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In this paper, an improved particle swarm optimization method (PSO) is proposed to optimally size and place a DG unit in an
electrical power system so as to improve voltage profile and reduce active power losses in the system. An IEEE 34 distribution bus
system is used as a case study for this research. A new equation of weight inertia is proposed so as to improve the performance of
the PSO conventional algorithm.-is development is done by controlling the inertia weight which affects the updating velocity of
particles in the algorithm. Matlab codes are developed for the adapted electrical power system and the improved PSO algorithm.
Results show that the proposed PSO algorithm successfully finds the optimal size and location of the desired DG unit with a
capacity of 1.6722MW at bus number 10. -is makes the voltage magnitude of the selected bus equal to 1.0055 pu and improves
the status of the electrical power system in general. -e minimum value of fitness losses using the applied algorithm is found to be
0.0.0406 while the average elapsed time is 62.2325 s. In addition to that, the proposed PSO algorithm reduces the active power
losses by 31.6%.-is means that the average elapsed time is reduced by 21% by using the proposed PSO algorithm as compared to
the conventional PSO algorithm that is based on the liner inertia weight equation.

1. Introduction

Currently, the power demand has increased which in turn
increases electrical energy production almost to its capacity
limits.-e fast growth of electrical power demandmakes the
transmission systems reach their maximum capacity.
-erefore, the utilities that are responsible for electrical
power grid have to invest more money to expand their
capacity to meet the demanded power and to prevent any
interruption of electricity [1]. Following that, many solutions
are suggested to solve this problem. One of these solutions is
distributed generation (DG) [2]. DG units are grid-con-
nected units that are located near customers and deliver
power to the grid regardless of its capacity or type. In
general, power system operation depends on centralized
power plants, whereas the energy flows in a unidirectional

way from generation toward distribution. In the meanwhile,
the introduction of DG to the electrical power system
changes the nature of the system from passive networks to an
active network. Active electrical power networks imply
power flow in a bidirectional way due to the distributed
resources along the network [3]. Several benefits can be
obtained from DG such as voltage support, improved power
quality, loss reduction, transmission and distribution in-
frastructure support, and improved system reliability.

Installing DGs in the electrical power system may be
depending on the weakest buses but this is not an optimal
solution as it may cause negative impacts on the power
system such as higher power losses, voltage fluctuation
problem, and a reduction of system’s stability. Moreover,
DGs may have drawbacks like unwanted reverse power flow,
power quality problems, and reliability problems especially
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when renewable resources are used as DGs [2]. -us, before
installing a DG unit in an electrical power system, appro-
priate planning is required. Several aspects must be taken
into consideration in this optimization process such as the
number, capacity, and location of the DG units [2]. In
general, the objective function of this optimization process
implies minimization of the total power loss of the system,
minimization of energy losses, minimization of system’s
average interruption duration index, minimization of cost,
minimization of voltage deviations, maximization of DG
capacity, maximization of profit, maximization of benefit/
cost ratio, and maximization of voltage limit loadability [4].

-ere are a lot of optimization methods that differ in
basics, computing time, and applications that can be used for
this purpose [5, 6]. -e most effective methods are heuristic-
based methods. Heuristic methods apply an iterative gen-
eration process which can act as a lead for its subordinate
heuristic to find the optimal or near-optimal solution for the
optimization problem. -ese methods combine concepts
that are derived from artificial intelligence such as genetic
algorithm (GA) [7], tabu search (TS) [8], particle swarm
optimization (PSO) [9], ant colony system (ACS) algorithm
[10], artificial bee colony (ABC) [11], differential evolution
(DE) [12], harmony search (HS) [13], and practical heuristic
algorithms [14].

In specific, PSO has been utilized many times in the
literature for optimal sizing and placement of DG in the
electrical power system. In [15], PSO, gravitational search
algorithm (GSA), and improved gravitational search algo-
rithm (IGSA) have been utilized to find the optimum size
and place of a DG unit based on IEEE 69-bus radial dis-
tribution system. -e proposed objective function aimed to
minimize the real power losses, voltage deviation, average
voltage total harmonic distortion (THDv), and system av-
erage voltage dip magnitude (SAVDM). According to the
results, by utilizing the PSO algorithm, the minimum value
of total losses is achieved. Similarly, in [16], PSO has been
proposed for optimal DG placement taking into account
maximizing voltage level and minimizing power losses.
Moreover, a comparison between PSO and other methods is
proposed in this research. According to this research, PSO is
found to be better in performance as compared to the other
two methods. In addition to that, in [17], a particle opti-
mization method is used for multi-DG placement for loss
reduction and voltage profile improvement. As a result, the
PSO algorithm reduced power losses and improved the
system’s voltage profile.

On the other hand, in [18], an improved particle swarm
optimization for optimal allocation of distributed energy
resources has been used. -e performance of the proposed
PSO algorithm is improved by suggesting LEA and GSA
algorithm. In this research, LEA utilized the inherent in-
ability of PSO to deal with continuous decision variables,
thus avoiding several local trappings. In the meanwhile, GSA
virtually squeezes the problem search space so as to maintain
adequate diversity. As a result, the proposed PSO performs
better than the conventional PSO algorithm. In the mean-
while, in [19], a new algorithm called PFDE is proposed for
multiple DG sizing and location. -e voltage stability index,

active power losses, and voltage profile are considered as
objective functions that need to be optimized. -e obtained
results by the newly proposed algorithm are compared with
the results of using a single objective weighted sum method
in GA/PSO, GA, and PSO. According to the results, PFDE
has a higher convergence speed than GA/PSO, GA, and PSO.

Based on that, the PSO algorithm is recommended for
optimal sizing and placement of DG in the power system.
However, PSO performance can be improved by either
modifying the algorithm itself or hybridizing the algorithm
by other optimization algorithms. -erefore, in this re-
search, an improved PSO algorithm is proposed by modi-
fying the algorithm’s searching methodology by proposing a
new nonlinear equation of the algorithm’s weight inertia.

2. Optimal Sizing and Placement of Distributed
Generation Using Improved PSO

One of the most effective metaheuristic optimization
methods that are being utilized for optimal sizing and
placement of DG is PSO. PSO can be considered as a
computational method that reaches an optimal solution for
problems by iteratively updating the solution depending on
some constraints [20]. PSO is a randomly population-based
optimization method that was developed by Kennedy in
1997 [21]. -e main idea of it depends on the food searching
behavior of birds, fish, and insects with no leader that is
looking for food’s place [22].

Exploration and exploitation are two terms that repre-
sent the operation of the optimization process. When the
searching algorithm tries to explore different regions in
search space for the optimum place, the process is called
exploration. On the other hand, when the searching algo-
rithm tries to concentrate on a specific region in order to
refine a candidate solution, the process is called exploitation.
Using these two concepts, the particles in a swarm try to find
the optimum solution with the help of their memory by
storing data such as their own best position and the global
best position for the whole swarm [23].

In PSO, each particle in the search space has solution and
fitness, velocity, its own best position, and its global best
position. -e individual member of the swarm is called a
particle. Each particle has its own dimensional coordinate
position and the particles perform the swarm. Fitness is the
function (objective function) that is used as an interface
between the optimum problem and the physical one and
determines the accuracy of the solution. In the search space,
there are two terms that are being updated at each iteration.
-e first one is the position in the search space that the
fitness function returns as the best one for a specific position
Pbestt . Meanwhile, the second one is the position in the
search space that the fitness function returns as the best one
for the whole swarm Gbest. Also, upper and lower bounds of
the velocity for the movement of the particles in the search
space can be considered as constraints VMax and VMin [24].

In PSO, each particle is represented in a d-dimensional
space, xi � (x1

i , x2
i , . . . , xn

i ), while Vi � (v1i , v2i , . . . , vn
i ) rep-

resents the position and velocity of the ith particle,
respectively.
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At each iteration, the velocity is updated and used to
update the position as shown in the following equation:

vi+1 � ωVi + c1r1 Pbest − xi( 􏼁 + c2r2 Gbest − xi( 􏼁, (1)

where r1 and r2 are two random variables in the range of zero
to one, c1 and c2 are positive constants which determine how
far the PSO particles are from Pbest and Gbest, ω is the inertia
weight, ωV is the inertia that keeps the particle movements
in the same direction, c1r1(Pbest − xi) is the personal in-
fluence which improves the individuals, and c2r2(Gbest − Xi)

is the social influence which makes the particle moves to-
ward the best neighbor’s direction.

By using equation (1), the position of each particle can be
updated as follows:

xi+1 � vi+1 + Xi. (2)

-e convergence of the algorithm is controlled by inertia
weight (ω) which is chosen in a suitable way so as to give a good
balance between global and local exploration. Here, ifω≥ 1, the
velocities increase with time and PSO diverges, while if
1>ω> 0, PSO converges. Inertia weighω plays a key role in the
process of providing a balance between exploration and ex-
ploitation processes. In addition, it determines the contribution
of the previous velocity of each particle with the current ve-
locity. -e conventional PSO has no inertia constant [25].
Following that, the concept of inertia weight was introduced as
a constant value by [26]. In [26], the author states that a large
inertia weight facilities a global search while small inertia
weight facilities a local search [26, 27]. It also has a great in-
fluence on the optimization performance. -e high value of ω
is useful to improve the convergence speed of the algorithm,
while low ω improves the convergence precision of the al-
gorithm [26]. -e linear equation of inertia weight that is used
in conventional PSO can be described as follows [28]:

ω � ωmax − ωmax − ωmin( 􏼁 ×
iter

maxiter
􏼒 􏼓􏼒 􏼓, (3)

where ωmax is the maximum weight, ωmin is the minimum
weight, iter is the current iteration, maxiter is the maximum
number of iterations, and ω is the constant weight.

-e optimization process of PSO for optimal sizing and
placement of a DG unit in the electrical power system can be
summarized by the following steps [25]:

(i) Initialization: at this stage, different configurations
are introduced such as the configuration of the
distributed network, candidates for DG sizing and
location, the initial population that is established
randomly, the number of iterations, and finally the
objective function. In addition, random values of
velocity and position are interdicted at this stage.

(ii) Calculation of the fitness function (f (x)): after start
searching in the search space, the fitness function
calculates the summation of each particle.

(iii) After that, Pbest and Gbestt for all populations are cal-
culated at each iteration. -e lower fitness value for the
current iteration is called Pbest. Meanwhile, the lowest
fitness for Pbest is compared with the previous iteration
and recorded as Gbest.

(iv) -e new velocity and position are calculated using
equations (1) and (2) for the next iteration.-en, the
new position is updated again. Here, if the condition
does not meet the specified accuracy, then the al-
gorithm gets back to step 2.

(v) Finally, the optimum value or the desired output is
set as Gbest.

According to the literature, there are some problems that
PSO fails to solve because of having particles that are trapped at
a local optimum solution, not the global one. In addition, PSO
has three main dominant constants which are inertia weight ω,
c1, and c2 whereas any change in these three constants will affect
the performance of the algorithm.-ese parameters need to be
adjusted optimally because if the adjustment is inaccurate, it
leads to a diverged solution.

In order to improve the PSO algorithm, a time-variant
inertia weight has been introduced by many researchers
which helps to come out quickly from a region where the
velocity becomes stagnant [28].

-ere are many different strategies that have been
proposed to change inertia weight, which can be divided into
two categories, linear strategies [29] and nonlinear strategies
[30]. -e linear strategy suggests that inertia weight with the
number of iterations being increased can be decreased
linearly as in equation (3), which can ensure early larger ω
value so as to accelerate convergence and a smaller value ofω
so as to avoid falling into a local optimum point. In the
meanwhile, nonlinear strategies not only suggest ω in the
initial stage in a better way, but they also reduce the time
needed to get the optimum solution. Moreover, with non-
linear inertia strategies, all particles can be quickly spread all
over the search space so as to determine the approximate
range of global extremes.-erefore, nonlinear strategies may
provide better performance than linear strategies [27].

Specifically, many researchers have proposed different
weight inertia equations for improving the PSO algorithm for
optimal sizing and placement of DG in the power system
[31–35]. According to these researches, there is no specific role
to derive an equation for optimum varying of weight inertia. In
general, this inertia weight linearly decreases with respect to
time. Generally, for initial stages of the search process, large
inertia weight is recommended to enhance the global explo-
ration (searching new area), while, for the last stages, the inertia
weight is reduced for local exploration (fine-tuning the current
search area). Based on that, in this research, a nonlinear strategy
(equation (4)) is proposed as a time-varying inertia weight
which decreases exponentially with time. By starting from
maximum toward minimum weight, the exponential inertia
weight reduces computational time in PSO and improves the
algorithm’s convergence:

ω � ωmax × e
(((maxiter− iter)/maxiter)− 1)

− ωmin, (4)

where ωmax is the maximum weight, ωmin is the minimum
weight, iter is the current iteration, and maxiter is the
maximum number of iterations.

On the other hand, to determine the optimal DG sizing,
minimization of power system losses (Ploss) is considered.
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-e unit for Ploss is kW and the normalization equation is as
follows:

Fnorm Plossi �
Plossi − min(Ploss)

max(Ploss) − min(Ploss)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (5)

-e mathematical equation of objective function for DG
sizing is formulated as

f2 � min 􏽘

n

i�1
Fnorm Plossi

⎧⎨

⎩

⎫⎬

⎭, (6)

where Plossi � |Ii|
2 × Ri, where Ii and Ri are the electric

current and electrical resistance at bus i, respectively.
-e technical constraints considered in the optimization

problem are the DG, voltage, and power flow constraints.
-eDG is limited by the available power sources at any given
location. -us, it is necessary to constraint the capacity
between its maximum and minimum levels of active power,
which is given by

PDG,min ≤PDG ≤PDG,max. (7)

-e system operation should be kept within ±5% of
voltage deviation and the voltage constraint is given by

0.95 pu≤Vi ≤ 1.05 pu. (8)

3. Results and Discussion

In this research, an improved PSO optimization algorithm is
proposed for optimal placement and sizing of DGs in the
electrical power system. IEEE 34 bus network is used as a
case study to perform this research. Power flow analysis is
utilized so as to study the performance of the adopted
electrical power system before and after placing the opti-
mally sized DG unit. -us, in this section, power flow an-
alyses of the adopted system with and without DG units that
are placed and sized based on the conventional PSO algo-
rithm as well as the proposed PSO algorithm are presented.

-e adopted electrical network consists of 34 buses with
one generation bus, 29 load buses, and 33 branches. IEEE 34
bus network has a radial configuration as can be seen in
Figure 1.

-e total generation of the network is 5.89MW (Pg) and
3.52MVAr (Qg). In the meanwhile, the total loads of the
network are 5.56MW (Pd) and 3.42MVAr (Qd) distributed
over 29 load buses.

Figure 2 shows the results of the conducted load flow
analysis in terms of voltage magnitudes and angles.

From the figure, the buses that are far from the power
source have low voltage magnitude as compared to the
buses that are located near the generation source. -e
buses which are in the range of bus 19 to bus 27 have the
lowest voltage magnitude as compared to other buses. All
of these buses have a voltage magnitude below 0.95 pu.
Phase angles for all buses seem good and there are no
instability problems. Anyway, it is assumed that any DG
placement at buses 19 to 27 can support this power system
in a positive way.

Moreover, active and reactive power losses are deter-
mined from the conducted power flow analysis. Figure 3
shows a summary of the active and reactive power losses for
each branch. -e total losses in the whole network are
0.329MW (Plosses) which is 5.58% of the total active power
generation, while the reactive power losses are 0.10MVAr
(Qlosses), which is 2.84% of the total reactive power
generation.

In this research, the optimal sizing of DG is done
considering a conventional PSO algorithm with a liner in-
ertia weight equation. After that, the proposed inertia weight
equation (equation (4)) is incorporated with the PSO al-
gorithm so as to improve the performance of the algorithm.

In the used PSO code, 50 particles are generated to find
the size and location of one DG unit which has three di-
mensions. In addition, constants are used to update the
velocity of the algorithm such as inertia weight which has 0.9
and 0.4 as maximum and minimum values, respectively, as
recommended by [30]. In addition, c1 and c2 are positive
constants that are used in the algorithm whereas these
constants are assumed to be equal to 2 as recommended by
[21].

-e applied DG is assumed to supply active power only,
while the maximum penetration level allowed is assumed to
be 41.15% of the total generation [36]. -e capacity of the
DG is assumed to be in the range of 1.2–2MW. Buses that
are located between bus 2 and 34 are considered a possible
location for the DG unit. A constraint for bus voltage
magnitude is assumed to be between 0.9 pu and 1.05 pu.

Figures 4 and 5 show the results of the new proposed
algorithm based on the new nonlinear equation.

From the figures, the voltage magnitude at the located
bus becomes 1.0055 pu and improved the status of the power
system in general. In addition to that, the applied PSO
optimization algorithm reduced the active power losses by
31.6%. Table 1 shows a summary of the improvement done
by installing a DG in the adopted electrical power system.

A comparison between the conventional PSO algorithm
and the improved algorithm is presented in terms of elapsed
time. Table 2 shows a comparison between the conventional
PSO algorithm in [36] and the proposed PSO algorithm.
From the table, an improvement in the algorithm’s per-
formance is achieved by the new proposed algorithm as the
lowest elapsed time is achieved by using it.

To highlight the effect of the installation of a DG unit on the
operating parameters of the testing system, the cost of this
proposal is briefly discussed. According to [34], the total cost of
1 kWp of a large-scale distributed generation is about
1,200USD/Wp. Such a system has a life cycle time of 25 years.
In the meanwhile, real power losses can be financially evaluated
by the cost of the total amount of kWh through the life cycle of
the distributed generation. In this research, the cost of the kWh
is assumed to be 0.14 USD. Meanwhile, the cost of reactive
power losses can be estimated depending on the status of the
network which is indicated by the power factor of the network.
In general, the kVArh in this research is assumed to be 0.2 USD
considering the relatively low power factor.

According to the results, a DG is installed considering
the best place and the best capacity for minimum losses at
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Figure 1: One line diagram of the IEEE 34 bus system.
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Figure 2: Voltage magnitude and phase for the power system angle before DG installation.
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Figure 3: Active and reactive power losses for the system before the DG installation.
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Figure 4: Bus voltages before and after the DG installation.
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bus 24 with a capacity of 1.6115MW. In this case, the cost of
the suggested DG is 1,933,800 USD while the amount of
power losses is reduced by 0.104MW. Considering the
nature of the installed DG system (generates real power
only), the savings of the reactive power are neglected.
Following that, the estimated saving of this practice over the
life cycle time of the DG system is 3,188,640 USD. -is
clarifies that installing a DG unit could significantly decrease
the total cost and power losses. However, this is not the only
benefit of installing DG as it affects positively system’s
voltage and stability.

4. Conclusion

In this paper, an improved particle swarm optimization
(IPSO) was proposed to find the optimum size and location
of a distributed generation unit in the IEEE 34 bus electrical
power system in order to improve voltage profile and reduce

losses. A new equation of weight inertia was proposed so as
to improve the performance of the PSO conventional al-
gorithm. -is development was done by controlling the
inertia weight that affected the updating velocity of particles
in the algorithm. -is development had a significant impact
on the performance of the conventional PSO algorithm
which is based on liner inertial weight equation. Results
showed that 5.58% of the total active power generation was
consumed as active power losses before the installation of
the DG unit in the electrical power system. In the mean-
while, 2.84% of the total reactive power generation was
consumed as losses before the installation of DG in the
electrical power system. Moreover, results indicated that
buses that are located in the range of bus number 19 and bus
number 27 had the lowest voltage magnitude (below 0.95)
before the installation of the DG unit in the system. Fol-
lowing that, the applied improved PSO algorithm success-
fully found the optimal size and location of the desired DG
unit with a capacity of 1.6722MW at bus number 10. -is
made the voltage magnitude at the located bus equal
1.0055 pu and improved the status of the power system in
general. -e minimum value of fitness losses by using the
applied algorithm was 0.0.0406 while the average elapse time
was 78.6212 s. In addition to that, the applied PSO opti-
mization algorithm reduced the active power losses by
31.6%. In order to show the significance of the proposed
algorithm, a comparison is conducted with the conventional
PSO algorithm for the same case. As a result, the conven-
tional PSO algorithm that is based on liner inertia weight
equation consumed 78.6212 s to provide the optimum so-
lution. In the meanwhile, the proposed algorithm consumed
62.2325 s to provide the optimum solution. In conclusion, it
was found that installing the DG unit at the optimum bus
with optimum size reduced active power losses and im-
proved voltage profile better than installing DG unit at the
farthest buses or weakest buses based on the current role of
thumps in the literature.
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