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Abstract

We investigate the transfer of the notion of suitable rings along with re-
lated concepts, such as potent and semipotent rings, in the general context
of the trivial ring extension, then we put these results in use to enrich the
literature with new illustrative and counter examples subject to these ring-
theoretic notions. Also we discuss some basic properties of the mentioned
notions.
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1 Introduction

Let R be aring and 7 be an ideal of R. We say that idempotents lift mod-
ulo I if for each x in R such that x — x2 € I, there is an idempotent e in
R such that e —x € I. R is called a suitable ring if idempotents lift mod-
ulo every left ideal of R. In order to provide examples of suitable rings,
Nicholson in 1977 introduced the concept of the clean rings (Nicholson,
1977). He defined a ring to be clean if all of it’s elements are clean. Where
the clean element is the element that can be written as a sum of a unit and
an idempotent. Common examples of clean rings are local rings, Boolean
rings, Division rings. The class of clean rings lies strictly inside the class
of suitable rings. For more details about these rings we refer the reader to
(Nicholson, 1977, 1975; Nicholson & Zhou, 2005a, 2005b) .

Let J(R) denotes the Jacobson radical of R. R is called semipotent ring
if any ideal [ that is not contained in J(R) contains a non zero idempotent,
equivalently, R is semipotent if and only if for any a € R\ J(R), there is
a non zero x € R such that xax = x. A semipotent ring is called potent if
idempotents lift modulo J(R). It is easy to see from the definitions that
potent rings are semipotent and suitable rings are potent. Hence we have
the following diagram of implications

Clean = Suitable = Potent = Semipotent

Where the first implication is reversible when the idempotents are cen-
tral elements (particularly, if the ring is commutative) (Nicholson, 1977,
Proposition 1.8) and the others are irreversible in general even if the ring
is commutative. For counter examples see (Nicholson, 1977, P. 272) and
(Nicholson & Zhou, 2005b, Example 25).

Recall that a ring R is called von Neumann regular ring if for each
X € R, there is a € R such that xax = x. By (Nicholson, 1977, P 271.), von
Neumann regular rings are suitable while the converse is not true in general
even if the ring is commutative. We will provide a counter example for the
last mentioned fact.
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In this article we will focus on the commutative case only. From the
above discussion, if R is a commutative ring, then:

R is von Neumann regualar = R is suitable = R is potent = R is
semipotent

Where the aforementioned implications are irreversible in general. Exam-
ples are rare in the literature. We will use the trivial ring extensions to
construct new such examples. Also to provide new classes of rings subject
to the previous ring theoretic notions.

For a ring R and an R-module M, the trivial ring extension of R by M is
the ring R x M where the underlying group is R X M and the multiplication
is defined by (a,m)(b, f) = (ab,af +bm). The ring R x M is also called
the idealization of M over R and introduced in 1962 by Nagata (Nagata,
1962) in order to facilitate interaction between rings and their modules
and also to provide families of examples of commutative rings containing
zero-divisors (reduced elements). For more details on commutative triv-
ial extensions (or idealizations), we refer the reader to (Abuhlail, Jarrar,
& Kabbaj, 2011; Adarbeh & Kabbaj, 2017; Anderson & Winders, 2009;
C. Bakkari & Mahdou, 2010; Damiano & Shapiro, 1984; Fossum, 1973;
Goto, 1982; S. Goto, 2013; Glaz, 1989; Huckaba, 1988; Gulliksen, 1974,
Kourki, 2009; Levin, 1985; ?, 7; Olberding, 2014; Palmér, 1973; Popescu,
1985; Reiten, 1972; Roos, 1981; Salce, 2009).

The first section is devoted to some basic properties of the suitable-like
conditions. Namely, we provide a characterization of the (semi)suitable
rings using the factor ring through an ideal contained in the Jacobson (nil)
radical of the ring. Also we prove that the (semi)potent rings stable under
taking the quotient modulo an ideal contained in the nilradical of the ring.

In the second section, we put the first section results in use to inves-
tigate the transfer of the potent rings along with related concepts, such as
(semi)suitable and semipotent rings, in the most general case of the trivial
ring extensions. Lastly, we will use the results to establish a new classes
of examples subject to the mentioned ring theoretic notions.
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Throughout, R denotes a commutative ring; J(R) denotes the Jacobson
radical of R; Nil(R) denotes the nilradical of R; Q(R) denotes the total ring
of fractions of R; Spec(R) denotes the set of all prime ideals of R; Max(R)
denotes the set of all maximal ideals of R.

2 Basic Properties

The following proposition provides a characterization of suitable rings.

Proposition 2.1. Let R be a ring . Then R is a suitable ring if and only if
? is a suitable ring and idempotents lift modulo I, for every ideal I subset

of J(R).

Proof. Since in the commutative context, suitable rings are clean. The
result could be directly concluded from (Immormino, 2013, Theorem 1.6)
]

A ring R is called semisuitable ring if idempotents lift modulo J(R).
Trivially, R is potent rings if and only if R is semipotent and semisuitable.
The following is an example of a semisuitable ring which is not semipotent
and hence not potent.

Example 2.2. Let Z be the ring of integers under the usual addition and
multiplication. Then Z is a semisuitable ring which is not semipotent.
Indeed, since J(Z) = 0, x —x*> € J(Z) if and only if x — x> = 0, if and
only if x =0 or x = 1. But 1 and O are the only possible idempotents
of Z. Hence idempotents of 7Z lift modulo J(Z) and consequently, Z is
semisuitable. For Z is not semipotent, notice that 27 is an ideal that is not
contained in J(Z) and doesn’t contain any non zero idempotent.

The following fact characterizes the semisuitable rings.

Theorem 2.3. Let R be a ring. Then R is a semisuitable ring if and only
if 173 is a semisuitable ring and idempotents lift modulo I, for every ideal 1
subset of J(R).
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Proof. First notice that since I C J(R), all the maximal ideals of R con-

tains / and hence, J (?) = @. Assume that R is semisuitable, we have to

show that & is semisuitable. Indeed, if (x+1)? — (x+1) € J(¥) = J(I—R),

then x*> — x € J(R). But R being semisuitable implies that x — e € J(R) for
some idempotent e in R. Hence, (x+1) — (e+1) € J(¥) and (e+1) is an
idempotent in I;. Therefore 1; is semisuitable. Now, idempotents lift mod-
ulo / can be easily concluded from (Nicholson & Zhou, 2005b, Lemma 5).

Conversely, assume that § is semisuitable and idempotents lift modulo /.

If x — x> € J(R), then (x+1) — (x +1)? € @ =J(%). & being semisuit-
able implies that (x+1) — (e+1) € J(¥) for some (e+1) idempotent in
R Since idempotents lift modulo 7, (e +1I) = (e +1) for some eg idem-
potent in R. Hence x — ey € J(R) for some ey idempotent of R. Thus R is

semisuitable. ]

Next, we see that the quotient of a semipotent ring through an ideal
contained in the nilradical is also a semipotent ring.

Proposition 2.4. Let R be a commutative ring. If R is semipotent, then §
is semipotent, for every ideal I subset of Nil(R).

Proof. Assume that R is semipotent and I C Nil(R). We have to show that
173 is semipotent. Indeed, let § be an ideal of § that is not contained in J (113)
As I C Nil(R) C J(R) (Hungerford, 1974, Theorem 2.12, Page 430)(Also
one may use the fact that Nil(R) is the intersection of all the prime ideals
of R while J(R) is the intersection of all the maximal ideals of R. Now
maximals are primes finishes the conclusion), J (113) = @. Hence K is
not contained in J(R). But R being semipotent implies K contains a non
zero idempotent e. Since (e +1)> = ¢> +1 = e+ 1, e+ I is an idempotent
element of ?. It remains to show that e 47 is a non zero element of %
On the contrary, assume that e +1 = 0+ 1 or equivalently e € I. On the
other hand I C Nil(R) which implies that ¢ = 0 for some minimal positive

integer n > 2 (n = 1 implies e = 0, absurd). Using e = e, we obtain
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e2e" 2 = ee" 2 = "1 = (0 which contradicts the fact that n is minimal.

Hence e + 1 # 0+ I. Therefore § is semipotent. [

Corollary 2.5. Let R be a commutative ring. Then R is a (semi)suitable
ring if and only if ? is a (semi)suitable ring, for every ideal I subset of
Nil(R).

Proof. Combine both of Proposition 2.1 and Theorem 2.3 with the fact that
idempotents lift modulo every ideal in the Nil(R) (Koh, 1974). O

Corollary 2.6. Let R be a commutative ring. If R is a (semi)potent ring,
then 1; is a (semi)potent ring, for every ideal I subset of Nil(R).

Proof. The result follows directly from Theorem 2.3 and Proposition 2.4.
O]

The following proposition deals with the behaviour of the semisuitabil-
ity via the direct product of rings. It deserves to recall that if R; and R,
are rings, then J(R; X Ry) = J(Ry) x J(R;). (Hungerford, 1974, Theorem
2.17, Page 432)

Proposition 2.7. A direct product of rings [l;c;R; is semisuitable if and
only if each R; is semisuitable.

Proof. For simplicity we may choose I = {1,2} and the general case has an
identical proof. Assume that R; x R; is semisuitable and x% —x1 € J(Ry).
Then (x1,0)? — (x1,0) € J(Ry) x J(Ry) = J(R| X Ry). Since Ry x Ry is
semisuitable, there is an idempotent (e, e;) in Ry X Ry such that (x1,0) —
(e1,e2) € J(Ry) X J(Ry). Consequently x; —e; € J(R|) with e; idempotent
in R and hence R; is semisuitable. Similar arguments show that R; is
semisuitable. Conversely, assume that both Ry and R, are semisuitable
and let (x1,x2)> — (x1,x) = (x21 —x1,X3 —x2) € J(R) x J(R,). Then x? —
x; € J(R;) for i = 1,2. But R; being semisuitable implies that there is an
idempotent ¢; € R; such that x; — e¢; € J(R;) for i = 1,2. Hence (x1,x;) —
(e1,e2) € J(R1) x J(Ry) = J(Ry X Ry). Observing that for i = 1,2, ¢; is
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idempotent in R; implies that (e1,e;) is an idempotent in Ry X R, finishes
the proof of Ry X R; is semisuitable. O

Remark 2.8. Notice that the suitable, potent, and semipotent notions are
not local notions. Indeed, if we consider a non semipotent ring R (e.g.,
7)), then since the local rings are suitable, Ry, is suitable for any maximal
m (hence, potent and semipotent). While R from the assumption is not
semipotent and obviously, neither potent nor suitable. A similar argument
can be used to prove that also the semisuitability is not a local notion.
For example of non semisuitable ring we refer the reader to (Nicholson &
Zhou, 2005b, Example 25).

3 Transfer Results and Examples

This section investigates the transfer of the von Neumann regular, suitable,
potent, and semipotent rings in trivial ring extension in the most general
case.

Recall that, Spec(Rix M) ={px M | p € spec(R)} and Max(Rx M) =
{mx M | m e Max(R)} (Huckaba, 1988, Theorem 25.1(3)). So we con-
clude that J(Rx M) =J(R)x M and Nil(Rx M) = Nil(R) x M.

Also notice that R is a homomorphic image of R X M in view of the short
exact sequence, 0 - 0x M — Rx M — R — 0. Where the third arrow is
the projection map.

The following result establishes conditions under which the general
case of the trivial extension of any ring inherits von Neumann-regularity,
(semi)
suitability, and (semi)potency.

Theorem 3.1. Let R be a ring and M an R-module. Then:

1. Rx M is von Neumann regular if and only if R is von Neumann
regular and M = (.

2. Rx M is (semi)suitable if and only if R is (semi)suitable.
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3. Rx M is semipotent if and only if R is semipotent.

4. Rx M is potent if and only if R is potent.

Proof. (1) Assume that R is von Neumann regular and m is an arbitrary
element in M. Since R is a commutative von Neumann regular ring, there
is (x,y) € Rx M such that (0,m)?(x,y) = (0,m). Hence (0,0) = (0,m). m
being an arbitrary element in M implies that M = 0. Now, R x M is von
Neumann regular and M = 0 easily implies that R is von Neumann regular.
The converse is obvious.

(2) First notice that (0 x M) C Nil(Rx M) (as (0 x M)? = 0). By Corol-
lary 2.5, R x M is (semi)suitable if and only if § RK M = R is (semi)suitable.

(3) Assume that R x M is semipotent. By Corollary 2.6, gi 1]:,14 =R is
(semi)potent. Conversely, assume that R is semipotent and (a,m) € Rix M\
J(Rx M). We need to find a non zero element (X,Y) € Rx M such that
(a,m)(X,Y)? = (X,Y). Now, (a,m) € Rx M\J(Rx M) implies that
a € R\ J(R). Since R is semipotent, there is a non zero x € R such that
x’a=x. Let X = xand Y = —x*m. Then:

(@mX 1) = (a,m)(x —cm)?

= m)(x?, —2x° m)
a,—2x am+x m)
a, —2xx>am + x*m)
, 2x m+x*m)

x,—x*m)

) )

a,m
X
X
X

(a
(
(
(
(
(
(X

Therefore, R x M is semipotent.
(4) Follows directly from (2) and (3).

]

The following example enrich the literature with examples which in-
sures that the class of von Neumann regular rings lies strictly inside the
class of suitable rings.
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Example 3.2. Let R be a von Neumann regular ring (e.g, a field) and M a
non zero R module. Then by Theorem 3.1, R x M is a suitable ring which
is not von Neumann regular.

In the following example, we use Example 2.2 and Theorem 3.1 to
generate a class of semisuitable rings that are not suitable.

Example 3.3. Let Z be the ring of integers and M be any Z-module (e.g.,
M is any abelian group). Then Z x M is another example of a semisuitable
ring which is not suitable.

Recall from Example 2.2 that Z is semisuitable which is not suitable.
Hence, by Theorem 3.1(2), Z x M is semisuitable and not suitable.

One may also use Theorem 3.1 again to enrich the literature with a
semipotent rings that are not potent.

Example 3.4. Let R be a semipotent ring which is not potent (e.g., the
ring in (Nicholson & Zhou, 2005b, Example 25)) and M is a non zero
R-module. Then, by Theorem 3.1(3), R x M generates a new class of
semipotent rings that are not potent.
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