
rings issued from trivial ring extensions, as shown by the next example.

Example 3.5. Let (A, m) be an Artinian local ring with residue field K and let E
denote an injective envelope of K. Then, by Kourki’s result [26, Theorem 3.6], R :=
Aw E is quasi-Frobenius. Indeed, it suffices to verify that the socle of Anny(E) X E
is square free; that is, Annann, (£)x£(M) is either null or simple [26, Lemma 3.1]. In
fact, we have

Anny(E) =0 and Anng(m) =K
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which yield

Annpnn, B)xe(M) = AnNpn, ) (M) X Anng(m)
Ann(o)(m) X K
0% K, as desired.
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