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Abstract
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) 
presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and 
exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the 
quantum dot ground state had been shown.We have studied the magnetic field versus confining frequency 
and magnetic field versus potential barrier height phase diagram of DQD .Furthermore, we have investigated 
the dependence of the exchange energy of two electron double quantum dot on the confining frequency, 
potential height barrier, barrier width and magnetic field strength. The comparisons show that our results are 
in very good agreement with reported works.
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INTRODUCTION
Quantum dots (QDs), or artificial atoms, had 

been the subject of interest research due to 
their physical properties and great potential 
device applications such as quantum dot lasers, 
solar cells, single electron transistors and 
quantum computers [1-4]. Different analytical 
and numerical methods had been used to solve 
the two interacting electrons QD- Hamiltonian, 
including the presence of an applied magnetic 
field, and had obtained the eigenenergies and 
eigenstates of the QD-system as a function of 
magnetic field strength [5-17].The energy spectra 
shows spin-singlet (S) and spin-triplet (T) ground 
state oscillations. These spin oscillations show 
themselves as transition peaks in the spectra 
of magnetic and thermodynamic quantities like 
magnetization (M), magnetic susceptibility (X) and 
heat capacity (Cv) [18-26].

The purpose of this work is to calculate the 
complete energy spectra of a coupled double 
quantum dots as a function of parabolic confining 
frequency, barrier height, barrier width and 
magnetic field strength, taking into account the 

electron-electron coulomb interaction term. 
The obtained eigenenergies  have been used to 
calculate the exchange energy, (J=Esinglet - Etriplet) 
and to show the effects of barrier height potential 
and the parabolic confining frequency on the DQD 
exchange energy .We obtained  the  magnetic field 
cyclotron frequency versus parabolic confining 
frequency  and the magnetic field cyclotron 
frequency versus barrier height phase diagrams for 
DQD. To achieve our targets, we had implemented 
the combined variation and exact diagonalization 
method to obtain the desired eigenenergies. 

The rest of this paper is organized as follows: 
The computation methods of two interacting 
electrons in DQD are presented in section II. 
Results and conclusions are given in section III. 
Final section will be devoted for conclusion.

EXPERIMENTAL
Computational Methods

Consider two interacting electrons inside double 
quantum dots confined by a parabolic potential of 
strength ωc under the effect of an applied uniform 
magnetic field of strength ωc, taken to be along 
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z-direction, in addition to a coupled Gaussian 
barrier of width ∆ and height Vo. This model can 
be characterized by the Hamiltonian (HDQD),
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where rj and p(rj) are the position and 
momentum of the electron inside the QD. In 
addition,  and  represent the position of each 
electron inside the quantum dot along the 
x-direction.

can be considered as the sum of the single 
quantum dot Hamiltonian (HSQD) and the potential 
barrier term 
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Where n2=ncm, m2=mcm are the radial and 
azimuthal quantum numbers, respectively, and 
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Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
= �	��	(��)�	]

�  . The QD ground state labeled by the quantum numbers  : ��� = �	���� = �	� � = �		� � � � , in the 
presence of an elelctron-electron interaction  goes a transition to  m=-1 , -2 , -3, ….as the strength of the  magnetic 
field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
to the existence of both  coulomb and parabolic terms , so the variational method has been used as an accurate  
method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
 
RESULTS AND DISCUSSIONS 
The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
function of magnetic field strength of long range �� = �.�	��	4.� and short range �� = �.�	��	1.�, respectively 
.The spectra is calculated for fixed values of confining frequencies �� = �

��∗ and barrier heights �� = 1�∗ .  
The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �

��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good 
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variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �
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principle requires.
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Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
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�  . The QD ground state labeled by the quantum numbers  : ��� = �	���� = �	� � = �		� � � � , in the 
presence of an elelctron-electron interaction  goes a transition to  m=-1 , -2 , -3, ….as the strength of the  magnetic 
field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
to the existence of both  coulomb and parabolic terms , so the variational method has been used as an accurate  
method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
 
RESULTS AND DISCUSSIONS 
The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
function of magnetic field strength of long range �� = �.�	��	4.� and short range �� = �.�	��	1.�, respectively 
.The spectra is calculated for fixed values of confining frequencies �� = �
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The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
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��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good 

. 
The QD ground state labeled by the quantum 

numbers: 

 
������(�) = (−1)�� �

|����|

√� � ��!
(�� + |��|)	!�

�
� ������ �⁄ �|��|���

|��|(����)����� 
(2.6) 

 
	E������� = (2n�� + |m��| + 1)ℏ	�ω��

4 + ω�� + m��
ℏω�
2  (2.7) 

Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
= �	��	(��)�	]

�  . The QD ground state labeled by the quantum numbers  : ��� = �	���� = �	� � = �		� � � � , in the 
presence of an elelctron-electron interaction  goes a transition to  m=-1 , -2 , -3, ….as the strength of the  magnetic 
field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
to the existence of both  coulomb and parabolic terms , so the variational method has been used as an accurate  
method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
 
RESULTS AND DISCUSSIONS 
The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
function of magnetic field strength of long range �� = �.�	��	4.� and short range �� = �.�	��	1.�, respectively 
.The spectra is calculated for fixed values of confining frequencies �� = �

��∗ and barrier heights �� = 1�∗ .  
The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �

��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good 

 , in the 
presence of an elelctron-electron interaction  goes 
a transition to  m=-1 , -2 , -3, ….as the strength of 
the  magnetic field increases .The transitions in the 
angular momentum of the QD ground state lead 
also to oscillations in the spin of the ground state 
between the singlet (S=0)  and triplet (S=1) states, 
[5] .

The relative Hamiltonian part equation (2.4)  
does not have an analytical solution for all ranges 
of ω0 and ωc, due to the existence of both coulomb 
and parabolic terms, so the variational method 
has been used as an accurate  method to get the  
energy spectra Er for the relative  Hamiltonian in 
terms of a variational parameter. The adopted 
variational wave function and the corresponding 
energy equation are given in Appendix A.  The 
combined terms of the single quantum dot 
Hamiltonian energy and barrier energy matrix 
elements will be diagonalized to give the full 
matrix elements of the DQD Hamiltonian. We 
have given, in the Appendices, the essential 
steps which convert full DQD Hamiltonian into a 
matrix eigenvalue form. The exact diagonalization 
method is used in spanning the total Hamiltonian 
for the selected single electron basis and extracts 



3Int. J. Nano Dimens., 8 (1): 1-8, Winter 2017

M. Elsaid et al. 

the lowest eigenvalues (eigenenergies) of the 
matrix. The procedure of increasing the number 
of linearly independent eigenstates is converging 
to the exact results. In each step the new energy 
results are compared with previous results from 
a smaller apace, until satisfactory convergence is 
achieved.  The computed eigenenergies will be 
used to investigate the effect of barrier height and 
confining frequency on the dependence of the 
exchange energy on the magnetic field strength of 
the DQD. 

RESULTS AND DISCUSSIONS
The computed results for two interacting 

electrons in double quantum dots made from 
GaAs material (m*=0.067 me, R*=5.825 meV) 

are presented in Table 1 and Figs. 1 to 8. The 
eigenenergies are obtained by diagonalizing the 
DQD-Hamiltonian in the matrix form (B2) with 
the single electron basis, um(ρ), given by Eq. (A4 ). 
Fig. 1a and 1b show the calculated eigenenergy 
spectra of DQD for angular momentum m=0,1 
and 2 as a function of magnetic field strength of 
long range ωc=0.0 to 4.0 and short range ωc=0.0 
to 1.0, respectively. The spectra is calculated for 
fixed values of confining frequencies 
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Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
= �	��	(��)�	]

�  . The QD ground state labeled by the quantum numbers  : ��� = �	���� = �	� � = �		� � � � , in the 
presence of an elelctron-electron interaction  goes a transition to  m=-1 , -2 , -3, ….as the strength of the  magnetic 
field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
to the existence of both  coulomb and parabolic terms , so the variational method has been used as an accurate  
method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
 
RESULTS AND DISCUSSIONS 
The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
function of magnetic field strength of long range �� = �.�	��	4.� and short range �� = �.�	��	1.�, respectively 
.The spectra is calculated for fixed values of confining frequencies �� = �

��∗ and barrier heights �� = 1�∗ .  
The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �

��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good 
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Table I: The ground state energies of QD ( in 𝑅𝑅∗  as a function of dimensionless coulomb coupling parameter 𝜆𝜆 𝛼𝛼𝑒𝑒 ℏ𝜔𝜔   with , 𝛼𝛼  𝑚𝑚𝜔𝜔 ℏ     

, obtained from exact diagonalization method (second column) compared with reported work (third column), Reference [7]. 
 

𝞴𝞴 E (Present work) E(Ref.[7]) 

0  2.00000 
1  3.00097 
2  3.72143 
3  4.31872 
4  4.84780 
5  5.33224 
6  5.78429 
7  6.21129 
8  6.61804 
9  7.00795 
10  7.38351 
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Fig. 2: The computed exchange energy of the two interacting electrons in  DQD versus  the magnetic field strength for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ∆ ∗
V ∗. 
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Fig. 3: Comparison between the exchange energy of the two interacting electrons in QD for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ( bV =0 ) in the DQD Hamiltonian (solid curve) , and the exchange 

energy of the two interacting electrons in  DQD for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ∆ ∗
V ∗ against the magnetic field strength (dashed curve). 

  

3 
 

 
 
 

 
Fig. 3: Comparison between the exchange energy of the two interacting electrons in QD for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ( bV =0 ) in the DQD Hamiltonian (solid curve) , and the exchange 

energy of the two interacting electrons in  DQD for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ∆ ∗
V ∗ against the magnetic field strength (dashed curve). 

  



5Int. J. Nano Dimens., 8 (1): 1-8, Winter 2017

M. Elsaid et al. 

the QD systems [12]. The singlet-triplet transitions in 
the angular momentum of the DQD system manifest 
themselves as cusps in the magnetization curve of 
the DQD. Our energy spectra results show very good 
agreement compared with the results displayed in 
Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian.

In Fig. 2, we have computed the results of 
exchange energy (J=Esinglet - Etriplet) curve for DQD 
against the magnetic field strength 
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Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
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field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
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method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
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The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
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��∗ and barrier heights �� = 1�∗ .  
The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �

��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good ,
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Where �� = n��� �� = m�� are the radial and azimuthal quantum numbers, respectively, and  ���	is the 
associate	Laguerre polynomials [7]. 
The two electron wave function �(������� ������) = �(������� ��	�����)	�	(��� ��) is a product of the spatial part �	(������	� ������	) and the 
spin part  �	(	��� ��) . The spatial part can be separated into a CM (2.3) and relative (2.4) parts wave functions: ψ( 
������� ������	) = �������	�	��(	�	���). 
The relative part ��(	�	���	) has a parity:	(−1)�, under the particle permutation ( � � � + 2� . Therefore ,the spatial 
part has an even parity for even  m- quantum number , and in this case the spin part must be a singlet state with 
total spin S=0.The total  two-electron wave function becomes antisymmetric as the Pauli exclusion principle 
requires. 
On  the other hand   , if the spatial  relative part has an odd parity for odd m-values , in this case the spin part must 
be triplet with total spin S=1. The angular quantum number (m) and the total spin (S) are related by the expression 
= �	��	(��)�	]

�  . The QD ground state labeled by the quantum numbers  : ��� = �	���� = �	� � = �		� � � � , in the 
presence of an elelctron-electron interaction  goes a transition to  m=-1 , -2 , -3, ….as the strength of the  magnetic 
field increases .The transitions in the angular momentum of the QD ground state lead also to oscillations in the 
spin of the ground state between the singlet (S=0)  and triplet (S=1) states, [5] . 
The relative Hamiltonian part equation (2.4)  does not have an analytical solution for all ranges of ω�	and	ω�, due 
to the existence of both  coulomb and parabolic terms , so the variational method has been used as an accurate  
method to get the  energy spectra ( ��) for the relative  Hamiltonian in terms of a variational parameter. The 
adopted variational wave function and the corresponding energy equation are given in Appendix A.  The combined 
terms of the single quantum dot Hamiltonian energy and barrier energy matrix elements will be diagonalized to 
give the full matrix elements of the DQD Hamiltonian. We have given, in the Appendices, the essential steps which 
convert full DQD Hamiltonian into a matrix eigenvalue form. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extracts the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved.  The computed eigenenergies will be used to investigate the effect of barrier 
height and confining frequency on the dependence of the exchange energy on the magnetic field strength of the 
DQD.  
 
RESULTS AND DISCUSSIONS 
The computed results for two interacting electrons in double quantum dots made from GaAs material (�∗ =
�.���	��� �∗ = �.�2�	���) are presented in Table 1 and Figs. 1 to 8. The eigenenergies are obtained by 
diagonalizing the DQD-Hamiltonian in the matrix form (B2) with the single electron basis  , ��(�	), given by Eq. (A4 
) .Fig. 1a and 1b show the calculated eigenenergy spectra of DQD for angular momentum � = �� 1	���	2 as a 
function of magnetic field strength of long range �� = �.�	��	4.� and short range �� = �.�	��	1.�, respectively 
.The spectra is calculated for fixed values of confining frequencies �� = �

��∗ and barrier heights �� = 1�∗ .  
The energy level plot in Fig. 1b shows obviously the transition in the angular momentum of the ground state of the 
DQD system as the magnetic field strength increases. The origin of these transitions is due to the effect of coulomb 
interaction energy in the QD systems [12]. The singlet-triplet transitions in the angular momentum of the DQD 
system manifest themselves as cusps in the magnetization curve of the DQD. Our energy spectra results show very 
good agreement compared with the results displayed in Fig. 3 of Ref. [20], where the authors had used the 
variational method to solve the DQD Hamiltonian. 
In Fig. 2, we have computed the results of exchange energy (� = �������� − ��������) curve for DQD against the 
magnetic field strength �� = �.�	��	4.�	� �� = �

��∗� �= �.��∗���	�� = 1�∗ . The curve shows very good . The curve shows 
very good agreement with the corresponding one 
in Ref. [20]. We have compared the exchange 

energy curves for both single quantum dot (SQD) 
and DQD in Fig. 3. The exchange energy curve 
for SQD (---) shows a deep and sharp minimum. 
Meanwhile the corresponding J-curve in DQD 
system (---) shows a smooth and shallower 
minimum. This J-behavior agrees again with the 
result of Ref. [20]. 

In Fig. 4, we have studied the effects of 
barrier height potential, V0 on the magnetic field 
dependence of the exchange energy, J(B) , for 
fixed values of ω0 and ∆ It is observed that as Vb 
increases the minimum of the J-curve becomes 
shallower and shifted to higher  magnetic field 
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Fig. 4: The exchange energy of two interacting electrons in  DQD against the magnetic field strength for 𝜔𝜔𝑜𝑜 𝑅𝑅∗ ∆ ∗ and different values of  V : ( dotted curve )  

at V = ∗ , ( solid curve )  at V = ∗ and ( dashed curve ) at V = ∗ . 
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Fig. 5: The exchange energy of  two interacting electrons in  DQD as a function  of the magnetic field strength for V  𝑅𝑅∗ ∆ ∗ and different values of 𝜔𝜔𝑜𝑜: ( 

dashed curve )  at 𝜔𝜔𝑜𝑜= ∗ , ( solid curve )  at 𝜔𝜔𝑜𝑜= ∗ and ( dotted curve)  at 𝜔𝜔𝑜𝑜= 0.6 ∗ . 
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a) 

b) 
 

Fig. 6: Phase diagrams for the exchange energy, a)  𝜔𝜔𝑐𝑐  - 𝜔𝜔    at V = 𝑅𝑅∗   b)  𝜔𝜔𝑐𝑐 − V 𝑎𝑎𝑡𝑡 𝜔𝜔 𝑅𝑅∗  
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Fig. 7: The energy of DQD for fixed values of 𝜔𝜔 𝑅𝑅∗ ∆ 𝑅𝑅∗

V 𝑅𝑅∗against the number of basis and  𝜔𝜔𝑐𝑐 𝑅𝑅∗ . 
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strength. A similar qualitative effect for the 
parabolic confining frequency  on the J-curve has 
shown in Fig. 5.

Furthermore, we have calculated and showed in 
Fig. 6 (a and b) the magnetic field versus parabolic 
confining frequency (ωc-ω0) and magnetic field 
versus potential barrier height (ωc-V0) phase 
diagrams of DQD. It is observed from Fig. 6a that 
the transition magnetic field enhances as the 
confining frequency increases. This behavior is 

also reported by Kyriakidis et al. in reference [22]. 
On the other hand, the transition magnetic field 
decreases as the potential barrier height increases.
In all computational steps, the convergence 
process of the energy spectra is found to be 
very fast and is achieved for small number of 
basis. For example we have shown, in Fig. 7, the 
computed energy results of DQD for fixed values 
of 

agreement with the corresponding one in Ref. [20]. We have compared the exchange energy curves for both single 
quantum dot (SQD) and DQD in Fig. 3. The exchange energy curve for SQD (—) shows a deep and sharp minimum. 
Meanwhile the corresponding J-curve in DQD system (---) shows a smooth and shallower minimum. This J-behavior 
agrees again with the result of Ref. [20]. In Fig. 4, we have studied the effects of barrier height potential,  ��, on 
the magnetic field dependence of the exchange energy, J(B) , for fixed values of		�� 		and 	∆	.	It is observed  that as 
	��  increases the minimum of the J-curve becomes shallower and shifted to higher  magnetic field strength. A 
similar qualitative effect for the parabolic confining frequency �� on the J-curve has shown in Fig. 5. 
Furthermore, we have calculated and showed in Fig. 6 (a and b) the magnetic field versus parabolic confining 
frequency (�� � ��) and magnetic field versus potential barrier height ( �� � ��)	 phase diagrams of DQD. It is 
observed from Fig. 6a that the transition magnetic field enhances as the confining frequency increases. This 
behavior is also reported by Kyriakidis et al. in reference [22]. On the other hand, the transition magnetic field 
decreases as the potential barrier height increases. 
In all computational steps, the convergence process of the energy spectra is found to be very fast and is achieved 
for small number of basis. For example we have shown, in Fig. 7, the computed energy results of DQD for fixed 
values of �� = �

��∗ ,  ∆= 0.5	�∗���	 �� = ��∗  against the number of basis for �� = 0.5	. The figure clearly shows 
the stability behavior in the energy of the DQD system as the number of basis increases. Fig. 8 displays the present 
computed results for a single quantum dot for comparison purposes with both: The analytical variational and 
numerical Numerov results given in Fig. 1 of Dybalski and Hawrylak work [20]. In Table 1, we have listed the 
computed results for a single QD against the results of Ciftja and Golam Faruk [7]. The comparison shows an 
excellent agreement between both works. 
 
CONCLUSION 
In conclusion, we have applied the combined exact diagonalization and variational calculation methods to solve 
the Hamiltonian for two interacting electrons confined in double-quantum dots presented in a magnetic field. We 
have investigated the dependence of the DQD energy levels and exchange energy on the magnetic field strength, 
confining frequency and barrier width and barrier height. The DQD phase diagrams are also shown. 
  

 against the 
number of basis for ωc=0.5 The figure clearly 
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Fig. 8: The computed energy spectra of single quantum dot versus the strength of the magnetic field for ω ∗ , angular momentum − − −  
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shows the stability behavior in the energy of the 
DQD system as the number of basis increases. Fig. 
8 displays the present computed results for a single 
quantum dot for comparison purposes with both: 
The analytical variational and numerical Numerov 
results given in Fig. 1 of Dybalski and Hawrylak 
work [20]. In Table 1, we have listed the computed 
results for a single QD against the results of Ciftja 
and Golam Faruk [7]. The comparison shows an 
excellent agreement between both works.

CONCLUSION
In conclusion, we have applied the combined 
exact diagonalization and variational calculation 
methods to solve the Hamiltonian for two 
interacting electrons confined in double-quantum 
dots presented in a magnetic field. We have 
investigated the dependence of the DQD energy 
levels and exchange energy on the magnetic field 
strength, confining frequency and barrier width 
and barrier height. The DQD phase diagrams are 
also shown.

APPENDICES
Appendix A:  Energy expressions of single QD 
Hamiltonian by variation calculations

The purpose of this Appendix is to give the main 
expressions that have been used to compute the 
eigenenergy expressions of the QD. The adopted 
one parameter variational wave function is taken 
as: 

𝐻𝐻𝐷𝐷𝑄𝑄𝐷𝐷   𝑚𝑚∗  𝑝𝑝 𝑟𝑟𝑗𝑗  
𝑒𝑒
𝑐𝑐 𝐴𝐴 𝑟𝑟𝑗𝑗   𝑚𝑚∗𝜔𝜔 𝑟𝑟𝑗𝑗  

𝑗𝑗
 

𝑒𝑒
𝜖𝜖 𝑟𝑟 −𝑟𝑟  𝑉𝑉𝑜𝑜 𝑒𝑒

−𝑥𝑥 ∆ 𝑒𝑒−𝑥𝑥 ∆          
 
(2.1) 
 

 

bV V  𝑒𝑒−𝑥𝑥 ∆ 𝑒𝑒−𝑥𝑥 ∆    as follows , 
𝐻𝐻𝐷𝐷𝑄𝑄𝐷𝐷 𝐻𝐻𝑆𝑆𝑄𝑄𝐷𝐷 𝑉𝑉𝑏𝑏                                                                       (2.2) 
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Our wave function,
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The matrix element of the DQD can be 
evaluated in terms of elliptic functions, angular 
quantum number, m, and barrier width, ∆. 

The combined terms of the single quantum 
dot energy (Em (βm))  and barrier energy matrix 
elements will give the full matrix elements of 
the DQD Hamiltonian. This converts the problem 
into a matrix eigenvalue problem. We have 
implemented the diagonalization technique to 
obtain the eigenergies of the HDQD ,
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                 (B2)

where, ECM, is the center of mass Hamiltonian as 
defined previously in Eq. 2.7 .

CONFLICT OF INTEREST
The authors declare that there is no conflict 
of interests regarding the publication of this 
manuscript.

REFERENCES
[1] 	 Ashoori R. C., Stormer H. L., Weiner J. S., Pfeiffer L. N., 

Baldwin K. W., West K. W., (1993), N-electron ground state 
energies of a quantum dot in a magnetic field. Phys. Rev. 
Let. 71: 613-616.

[2] 	 Ciftja C., (2013), Understanding electronic systems 
in semiconductor quantum dots. Physica Scripta. 72: 
058302-058306.

[3] 	 Kastner M. A., (1992), The single electron transistor. Rev. 
Mod. Phys. 64: 849-858.

[4] 	 Burkard G., Loss D., Divincenzo D. P, (1999), Coupled 
quantum dot as a quantum gate. Phys. Rev. B. 59: 2070-
2078.

[5] 	 Wagner M., Merkt M. U., Chaplik A. V., (1992), Spin-
singlet-triplet oscillations in quantum dots. Phys. Rev. B. 
45: 1951-1954.

[6] 	 Taut M., J. Phys., (1994), Two electrons in a homogeneous 
magnetic field: Particular analytic solution. J. Phys: Math. 
Gen. 27: 1045-1055.

[7] 	 Ciftja C., Kumar A. A., (2004), Gound-state of two-
dimensional quantum dot helium in zero magnetic fields. 
Phys. Rev. B. 70: 205326-205331.

[8] 	 Ciftja O., Golam Faruk M., (2005), Two-dimensional 
quantum-dot helium in a magnetic field: Variational 
theory.  Phys. Rev. B. 72: 205334-205339.

[9] 	 Kandemir B. S., (2005), Variational study of two-electron 
quantum dots. Phys. Rev. B. 72: 165350-165355.

[10] 	Elsaid M., (2000), Spectroscopic structure of two 
interacting electrons in a quantum dot by 1/N expansion 
method. Phys. Rev. B. 61: 13026-13030.

[11] 	Elsaid M., Al-Nafa M. A., Zugail S. J., (2008), Spin singlet-
triplet splitting in the ground state of a quantum dot with 
magnetic fields: Effects of dimensionality. J. Comput. 
Theor. Nanosci. 5: 677-680.

[12] 	Maksym P. A., Chakraborty T., (1990), Quantum dots in 
a magnetic field: Role of electron-electron interactions. 
Phys. Rev. Lett. 65: 108-111.

[13] 	De Groote J. J. S., Hornos J. E. M., Chaplik A. V., (1992), 
Thermodynamic properties of quantum dots in a 
magnetic field. Phys. Rev. B. 46: 12773-12776.

[14] 	Nguyen N. T. T., Peeters F. M., (2008), Magnetic field 
dependence of many electron states in a magnetic 
quantum dot: The ferromagnetic-antiferromagnetic 
transition.  Phys. Rev. B. 78: 045321-045326.

[15] 	Nammas F. S, Sandouqa A. S; Ghassib H. B., Al Sugheir M. 
K., (2011), Thermodynamic properties of two-dimensional 
of few-electrons quantum dot using the static fluctuation 
approximation (SFA). Physica B. 406: 4671-4677. 

[16] 	Boyacioglu B., Chatterjee A., (2012), Heat capacity 
and entropy of a GaAs quantum dot with a Gaussian 
confinement. J. Appl. Phys. 112: 083514-083518. 

[17] 	Helle M., Harju A., Nieminen R. M., (2005), Two-electron 
quantum dot molecule in a magnetic field. Phys. Rev. B. 
72: 205329-205336. 

[18] 	Räsänen E., Saarikoski H., Stavrou V. N., Harju A., Puska 
M. J., Nieminen R. M., (2003), Electronic structure of 
quantum dots. Phys. Rev. B. 67: 235307-23511.

[19] 	Schwarz M. P., Grundler D., Wilde M., Heyn Ch., Heitmann 
D., (2002), Magnetization of semiconductor quantum dot. 
J. Appl. Phys. 91: 6875-6877.

[20] 	Dybalski W., Hawrylak P., (2005), Two electrons in a 
strongly coupled double quantum dots: From an artificial 
helium atom to hydrogen molecule. Phys. Rev. B. 72: 
205432-205436.

[21] 	Abdollahi M., Telebian Darzi M. A., Hosein Kani H., 
Raghbani Rizi H., (2012), The effect of first order magnetic 
field in a GaAs/AlGaAs spherical quantum dot with 
hydrogenic impurity. Int. J. Nano. Dimens. 3: 149-154.

[22] 	Kyriakidis J., Pioro-Ladiere M., Ciorga M., Sachrajda A. 
S., Hawrylak P., (2002), Voltage-tunable singlet-triplet 
transitions in lateral quantum dots. Phys. Rev. B. 66: 
035320-035320.

[23] 	Climente J. I., Planelles J., Movilla J. L., (2004), 
Magnetization of nanoscopic quantum ring and quantum 
dot. Phys Rev. B. 70: 081301-081306. 

[24] 	Avetisyan S., Chakraborty T., Pietiläinen P., (2016), 
Magnetization of interacting electrons in anisotropic 
quantum dots with Rashba spin-orbit interaction. Physica 
E. 81: 334-338.

[25] 	Nguyen N. T. T., Das Sarma S., (2011), Impurity effects of 
semiconductor quantum bits in coupled quantum dots. 
Phys. Rev. B. 83: 235322-235326.

[26] 	Rachid N., Ben Salem E., Jaziri S., Bennaceu R., (2009), 
Magnetization for the spin-orbit strength evaluation in 
laterally coupled double quantm dots. Physica E. 41: 568-
573.


