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Abstract: The present study investigates the gradual replacement of Ca2+ with Mg2+ ions in brushite
(CaHPO4·2H2O). To date, this approach has not been systematically explored and may prove benefi-
cial for the production of Ca1−xMgxHPO4·nH2O materials with tailored properties which are suitable
for environmental and medical applications. For their production, solutions of sodium dihydrogen
orthophosphate dehydrate, NaH2PO4·2H2O, calcium nitrate tetrahydrate, Ca(NO3)2·4H2O, magne-
sium nitrate hexahydrate, Mg(NO3)2·6H2O and ammonium hydroxide solution, NH4OH, were used.
At low Mg/Ca molar ratios (up to 0.25) in the starting solution, partial replacement of Ca with Mg
takes place (Mg doping) but no struvite is produced as discrete phase. When the Mg/Ca molar ratio
increases gradually to 1.5, in addition to Mg-doped brushite, struvite, NH4MgPO4·6H2O, precipitates.
The microstructure of the materials produced for different degrees of Ca replacement with Mg has
been analyzed in depth with the use of powdered XRD (X-ray diffraction), XPS (X-ray photoelectron
spectroscopy), thermogravimetric (TG) analysis and SEM (scanning electron microscopy). The results
of this study prove that the Mg/Ca ratio in the starting solution can be monitored in such a way that
materials with tailored composition are obtained.

Keywords: brushite; struvite; biomaterials; XPS; crystal growth

1. Introduction

Calcium phosphates (CaPs) are useful in a variety of medical, environmental, and
engineering applications. Since their mineralogical structure and biochemical properties
are similar to the mineral phases present in bone tissues, they can substitute bone in medical
applications [1,2]. Due to their low toxicity, high bioactivity and excellent biocompatibility,
CaP-based biomaterials, biocements and bioceramics exhibit high potential for applications
in the fields of medicine, advanced materials and technology [3,4]. They may be used
in various forms as self-supported scaffolds, granules with varying porosity, composite
materials, injectable bone cements and coatings on dental or hip implants [5,6]. In addition
to the medical and pharmaceutical applications, CaPs have been used for a very long
period for the production of various types of commercial fertilizers [7] and can be also
utilized with the synergistic action of other additives for the production of construction
materials or chemically bonded ceramics [8–10].
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Brushite (dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) is one of the most
known CaPs [11] which is stable in a weakly acidic environment (pH 4.0–6.5) and low
temperature (less than 80 ◦C) [12,13]. It can be produced under specific temperature and
pH range and is usually metastable at physiological conditions, pH ~ 7.4, thus it can be
resorbed within relatively short periods and form bone material [14–17].

Brushite cements exhibit faster setting times and higher biocompatibility, bioresorbabil-
ity and osteoconductivity under physiological conditions compared to apatite cements [18].
Incorporation of bioactive ions can result in the production of biomaterials with superior
mechanical properties. It is known that several dopant ions can preferably substitute Ca2+

ions on certain atomic positions depending on their ionic radii for the relevant coordina-
tion with oxygen. Mg2+ has a smaller ionic radius compared to Ca2+ (0.720 and 1.00 Å,
respectively), thus its incorporation in β-tricalcium phosphate, Ca3(PO4)2 (β-TCP) results
in a decrease of the lattice parameters a and c [19–22]. Furthermore, the Mg-stabilized
β-TCPs exhibit higher thermal stability up to 1400 ◦C, thus the sintering temperature range
is broadened and its transformation into the undesirable α-TCP is avoided [23–25].

In addition, the incorporation of Mg ions in biomedical materials enhances cell growth
and proliferation, while it contributes to sustainable bone formation [26,27]. More specifi-
cally, Mg2+ ions promote the osteogenic differentiation of bone marrow mesenchymal stem
cells (MSCs) [28] and the osteogenic bioactivity of recombinant human bone morphogenetic
protein-2 (rhBMP-2) [29]. On the other hand, modification of implantable scaffolds with
Mg and Zn results in enhanced biocompatibility and improves bone regeneration [30]. In
earlier studies it has been shown that the co-substitution of Sr2+ and Mg2+ in the β-TCP
structure reduces significantly the lattice a- and c-axis parameters, while the size effect of
Mg2+ is more noticeable compared to Sr2+ [31].

The field of biomaterials in which CaPs play a major role has achieved a major break-
through in recent years and is going to advance further in the near future. Both inorganic
and polymeric biomaterials are used for the fabrication of biomimetic scaffolds for bone, pe-
riodontal tissue regeneration and skeletal muscle engineering [32]. Furthermore, additional
research is required so that the produced bioceramics based on TCP, hydroxyapatite (HA),
and their composites acquire important properties such as antibacterial, anti-inflammatory
and cellular differentiation. More specifically, the development of biomaterials with an-
tibacterial properties is very urgent due to the exponential growth of antibiotic resistant
microorganisms and their enormous impact on global public health [33]. New ceramic-
polymer composites may be produced by embedding ceramic particles into the polymer
matrix and regulating their properties by monitoring the particle size of CaPs and their
distribution in the polymer matrix [34]. So, novel and bio-inspired materials need to be
designed in the near future which will mimic tissues at micro and nanoscale [35].

The present research study aims to investigate in sufficient depth the crystal mor-
phology, the chemical composition and the mineralogy of the materials produced when
different Mg/Ca molar ratios are used in the starting solution. These aspects will prove
beneficial during the future synthesis of (bio)materials with tailored properties and specific
functions.

2. Experimental Methodology
2.1. Materials

Sodium dihydrogen orthophosphate dehydrate, NaH2PO4·2H2O, was purchased
from Techno Pharmchem, India, while calcium nitrate tetrahydrate, Ca(NO3)2·4H2O,
magnesium nitrate hexahydrate, Mg(NO3)2·6H2O and ammonium hydroxide solution,
NH4OH, from LOBA Chemie, India. Distilled water (0.055 µS/cm) was prepared using
a water purification system (PURELAB Option-Q, ELGA, High Wycombe, UK). Each
component was weighed using a digital analytical balance (EX324N, OHAUS, Parsippany,
NJ, USA), while stirring was performed with the use of a magnetic stirrer (ISOTEMP, Fisher
Scientific, Shanghai, China). Parsippany
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2.2. Synthesis of Ca1−xMgxHPO4·nH2O

The synthesis of Ca1−xMgxHPO4·nH2O compounds was carried out at room temper-
ature based on the Equation (1), using the following solutions, namely Na2HPO4·2H2O,
Ca(NO3)2·4H2O and Mg(NO3)2·6H2O 0.5 mol/L. The molar proportions used in each case
for the synthesis of Ca1−xMgxHPO4·nH2O compounds with different composition are
shown in Table 1.

xMg(NO3)2·6H2O + (1− x)Ca(NO3)2 + Na2HPO4 + NH4OH → (Ca1−xMgx)HPO4 ·2H2O + 2NaNO3 (1)

Table 1. Molar proportions of NaH2PO4·2H2O, Ca(NO3)2·4H2O and Mg(NO3)2·6H2O as well as Mg/Ca molar ratios used
for the synthesis of Ca1−xMgx·HPO4·nH2O compounds.

Product ID NaH2PO4·2H2O Ca(NO3)2·4H2O Mg(NO3)2·6H2O Mg/Ca Molar Ratio

BM0 1 1 0 0
BM2 1 0.8 0.2 0.25
BM4 1 0.6 0.4 0.67
BM5 1 0.5 0.5 1.0
BM6 1 0.4 0.6 1.5

BM10 1 0 1 -

First, pure brushite, MB0, was produced by dropwise addition of 100 mL Ca(NO3)2·4H2O
solution (flow rate ~2 mL/min), using a glass funnel with a glass stopcock, to the
Na2HPO4·2H2O solution under continuous stirring (stirring speed 450 rpm) until a Ca/P
molar ratio of 1.0 was obtained. The new solution was stirred at room temperature for 1 h
to enable full homogeneity. The total stirring period prior to filtering was almost two hours.
The pH of the final solution was adjusted to slightly acidic values, between 6 and 6.5, using
ammonium hydroxide solution (~15 mol/L) in order to enable the production of a white
precipitate, which was then vacuum filtered using a Buchner funnel and a qualitative filter
paper (45 µm, ∅ 12 cm, Double Rings, China). The filter cake was washed three times with
de-ionized water and three more times with ethanol to prevent agglomeration [36]. Then,
it was placed on a watch glass and dried overnight at 40 ◦C in an oven (ED53/E2, Binder,
Tuttlingen, Germany).

MB2, MB4, MB5 and MB6 compounds were prepared by mixing first the Ca(NO3)2·4H2O
and Mg(NO3)2·6H2O solutions using the molar ratios shown in Table 1. Then, 100 mL
of the obtained solution was added dropwise to 100 mL of Na2HPO4·2H2O solution
as previously described. Finally, BM10 was obtained after mixing NaH2PO4·2H2O and
Mg(NO3)2·6H2O, at Mg/P molar ratio 1:1, with the use of the same procedure. Figure 1
presents the experimental procedure.

2.3. Characterization Techniques

The mineralogical analysis of the products was carried out qualitatively using an
XRD diffractometer-6000 (Shimadzu, Kyoto, Japan) with a cobalt tube and a scanning
range 10◦ to 60◦ 2-theta at a scan rate of 2◦/min. Rietveld refinement [37] of the produced
powders was carried out using the software MATCH! (v. 3.11, Crystal Impact, Bonn,
Germany). A scanning electron microscope (Inspect F50, FEI Company, Eindhoven, The
Netherlands) was used to identify the products morphology. The microscope was equipped
with field emission gun electron (FEG) with 1.2 nm resolution and energy dispersive X-
ray spectrometer (EDS) with resolution at MnK of 133 eV, to determine the elemental
composition of the specimens’ surface. The surface chemistry and the elemental analysis
of the obtained products were determined by means of X-ray photoelectron spectroscopy
using an XPS system (Thermo K Alpha spectrometer, ThermoFisher Scientific, Waltham,
MA, USA). The mass loss of each product (~100 mg) during heating between 40 ◦C and
600 ◦C, using a heating rate of 5 ◦C·min−1 under a helium atmosphere, was determined
using a thermogravimetric (TG) analyzer (Netzsch, Selb, Germany, TG 209 F1 Libra).
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3. Results and Discussion
3.1. Mineralogical and Microstructural Analysis

The XRD patterns of all produced materials, as well as the patterns of standard
brushite and struvite, are shown in Figure 2. The mineralogy of BM0 confirms that this
precipitate produced after mixing NaH2PO4·2H2O and Ca(NO3)2·4H2O solutions with a
Ca:P molar ratio 1:1 (Table 1) is pure brushite, while its crystals grow after nucleation in
proportion to the three major planes, namely (020), (121) and (141). All peaks of the BM0
pattern denote the brushite’s monoclinic structure [13,38], while the peak at 11.7◦ 2-Theta
indicates that the crystal growth takes place primarily along the (020) crystallographic
plane [27].

The pattern of BM2 corresponding to the material produced for low Mg/Ca molar
ratio (0.25) is similar to the pattern of BM0 and indicates the presence of brushite in which
partial replacement of Ca with Mg (Mg doping) takes place. Even though the main brushite
peaks are present, their intensity, especially for those associated with the planes (020), (121),
and (141), has been affected.
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Table 1).

When the Mg/Ca molar ratio in the starting solution increased gradually from 0.25
to 1.0 and eventually to 1.5 (patterns BM4 to BM6) the degree of Ca replacement with Mg
increased while in parallel struvite started to precipitate. Thus, the respective XRD patterns
show that at higher Mg/Ca molar ratios the intensity of struvite peaks increases. Finally,
the pattern of BM10 of the precipitate formed when a Mg/P ratio of 1.0 was used confirms
the presence of pure struvite, NH4MgPO4·6H2O, with orthorhombic crystal structure as
compared with the standard struvite pattern (JCPDS file No.15–0762) [39,40]. The XRD
results of the present study match almost perfectly the XRD patterns of Mg doped brushite,
for doping percentages varying between 5% and 50%, as shown in a very recent study [26].

Struvite is formed through the following equations:

Mg2+ + NH3 + HPO2−
4 + 6H2O→ MgNH4PO4·6H2O(↓) (2)

Mg2+ + NH+
4 + PO3−

4 + 6H2O→ MgNH4PO4·6H2O(↓) (3)

It is known that the consumption of NH3 and thus the formation (precipitation)
of struvite lowers the solution pH and thus equilibrium is shifted towards increased
concentrations of NH+

4 ions. Also, the presence of other ions as well as changes in
temperature, which is not the case in the present study, can affect the ion speciation
characteristics [41,42].

Rietveld refined unit cell parameters for brushite- and struvite-rich materials are
presented in Tables 2 and 3. It is seen that for the materials BM0–BM5 (Table 2), produced
with the use of Mg/Ca molar ratio in the starting solution up to 1.0 and in which brushite
was the dominant phase formed, unit cell parameters are almost constant and exhibited
a slight increasing trend. On the other hand, for the materials BM6 and BM10, in which
struvite was the dominant phase, unit cell parameters exhibited were also constant and
exhibited a slight decreasing trend. The relatively minor cell shrinkage noticed may be
explained by the fact that Mg2+ ions have a smaller ionic radius compared to Ca2+ ions.
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The quality of the Rietveld refinement was acceptable for all materials studied (RBrag < 8%,
χ2 < 2). These data are similar to the data obtained in earlier recent studies focusing on the
production of brushite or struvite [26,43,44].

Table 2. Refined unit cell parameters for brushite from XRD data using the Rietveld approach *.

Product
ID

Brushite
wt% a (Å) b (Å) c (Å) (β◦) V (Å3)

BM0 100.0 5.8145 15.1693 6.2399 116.392 492.83
BM2 100.0 5.8165 15.1904 6.2465 116.382 492.78
BM4 100.0 5.8191 15.1908 6.2518 116.403 492.51
BM5 97.1 5.8160 15.1764 6.2482 116.429 492.01
BM6 20.9 5.8153 15.1677 6.2470 116.442

BM10 0.0 - - - -
a, b, c, β◦: unit cell parameters (monoclinic crystal system), V: unit cell volume, * Standard deviation varied
between 0.001 and 0.005 for all samples.

Table 3. Refined unit cell parameters for struvite from XRD data using the Rietveld approach *.

Product
ID

Struvite
wt% a (Å) b (Å) c (Å) V (Å3)

BM0 0.0 - - - -
BM2 0.0 - - - -
BM4 0.0 - - - -
BM5 2.9 6.9560 6.1378 11.2041 -
BM6 79.1 6.9589 6.1364 11.2034 478.12
BM10 100.0 6.9501 6.1359 11.2014 477.54

a, b, c: unit cell parameters (orthorhombic crystal system), V: unit cell volume, * Standard deviation varied
between 0.001 and 0.005 for all samples.

In Figure 3, SEM images of the various Ca1−xMgxHPO4·nH2O compounds, obtained
for different Mg/Ca molar ratios present in solution, are shown. Figure 3a–c shows the
morphology of pure brushite (MB0), as well as of biphasic compounds (MB5) and pure
struvite (BM10). More specifically, Figure 3a (BM0 with Ca/P molar ratio 1.0) indicates the
precipitation of plate-like brushite crystals. It is known that the morphology of brushite
is characterized by a plate-like or needle like structure, depending on the solution pH
used [11,12]. The plate-like crystals are thin (~400 nm), while their width and elongation
are approximately 10 µm and 20 µm, respectively, values similar to those reported in
other studies [45–47]. When the Mg/Ca molar ratio increases and thus a higher degree
of Ca replacement with Mg as well as struvite precipitation (BM5) takes place, brushite
crystals with smaller length, ranging between ~2 µm and ~10 µm in the direction (020) are
formed (Figure 3b), as is also indicated in earlier studies [11]. Finally, Figure 3c shows that
MB10 is composed of orthorhombic struvite crystals with a length of ~20 µm [40,48]. It is
underlined that the SEM analysis confirms the XRD results as shown in Figure 2.

As shown in Figure 4a, in the brushite crystals (BM0) the weight percentages of O, Ca
and P were 67.42, 17.83 and 14.74 wt% which are close to the theoretical ones, namely 55.80,
23.25 and 18.20 wt% respectively. These weight percentages denote a Ca/P molar ratio of
1.0, equal to the theoretical ratio in brushite and the one present in the starting solution
(Table 1). Figure 4b shows that in the brushite plate-like crystals in BM5, which were
formed using a Mg/P molar ratio of 0.5 in the starting solution, the weight percentages of
O, Ca and P were 62.44, 18.04 and 16.21 wt% respectively, while those of Mg and Na were
2.39 and 0.91 wt% respectively. These percentages prove that the plate-like brushite crystals
have a smaller Mg/P molar ratio, 0.20, indicating that only a percentage of the Mg present
in the solution replaced Ca in brushite, while the rest was precipitated as struvite as also
shown in the respective XRD pattern in Figure 2 and reported in earlier studies [49–51].
As a result of Mg doping, the Ca/P molar ratio in BM5 decreased from 1.0 in BM0 to 0.86.
It is also mentioned that the presence of Na in BM5 is probably due to the precipitation
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of Na2(CO3)2 or due to partial incorporation of Na. The role of Na incorporation into
the lattice of the produced materials is very important since it increases their thermal
stability and enables their use as bioceramics in medical applications [24,52]. However,
the elucidation of Na incorporation and its effect on the properties of the (bio)materials
needs to be further investigated. Finally, as shown in Figure 4c, the weight percentages of
P and Mg in BM10 were 18.51 and 11.34 wt% respectively, indicating a Mg/P molar ratio in
the produced material of 0.83 which is close to the theoretical value of 1.0 present in pure
struvite. The results of EDS analysis for brushite- and struvite-rich phases, in term of the
main molar ratios, are quite similar to those indicated in earlier recent studies [53–57].
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3.2. Elemental and Chemical Composition of Ca1−xMgx·HPO4·nH2O Compounds

XPS analysis was carried out to evaluate the effect of the Mg/Ca ratio present in the
starting solution on the surface chemistry and chemical state of the elements P, Ca, and Mg
in the synthesized Ca1−xMgxHPO4·nH2O compounds (Figure 5); as mentioned earlier this
ratio affects the degree of replacement of Ca with Mg in brushite as well as the precipitation
of pure struvite (when higher ratios are used). Peaks of Mg1s and Mg auger are clearly
shown in the XPS spectra of the products obtained when higher Mg/Ca molar ratios are
used. Thus, as shown in the BM4 to BM10 spectra, when this ratio increases gradually
the intensity of the Mg1s peaks also increases, while the intensity of Ca2s and Ca2p peaks
decreases almost proportionally. On the other hand, almost no change is noticed in the
intensity of the P2s peaks. These observations confirm that the intensity of P, Ca, and Mg
peaks depends on the degree of Ca replacement with Mg as well as on the amount of the
precipitated struvite (for higher Mg/Ca ratios).
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Figure 5. XPS spectra of Ca1−xMgx·HPO4·nH2O compounds.

The effect of Mg/Ca ratio on the binding energies of Ca2s, P2s and Mgs1 peaks is
shown in Figure 6a–c, respectively. Thus, when the Mg/Ca ratio in the starting solution
is kept low (0.25) the partial replacement of Ca with Mg (BM2 compound) resulted in a
slight increase of the binding energies of P2s and Ca2s peaks, from 190 eV to 194 eV and
from 438 eV to 442 eV, respectively. When the Mg/Ca ratio further increased to 0.67 (BM4
compound) and eventually to 1.5 (BM6 compound) a noticeable increase in the intensity
of Mg1s is shown. As mentioned earlier, the gradual increase of this ratio results in an
increase of the rate of replacement of Ca with Mg as well as in the precipitation of pure
struvite. As the XRD pattern confirms (Figure 2), BM4 is the first compound formed that
contains struvite-like crystals. BM10 which is pure struvite is characterized by Mg1s and
Mg auger peaks of the highest intensity.

The XPS results confirm that at low Mg/Ca ratios in the starting solution Ca is partially
replaced by Mg and alters the crystal structure of the Ca1−xMgxHPO4·nH2O compounds
by increasing the binding energies of Ca2s and P2s peaks [58]. It is obvious that as the
Mg concentration in the starting solution increases and the respective one of Ca decreases,
supersaturation decreases with respect to brushite and increases with respect to struvite,
thus mixed phases precipitate favoring eventually the formation of pure struvite when no
Ca is present in the system (BM10 compound).
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3.3. Thermo-Gravimetric Analysis (TGA)

Figure 7 shows the results of the TGA analysis for the compounds BM0 to BM10.
Brushite is classified as a water-bearing phosphate [47] and its crystal structure contains
compact sheets consisting of parallel chains in which Ca ions are coordinated by six phos-
phate ions and two oxygen atoms belonging to the water molecules [59]. Brushite contains
two water molecules in its lattice and adsorbed water molecules on its surface, as indicated
by the presence of two sharp peaks of mass loss during heating between 80–220 ◦C [60,61].
Part of the chemically-bound water is released during the transformation of brushite to
monetite, CaHPO4, at ~220 ◦C [62], and later to calcium pyrophosphate, Ca2P2O7, at
~400 ◦C [8]. Pyrophospates are decomposed at higher temperatures of 750–800 ◦C [63].
Heating of pure brushite (BM0) to 600 ◦C results in a mass loss of approximately 25 wt%,
while the theoretical mass loss for the dehydration of brushite is 20.93 wt% [64]. It is thus
seen that, when low to average Mg/Ca ratios are present in the starting solution and partial
replacement of Ca with Mg takes place, while the formation of struvite is limited (BM2–
BM5 compounds), the mass loss during heating is very similar to the value determined for
brushite.
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Dehydration of brushite over the temperature range 110–215 ◦C takes place according
to Equation (4) and normally results in a weight loss of about 19 wt%, while the formation
of calcium pyrophosphate is accomplished by Equation (5).

CaHPO4·2H2O → CaHPO4 + 2H2O (4)

2CaHPO4 → Ca2P2O7 + H2O (5)

The mass loss determined for pure struvite (BM10) is higher and reaches 38 wt%,
which is lower than the theoretical value of ~52% for the complete de-volatilization of
struvite and the formation of Mg-pyrophosphate (Mg2P2O7) [65–67]. The mass loss of
struvite is due to the loss of moisture, the release of crystallization water and ammonia and
the percentage recorded in this study is similar to the percentage indicated in an earlier
study for the decomposition of dittmarite, Mg(NH4)(PO4)·H2O [41]. The decomposition of
struvite takes place according to the following Equation (6):

2MgNH4PO4·6H2O (s)→ Mg2P2O7(↓) + 2NH3(↑) + 13H2O (↑) (6)

Figure 8 shows the rate of mass loss as a function of heating temperature for
Ca1−xMgxHPO4·nH2O compounds. More specifically, Figure 8a–c shows the dehydra-
tion peaks corresponding to the two water molecules of pure brushite (BM0), as well as
of the compounds produced with the use of Mg/Ca ratios 0.25 and 1.0 (BM2 and BM5
respectively), which are characterized by partial replacement of Ca with Mg as well as the
limited production of struvite. It is seen that when the Mg/Ca ratio in the starting solution
increases to 1.0 (BM5, Figure 8c), one primary zone of mass loss at approximately 180 ◦C is
shown. On the other hand, Figure 8d shows the loss of structural water of struvite (BM10)
for which the overall mass loss at 500 ◦C was approximately 38%.
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3.4. Phase Evolution during the Precipitation of Ca1−xMgxHPO4·nH2O Compounds

The results of this study demonstrated that when the Mg/Ca ratio in the starting
solution is up to 0.25, Mg replaces Ca in the brushite lattice (MB2) and the original shape
of plate-like brushite crystals (BM0) is preserved [68,69]. Besides, no struvite is formed
as deduced by the use of analytical techniques. The main difference noticed is the de-
crease of the brushite crystal size, because magnesium, despite the fact that it does not
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seem to noticeably affect process kinetics, inhibits crystal growth, as mentioned in earlier
studies [70,71].

When the Mg/Ca ratio increases to 0.67 and eventually to 1.0 (BM4–MB5) apart
from Mg-doped brushite, struvite, NH4MgPO4·6H2O, with orthorhombic crystals starts to
precipitate [41,51,72]. At higher Mg/Ca ratios (1.5) due to the decrease of saturation with
respect to brushite and the increase of saturation with respect to struvite, brushite crystals
gradually disappear and struvite crystals with size of approximately 20 µm appear (BM6).
When no Ca is present in the starting solution, pure struvite precipitates (BM10). These
data are summarized in the following Table 4.

Table 4. Phase evolution, crystal size and structure as function of Mg/Ca molar ratio in solution.

Mg/Ca Ratio Crystal
Structure

Crystal
Size (µm)

Compounds
Formed

≤0.25 Plate-like ~10 Brushite

0.25 < x ≤ 1.5 Plate-like
orthorhombic ~2 Brushite + Struvite

>1.5 Orthorhombic ~20 Struvite

4. Conclusions

In this study, the evolution of the degree of replacement of Ca with Mg in brushite, for
the production of Ca1−xMgxHPO4·nH2O materials was investigated and elucidated with
the use of XRD, TG, SEM-EDS and XPS analysis.

It has been shown that when the Mg/Ca molar ratio is low (up to 0.40) in the starting
solution, partial replacement of Ca with Mg takes place which does not practically affect
the structure of the precipitated brushite. When the Mg/Ca molar ratio gradually increases
to 1.5 and the solution superstation with respect to Mg increases, in addition to Mg-doped
brushite, orthorhombic struvite, NH4MgPO4·6H2O, precipitates.

The results of this study provide useful insights for the future synthesis of biomaterials
with specific composition and tailored properties, by controlling the Mg/Ca ratio in the
starting solution. However, additional studies need to be carried out in order to elucidate
several aspects related to the performance of the produced biomaterials. Factors includ-
ing biological and mechanical performance as well as physicochemical and antibacterial
properties need to be carefully investigated. Also, the effect of doping with additional
ions needs to be in depth investigated since specific ions may exhibit either beneficial or
detrimental effects on the final properties of the produced biomaterials.
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