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Abstract
One of the most interesting and important techniques in applied mathematics is inter-
polation and approximation. It can be also shown that basic theory of fuzzy sets and
operations with fuzzy numbers can be used, and result very convenient, for solving
many analytical chemistry problems: as depth profile comparison or calibration with
errors in signals and/or concentrations, for spectra interpretation, or even for auto-
matic qualitative analysis or expert systems with X-ray spectroscopy. In this special
context, we introduce in this paper a new fuzzy interpolation method of fuzzy data or
functions, specially indicated in all these chemical applications. We will use bicubic
splines (cubic splines of two variables) of class C2 as linear combinations of a basis
constructed by a tensor product of univariate B-splines in each of these variables. First
we establish a bicubic interpolation spline method of a given fuzzy data set or a given
fuzzy bivariate function. We proof the existence of a unique solution of this problem
and we show a convergence result. Finally, we test the effectiveness of this method by
some numerical and graphical examples.
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1 Introduction

Function approximation and interpolation are essential problems in almost every
scientific field. Given a set of multiple input single output data, with input data
X = {x0, . . . , xn}, and output data Y , the main goal of function approximation is
obtaining a model to approximate the dependent variable Y , given the input variable
X , being X and Y real number sets. The interpolation problem of fuzzy data was first
introduced by Zadeh [20] and can be formulated as “suppose we are given n+1 points
x0, . . . , xn ∈ R and for each of these points a Fuzzy Value in R; then, it is possible to
construct some function on R, rather than a crisp one to define some kind of smooth
function in R with the given n + 1 points?”. Lowen in [15] gave a fuzzy Lagrange
interpolation theorem, then Kaleva presented some properties of Lagrange and cubic
spline interpolation in [10]. Abbasbandy et al. presented in [1] a numerical approxi-
mation of fuzzy functions by fuzzy polynomials and found the best approximation for
fuzzy functions by optimization to obtain a fuzzy polynomial. A novel methodology
for modeling uncertain data with fuzzy B-splines is presented in Anile et al. [3]. In
[2] interpolation of fuzzy data by using fuzzy splines is proposed in order to find new
set of spline functions called Fuzzy Splines to interpolate fuzzy data. Valenzuela and
Pasadas in [19] define new error and similarity indices to determine the accuracy of
interpolation of fuzzy data by cubic spline functions.

In this paper a new interpolation method of fuzzy data by fuzzy bicubic splines is
presented as an approximation method of bivariate fuzzy functions. As already men-
tioned, this fuzzy interpolation procedure could be useful and worhtwile for posing
and solving different practical problems in different fields of analytical chemistry, as
for example: library searching in the infrared and ultraviolet spectral range, chromato-
graphic analysis of urine samples to nephritis classification, gasolines classification
based on capillary gas chromatography, for calibration of linear and non-linear sig-
nal concentration dependencies, for spectrophotometricmulticomponent analysis, and
many others.

In fact, many times the chemist becomes aware of the fact that he has to deal
with many types of vague, incomplete or inexact data or information, and that the
uncertainty of those cannot always be described by means of statistical terms, but
can be taken into account by means of the fuzzy theory introduced by Zadeh [20]
in 1965. Nowadays, this mathematical theory is a very mature and important branch
of Mathematics and Computer Science, with a wide ranging collection of concepts,
techniques and applications in almost all branches of general Science and Engineering,
and in particular in Analytical and Formal Chemistry. Sometimes a molecule may be
regarded as a graph, and all the intrinsecal uncertainty of its formal description can
be included in a rigorous framework, via the fuzzy numbers and their corresponding
arithmetics and logic. In this new context, fuzzy radius and bond length for atoms
become familiar and completely feasible within this theory. In this way, the analytical
chemist is able to consider and solve more and more complex problems and answer
questions about his own research studies and those raised for the industry and/or
society interests.

In principle, some of these procedures are not always limited to the consideration of
a single variable but can be also used in the several variables framework. For instance,

123



1254 Journal of Mathematical Chemistry (2019) 57:1252–1267

in chromatography, the retention position and the signal of a peak could be used for
classifying unknown samples with a fuzzy method. In such cases, a two-dimensional
membership function would be needed (based on a circle, elipse or some trapezoidal
piramide). Over these domains of influence (or fuzzy supports) the membership func-
tions are specified as surfaces of suitable structure. Further applications of comparing
fuzzy functions are known for peak tracking in high-performance liquid chromato-
graphic separation and for depth-profiling in secondary ion mass spetrometry, see [16]
and the references therein.

The paper is organized as follows: after this introduction, in Sect. 2 we briefly
recall some preliminary notation and results. In Sect. 3, we explain the bicubic spline
interpolation methods. Section 4 briefly presents some basic fundamentals and defi-
nitions of fuzzy numbers; in Sect. 5, we explain the proposed methodology of fuzzy
interpolating bicubic splines. The convergence of the method is established in Sects. 6
and 7 introduces some of the similarity measures of fuzzy numbers frequently used
in the field of fuzzy data. In Sect. 8, different simulation results are carried out show-
ing the good performance of the proposed error and similarity indices. Finally, the
conclusions are discussed in Sect. 9.

2 Preliminaries

Wedenote by< · >n and< ·, · >n, respectively, theEuclidean normand inner product
in R

n . For any real intervals (a,b) and (c,d), with a < b and c < d, we consider the
rectangle R = (a, b) × (c, d) and let H3(R) be the usual Sobolev space of (classes
of) functions u belonging to L2(R), together with all their partial derivatives Dβ(u)

with β = (β1, β2), in the distribution sense, of order |β| = β1 + β2 ≤ 3. this space
is equipped with the norm

‖u‖ =
⎛
⎝ ∑

|β|≤3

∫
R
(Dβu(p))2dp

⎞
⎠

1
2

,

the seminorms

|u|� =
⎛
⎝ ∑

|β|=�

∫
R
(Dβu(p))2dp

⎞
⎠

1
2

, 0 ≤ � ≤ 3.

and the corresponding inner semiproducts

(u, v)� =
∑
|β|=�

∫
R
Dβu(p)Dβv(p)dp, 0 ≤ � ≤ 3.

Moreover, for n,m ∈ N
∗, let Tn = {x0, . . . , xn}, Tm = {y0, . . . , ym} be some subsets

of distinct points of [a, b] and [c, d], with a = x0 < x1 < . . . < xn = b and
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c = y0 < y1 < . . . < ym = d. We denote by S3(Tn) and S3(Tm) the spaces of cubic
splines of class C2 given by

S3(Tn) = {s ∈ C2[a, b] : s|[xi−1,xi ] ∈ P3[xi−1, xi ], i = 1, . . . , n},
S3(Tm) = {s ∈ C2[c, d] : s|[y j−1,y j ] ∈ P3[y j−1, y j ], j = 1, . . . ,m},

where P3[xi−1, xi ] (P3[y j−1, y j ]) is the restriction on [xi−1, xi ] ([y j−1, y j ]) of the
linear space of real polynomialswith total degree less than or equal to 3. It is known that
dim S3(Tn) = n+3 (dim S3(Tm) = m+3). Let {φ1, . . . , φn+3} and {ψ1, . . . , ψm+3} be
bases of functions with local support of S3(Tn) and S3(Tm) respectively, and consider
the space S3(Tn × Tm) of bicubic spline functions of class C2 given by

S3(Tn × Tm) = span {φ1, . . . , φn+3} ⊗ span {ψ1, . . . , ψm+3}

This space is a Hilbert subspace of H3(R) equipped with the same norm, semi-norms
and inner semi-products of such space, and verifies

S3(Tn × Tm) ⊂ H3(R) ∩ C2(R). (1)

Particulary, let

{B3
0 (x), . . . , B

3
n+2(x)}

({
B3
0 (y), . . . , B

3
m+2(y)

})

be the C2−cubic B-splines basis of S3(Tn) (S3(Tm)), then

{B3
r (x)B3

s (y), r = 0, . . . , n + 2, s = 0, . . . ,m + 2}

is the C2−bicubic B-splines basis of S3(Tn × Tm), then dim S3(Tn × Tm) = (n +
3)(m + 3) and we can define

Bk(x, y) = B3
r (x)B3

s (y), (x, y) ∈ R,

for r = 0, . . . , n + 2, s = 0, . . . ,m + 2, k = (m + 3)r + s + 1. Then 1 ≤ k ≤
(n + 3)(m + 3) and if we denote M = (n + 3)(m + 3), we have that

B1(x, y), . . . , BM (x, y)

is the C2−bicubic B-splines basis of S3(Tn × Tm).

3 Interpolating bicubic splines

Let AN = {(xi , y j ) ∈ Tn × Tm, i = 0, . . . , n, j = 0, . . . ,m}, with N = (n +
1)(m + 1) and suppose that
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sup
p∈R

min
a∈AN

< p − a >2 = O

(
1

N

)
, N −→ +∞. (2)

From (2) we deduce that n −→ +∞ and m −→ +∞ when N −→ +∞.

Let LN
1 be a Lagrangian operator defined from H3(R) into RN given by

LN
1 v = (v(a))a∈AN (3)

and LN
2 : H3(R) −→ R

2n+2m+8 given by.

LN
2 v = (L�v)�=1,...,2n+2m+8, (4)

where

L�v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v

∂ y2
(x�−1, c), � = 1, . . . , n + 1,

∂2v

∂ y2
(x�−n−2, d), � = n + 2, . . . , 2n + 2,

∂2v

∂x2
(a, y�−2n−3), � = 2n + 3, . . . , 2n + m + 3,

∂2v

∂x2
(b, y�−2n−m−4), � = 2n + m + 4, . . . , 2n + 2m + 4,

∂4v

∂x2∂ y2
(xin, y jm), i = 0, 1, j = 0, 1, � = 2n + 2m + 4 + 2i + j + 1,

Let BN = {u�, � = 1, . . . , N } ⊂ R. It is easy to prove the following result.

Theorem 1 There exists a unique SN ∈ S3(Tn × Tm) such that

LN
1 SN = (u�)�=1,...,N ,

LN
2 SN = 0 ∈ R

2n+2m+8

called the interpolating natural C2−bicubic spline associated with AN and BN .

Thus C2-bicubic spline verifies that

SN (x, y) =
M∑
k=1

αk Bk(x, y), (x, y) ∈ R,

where α ≡ (α1, . . . , αM )� ∈ R
M is the solution of the linear system

Aα = b, (5)
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with A =
(
A1

A2

)
and b =

(
b1
b2

)
, where

Ai =
(
LN
i Bk

)
k=1,...,M

, (i = 1, 2) (6)

b1 = (u�)�=1,...,N , (7)

b2 = (0)�=1,...,M−N . (8)

Following the techniques used in [17] it follows the following result.

Theorem 2 Let f ∈ C4(R) and let SN be the interpolating natural C2-bicubic spline
associated with AN and LN

1 f , then there exists a constant C > 0 such that

| f − SN |�≤ Ch4−�, � = 0, 1, 2, 3, N → +∞, (9)

where h = max

{
b − a

n
,
d − c

m

}
. Hence

lim
N→+∞‖ f − SN‖ = 0. (10)

4 Fuzzy numbers

When a spectroscopic line has to be identified in order to specify a functional group
in infrared spectroscopy or to decide on the presence of an element in atomic spec-
troscopy, it is necessary to compare the line position with other lines appearing in
certain library of reference lines (see [5,16] and references therein). As the experi-
mentally obtained line will surely not match exactly any of the tabulated ones, usually
an interval around the reference lines has to be considered in order to decide whether
the experimental line coincides with the reference candidate or not. In such a way that
a value of 1 is assigned to a line that matches the interval around this reference line
and a value of 0 is assigned to lines outside this reference interval. So, only a yes/no
answer would be obtained with this crisp (1/0) procedure, and no difference could be
made with respect to a line that comes close to the borders of the interval compared
with a line that matches exactly the reference line!

With the concept of fuzzy numbers, as we will see in the definitions below, the
coincidence or not of these experimental and reference lines can be described in a
much more convenient way, and the advantages of fuzzy modelling and fuzzy pattern
recognition have demostrated many worthwhile theoretical and practical applications
in Formal and Analytical Chemistry (Fig. 1).

Definition 1 A fuzzy number is a mapping u : R −→ [0, 1] with the following
properties (see [12]).

i) u is an upper semi-continuous function on R.

ii) u(x) = 0 outside some interval [a1, a4] ⊂ R.

iii) There exist real numbers a2 and a3 such that a1 ≤ a2 ≤ a3 ≤ a4 with
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Fig. 1 Examples of gaussian, triangular and trapezoidal fuzzy numbers

a) u(x) is a monotonic increasing function on [a1, a2],
b) u(x) is a monotonic decreasing function on [a3, a4],
c) u(x) = 1, for all x ∈ [a2, a3].

A popular type of fuzzy number is the set of trapezoidal fuzzy numbers, TFN, (see
Fig. 3), that can be defined as a = (a1, a2, a3, a4), and their membership function is
defined by

μ(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

a4 − x

a4 − a3
, a3 ≤ x ≤ a4,

0, otherwise.

If a1 = a2 = a3 = a4 = a then the real number is presented by a. If a1 = a2
and a3 = a4, then a is called a crisp interval. Note that a triangular fuzzy number is
obtained when a2 = a3, (see Fig. 3), in which case triangular fuzzy numbers can be
defined by a = (a1, a2, a3) and their membership function is defined by

μ(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 ≤ x ≤ a2,

a3 − x

a3 − a2
, a2 ≤ x ≤ a3,

0, otherwise.

Definition 2 Let u = (u1, u2, u3, u4) ∈ TFN and 0 < α ≤ 1, then it is called α−cut
of u the set

[u]α = {x ∈ R : u(x) ≥ α}.
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It is defined the 0−cut of u as its support, i.e.,

[u]0 = ∪
0<α≤1

[u]α = [u1, u4]

Remark 1 An equivalent definition of a trapezoidal fuzzy number u = (u1, u2, u3, u4)
is a function u : [0, 1] −→ I given by

u(α) = [u(α), ū(α)],

with
u(α) = u1 + (u2 − u1)α,

ū(α) = u4 + (u3 − u4)α,
(11)

where I is the set of the all real closed intervals. Obviously we have that u(α) = [u]α,

for any 0 ≤ α ≤ 1. ��

For any u, v ∈ TFN, λ ∈ R, the sum u + v and the product λu are defined by

[u + v]α = [u]α + [v]α, [λu]α = λ[u]α,

for all α ∈ [0, 1], λ > 0, taking into account that

λ[u(α), ū(α)] =
{ [λu(α), λū(α)], λ ≥ 0,

[λū(α), λu(α)], λ < 0.

Definition 3 For any u, v ∈ TFN, it is defined the Haussdorf distance between u and
u as the quantity

d(u, u) ≡ Sd(u, u) = sup
α∈(0,1]

max{|u(α) − v(α)|, |ū(α) − v̄(α)|}. (12)

Definition 4 A fuzzy bivariate function defined on the set R ⊂ R
2 is an application

f : R −→ TFN such that f = ( f1, f2, f3, f4), where fi is a real function defined
on R and f (x, y) ∈ TFN, for any (x, y) ∈ R.

5 Fuzzy interpolating bicubic splines

Suppose given two partitions Tn = {a = x0 < x1, . . . , < xn = b} and Tm = {c =
y0 < y1, . . . , < ym = d} of [a, b], [c, d] ⊂ R, respectively, and let S3(Tn × Tm)

be the corresponding C2−bicubic spline space and R = [a, b] × [c, d]. Let N =
(n + 1)(m + 1) and M = (n + 3)(m + 3) and let {B1(x, y), . . . , BM (x, y)} be the
C2−bicubic B-spline basis of S3(Tn × Tm).
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Definition 5 The fuzzy bicubic splines space constructed on the partition Tn × Tm is
the set of fuzzy functions

S3(Tn × Tm;TFN) ≡
{s : R −→ TFN, s =

M∑
�=1

α�B�, α� ∈ TFN, � = 1, . . . , M}.

Now, we consider the following interpolation problem:
GivenU = {u1, . . . , uN } ⊂ TFN, find a fuzzy function s ≡ (s1, s2, s3, s4) ∈ S3(Tn×
Tm;TFN) such that

⎧⎨
⎩
s(xi , y j ) = u�, � = (n + 1) j + i + 1,

i = 0, . . . , n, j = 0, . . . ,m,

LN
2 sk = 0, k = 1, 2, 3, 4,

(13)

Theorem 3 Problem (13) has a unique solution σ ∈ S3(Tn, Tm;TFN) given by

σ (x, y) =
M∑
i=1

αi Bi (x, y), (x, y) ∈ R,

where Λ ≡ (α1, . . . ,αM) ∈ TFN are the solution of the linear systems AΛ = b,

where A =
(
A1

A2

)
is given by (6) and b =

(
b1
b2

)
, with b1 = (u�)�=1,...,N and b2 =

(0)�=1,...,M−N , being 0 ≡ (0, 0, 0, 0) and u� = (u�1, u�2, u�3, u�4), � = 1, . . . , N .

Proof For any k = 1, 2, 3, 4, taking into account Theorem 1, there exists a unique
σk ∈ S3(Tn × Tm) such that

⎧⎨
⎩

σk(xi , y j ) = u�k, � = (n + 1) j + i + 1,
i = 0, . . . , n, j = 0, . . . ,m

LN
2 σk = 0,

(14)

Let σ : R −→ R
4 given by σ = (σ1, σ2, σ3, σ4), then σ ∈ (S3(Tn × Tm))4. Also,

taking into account Theorem 1 for � = 1, . . . , N , there exists a unique L� ∈ S3(Tn ×
Tm) such that

⎧⎨
⎩
L�(ar ) = δ�,r =

{
1, if � = r ,
0, otherwise,

r = 1, . . . , N ,

LN
2 (L�) = 0,

being ar = (xi , y j ), for any i = 0, . . . , n, j = 0, . . . ,m, with r = (n + 1) j + i + 1.
Then

σk(x, y) =
N∑
1

u�k L�(x, y), k = 1, 2, 3, 4. (15)
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From u�1 ≤ u�2 ≤ u�3 ≤ u�4, � = 1, . . . , N and (15) we obtain that

σ1(x, y) ≤ σ2(x, y) ≤ σ3(x, y) ≤ σ4(x, y), (x, y) ∈ R.

Then σ (x, y) ∈ TFN, for any (x, y) ∈ R, and hence σ ∈ S3(Tn, Tm;TFN). ��

6 Convergence result

Let f : R −→ TFN be a fuzzy function

f (x, y) = ( f1(x, y), f2(x, y), f3(x, y), f4(x, y)), for all (x, y) ∈ R,

being fi ∈ C4(R), i = 1, 2, 3, 4. Let σ ∈ S3(Tn × Tm;TFN) the fuzzy bicubic spline
verifying (13) for u� = f (a�), � = 1, . . . , N , and a� = (xi , y j ), i = 0, . . . , n, j =
0, . . . ,m, � = (n + 1) j + i + 1. Let h = max

{
b − a

n
,
d − c

m

}
. From (2), we also

have

h = O(
1

N
), N → +∞ (16)

Theorem 4 Suppose hypothesis (2) holds. Then, for any (x, y) ∈ R

d(σ (x, y), f (x, y)) = O(h4), N → +∞

and thus

lim
N→+∞d(σ (x, y), f (x, y)) = 0.

Proof From Definition 3, we have

d(u, v) = max
i=1,2,3,4

|ui − vi |, (17)

for all u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) ∈ TFN. From Theorem 2 and (2) we
obtain that

| fi (x, y) − σi (x, y)| = O(h4), N → +∞ (18)

for all i = 1, 2, 3, 4 and (x, y) ∈ R. From (17) and (18) we deduce that

d(σ (x, y), f (x, y)| = O(h4), N → +∞,

and thus

lim
N→+∞d(σ (x, y), f (x, y)) = 0,

for any (x, y) ∈ R. ��
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7 Similarity measures of fuzzy numbers

The concept of similarity of fuzzy numbers is fundamental in the field of fuzzy deci-
sion making [9], fuzzy risk and safety analysis [18], pipping risk assesment, batch
crystallizer, combustion processes, food production, fluidized catalytic cracking units
and chemical separation processes in general; see [11,14,16] and references therein.

In this section, we consider some existing similarity measures of fuzzy numbers. If
A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), then the degree of similarity S(A, B)

between the trapezoidal fuzzy numbers A and B is defined by Chen [6] as follows:

SCHEN (A, B) = 1 −
∑4

i=1 | ai − bi |
4

∈ [0, 1]

where | a | is the absolute value of the real number a.
In [13] Lee proposed another similarity measure as follows :

S(A, B) = 1 − ‖ A − B ‖l p
‖ U ‖ × 4− 1

p ,

where U is the universe of discourse (the range of all possible values for an input to a
fuzzy variable or system)

‖ A − B ‖l p=
(

4∑
i=1

|ai − bi |p
) 1

p

.

and ‖ U ‖= max(U ) − min(U ).

Hsieh et al. [8] proposed a similarity measure using the graded mean integration-
representation distance where the degree of similarity S(A, B) between the fuzzy
numbers A and B is calculated as follows:

SHSI EH (A, B) = 1

1 + d(A, B)
,

where d(A, B) =| P(A)− P(B) |, and P(A), P(B) are the graded mean integration
representations of A and B, respectively. If A and B are trapezoidal fuzzy numbers,
with A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), then the graded mean integration
of these fuzzy numbers is defined as:

P(A) = a1 + 2a2 + 2a3 + a4
6

,

P(B) = b1 + 2b2 + 2b3 + b4
6

.

Chen and Chen [7] presented another similarity measure between generalized trape-
zoidal fuzzy numbers. They presented the (simple center of gravity method) denoted
as SCGM to calculate the center of gravity points (x∗

A, y∗
A) and (x∗

B, y∗
B) of the
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generalized trapezoidal fuzzy number A and B respectively. A = (a1, a2, a3, a4),
0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, and B = (b1, b2, b3, b4), 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1.
Then the degree of similarity S(A, B) between the trapezoidal fuzzy numbers A and
B, using the SCGM methodology, is calculated as follows :

SSCGM (A, B) = 1 −
∑4

i=1 | ai − bi |
4

(
1− | x∗

A − x∗
B |)B(SA,SB ) min(y∗

A, y∗
B)

max(y∗
A, y∗

B)
,

where S(A, B) ∈ [0, 1], and

x∗
A = y∗

A(a3 + a2) + (a4 + a1)(1 − y∗
A)

2
,

y∗
A =

⎧⎪⎪⎨
⎪⎪⎩

1

2
, i f a1 = a4,

1

6
(
a3 − a2
a4 − a1

+ 2), i f a1 �= a4,

and

B(SA, SB) =
{
1, i f SA + SB > 0,
0, i f SA + SB = 0,

where SA and SB are the lengths of the bases of trapezoidal fuzzy numbers A and B,
respectively, and defined by:

SA = a4 − a1,
SB = b4 − b1.

8 Simulation results

In this section, different interpolation error and similarity estimations are proposed
in order to analyze the presented fuzzy interpolation method. The definition of these
estimations is

S = 1

Z

Z∑
i=1

S( f (ξi ), σ (ξi )), (19)

where {ξ1, . . . , ξZ } ⊂ R is a set of Z random points in the domain R and S is
the Chen (SCHEN ) index, the Hsieh index (SHSI EH ), the Chen and Chen index
(SSCGM ), defined in Sect. 7, or the Haussdorf distance (Sd ) given in Definition 3.
From Theorem 4, it should be verified that S tends to 1 as N → +∞, for
S = SCHEN , SHSI EH , SSCGM , and S tends to 0 as N → +∞, for S = Sd .

To test our method we consider two examples for two fuzzy functions and for
different partitions of its domains.
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Example 1 f 1 : [0, π ] × [0, π ] −→ TFN,

f 1(x, y) =
(0.5 sin(π

2 − x)2 cos(π
2 − y)2 − 0.2 sin(π

2 − x)2,
0.5 sin(π

2 − x)2 cos(π
2 − y)2 + 0.2 sin(π

2 − x)2 + 0.2,
0.4 sin(π

2 − x)2 cos(π
2 − y)2 + 0.3 sin(π

2 − x)2 + 0.4,
−0.2 sin(π

2 − x)2 cos(π
2 − y)2 + 0.5 sin(π

2 − x)2 + 0.5).

Example 2 f 2 : [0, 4π ] × [0, 4π ] −→ TFN,

f 2(x, y) =
(0.01(x − 2π)2 + 0.4 sin(0.2(x − 2π)2)e−0.1(y−2π)2 − 0.04,

0.01(x − 2π)2 + 0.2 cos(0.1(y − 2π)2)e−0.3(x−2π)2 + 0.5,

0.01(x − 2π)2 + 0.3 sin(0.2(x − 2π)2)e−0.05(y−2π)2 + 1,

0.01(x − 2π)2 + 0.3 cos(0.2(x − 2π)2)e−0.05(y−2π)2 + 1.6).

For the simulations presented in this section, the number of points to compute the
estimation S given by (19) is Z = 500 in all cases.

Figures 2 and 3 show the graph of the fuzzy functions f1 and f2 and its fuzzy
interpolating bicubic splines for n = m = 4 in the first case, and n = m = 6 in the
second case. The error estimations are Sd = 7.8692× 10−2 and Sd = 1.0454× 10−1

respectively.
Tables 1 and 2 illustrate, for Examples 1 and 2, the performance of the fuzzy inter-

polating bicubic spline for different values of the knot numbers n andm, taking n = m
in all cases. The proposed simulations show the influence and relative importance of
the knot number in the effectiveness of the approximation. Specifically, the error esti-
mation Sd decreases to 0 as N = (n + 1) × (m + 1) tends to +∞ and the similarity
index estimations increases to 1 as N → +∞.

9 Conclusions

Fuzzy theory based methods (see for example [4]) can help to solve, among many
others, the following problems of contemporary analytical chemistry:

– handling uncertain and incomplete data sets or identifying blurred spectra in
infrared/ultraviolet spectroscopy or in chromatography,

– modelling data in cases where the assumed model is not exactly valid,
– incorporating and managing, in a rigorous and consistent way, uncertain, incon-
sistent and/or incomplete information in modern automatic and expert analytical
systems.

In this way, by using the fuzzy approach, the error in observations is modelled by
the concept of membership to the set of possible and predicted concentration values
bymeans of an appropriate membership function, without the necessity of introducing
probability based assumptions.
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Fig. 2 Example 1. From top to bottom, graph of the fuzzy function f 1 and its fuzzy interpolating bicubic
spline from a partition of the domain in 4 × 4 equal squares (n = m = 4). The error estimation is
Sd = 7.8692 × 10−2

Also, reviewing references concerning the interpolation and approximation of fuzzy
data, there is a significant lack of development of an interpolation method for a 3D
fuzzy data set or a fuzzy bivariate function.

In this paper, we present a fuzzy interpolation method of 3D fuzzy data or fuzzy
bivariate functions. We study the solution of this problem and we establish a conver-
gence result about the presented method.

Then, we develop a similar methodology as in [19] to define and use error and
similarity indices suitable for the 3D interpolation problem of fuzzy data by means of
fuzzy bivariate spline functions.

Two different examples with two-variables fuzzy functions have been presented in
order to analyze the behavior of these indices.
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Fig. 3 Example 2. From top to bottom, graph of the fuzzy function f 2 and its fuzzy interpolating bicubic
spline from a partition of the domain in 6 × 6 equal squares (n = m = 6). The error estimation is
Sd = 1.0454 × 10−1

Table 1 Example 1. Error and similarity indices estimates for different knot numbers

Values of n = m Sd SCHEN SHSI EH SSCGM

4 7.8692 × 10−2 0.949328 0.955893 0.955190

6 2.7178 × 10−2 0.981314 0.982188 0.982048

8 9.8117 × 10−3 0.992527 0.993364 0.993119

10 5.4005 × 10−3 0.995724 0.996427 0.996109

12 3.0842 × 10−3 0.997768 0.997906 0.997895

20 6.9539 × 10−4 0.999533 0.999617 0.999539

Table 2 Example 2. Error and similarity indices estimates for different knot numbers

Values of n = m Sd SCHEN SHSI EH SSCGM

4 1.5776 × 10−1 0.926303 0.945866 0.942131

6 1.0454 × 10−1 0.950933 0.956212 0.954863

8 5.4174 × 10−2 0.979548 0.979488 0.981600

10 2.5779 × 10−2 0.988891 0.987013 0.987599

12 1.6717 × 10−2 0.989741 0.991822 0.992621

20 2.3462 × 10−3 0.998460 0.998929 0.998613
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Analyzing the results presented in Sect. 8 it can be concluded that the proposed
error and similarity indices estimations confirm the effectiveness of this method and
the convenience of using it in all kind of chemical and other similar engineering
situations.
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