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LSTM neural network techniques-
based analytical predictive models
for wind energy and mechanical power

Aladdin Masri and Muhannad Al-Jabi

Abstract
Nowadays, the importance of renewable energy is rapidly increasing. It is considered as an alternative clean source of
energy due to environmental reasons. Therefore, this research presents a data analysis model to predict the generated
electrical power based on wind energy and the long short-term memory (LSTM) model. The work focused on the
Spring and Autumn seasons where wind speed has high variation and the data was collected every 15 min in a wide, open
space area located in southeast Palestine. To investigate and validate the correctness and robustness of the work, three
different scenarios were performed for each season to predict wind speed and direction, and mechanical power. Also,
different performance metrics were applied. The results were very promising with an average error of less than 3% and
an R-Squared value of 0.95. Since the price of electricity in Palestine is relatively high, the results showed also the possi-
bility to generate electricity with lowered price of about 40% and a reasonable payback period of 11 years. The work
confirms that wind energy is cost-effective and a good alternative to reducing global warming.
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Introduction

Due to the rapidly increasing demand for electrical
energy, people are migrating to use cheap and clean
energy sources to minimize pollution and climate
change. Sun, water, and wind are cheap, clean, and
enduring sources for generating electrical energy.
Moreover, renewable energy has a vital role in eco-
nomic growth to handle this increasing demand for
energy, as well as the shortage in energy sources. The
wind is considered one of the most promising renew-
able energy sources because wind turbines are directly
affected by the natural environment such as landform
and wind conditions, unlike other energy sources like
gas, steam, and hydraulic power.1 Consequently, the
wind turbine generator should be running in variable
speed variable frequency mode to achieve optimum
wind energy. Such that, maintaining the tip speed ratio

to the value that maximizes aerodynamic efficiency,
permits the variation in sympathy with wind speed.2

Thereafter, modern technologies are currently used
in wind energy, such as power electronics converters
and control systems. This makes the simulation tools
highly needed to evaluate the design performance of
control systems.3,4 Wind turbine energy generation
relies on the wind to keep it working. However, due to
the variations in wind speed and direction, the amount
of energy produced may vary from one moment to
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another. But in fact, it is expected to be delivered and
consumed on a real-time basis. Therefore, analysis and
prediction of generated energy have high importance to
assist the management team who manages the wind
forms to make correct decisions about the generated
power, and its consumption, and prepare the storage
capacity in smart grids.5

Therefore, there was an increasing demand for devel-
oping artificial neural networks and machine learning-
based approaches for wind speed prediction which in
turn, through modeling, generates predictive models
for wind energy and mechanical power.6 Actually, the
neural network LSTM is designed to solve the vanish-
ing gradient problem that occurs when recurrent neural
networks (RNN) learns sequences with long-term
dependence.7 And according to Gangwar et al.,8 LSTM
has better and enhanced utilization for wind speed
forecasting.

In this research, our aim is to perform prior data
analysis for a better understanding of wind speed, direc-
tion, and mechanical power. The contribution of this
work is to design and develop an efficient deep learning
model for long short-term time-series prediction based
on the wind data for 48 h. In addition, the work focuses
on the Spring and Autumn seasons due to the wind
speed variation during these two seasons, while other
studies used LSTM to perform wind forecast for few
hours only.9

The other main goal of this research is to engage
wind energy with the existing energy sources, especially
in developing countries that have isolated urban loca-
tions due to geographical, economical, or political con-
straints, Palestine for instance. Note that, the annual
average wind velocity at different places in Palestine is
3m/s which makes the utilization of wind energy con-
verters surely unfeasible in such places. In other places,
it is up to 5.5m/s (Al-Mazra’a AlSharqiyah/Ramallah
is an example) while in the selected place for this
research (Shaab al Butum/Hebron) it was about
6.94m/s. Therefore, this value is more feasible to be
used to operate a wind turbine in a cost-effective
manner.

In section II we present a literature review, in section
III we present the methodology, the system design is
presented in section IV, in section V experiments and
results are discussed and section VI contains the
conclusion.

Literature review

In literature, renewable energy attracted many research-
ers. For instance, modeling and simulation of wind
energy got special interest from researchers due to its
importance and since it has many parameters to be
optimized by research. Therefore, different simulation

approaches have been followed, such that some
researchers followed existing modeling and simulation
approaches while others created new modeling and
simulation tools.

According to Wu et al.,10 LSTM is more effective
than the conventional RNN because it is able to learn
the dependencies between the complex system of time
series. In Iov et al.,3 a toolbox was developed for wind
energy applications to simulate and optimize the design
of wind-based generators. In Liang et al.1 and Yuvaraja
and Ramya,11 the authors focused on the modeling and
simulation of the generator. Such that, the authors pre-
sented a new method that combines the mechanical part
and electrical parts to model the generator. In Tan and
Islam,2 a prototype version of the control strategy of a
20-kW permanent management synchronous generator
(PMSG) was proposed for maximum power tracking.
as well as the results produced by previous strategies
were compared with the results obtained from this
prototype.

In Singh et al.,12 the development of generator and
gearbox models was presented. As well as coupling
these models to different programs of the national
renewable energy laboratory. In Tapia et al.,13 the
results for the simulation of a grid-connected wind-dri-
ven doubly fed induction machine were presented with
some real machine performance results. Such that, the
operating conditions above and below the synchronous
speed were considered.

In Gagnon et al.,4 the authors developed a model to
simulate electrometric transient in power systems. And
they presented the real-time simulation and modeling of
a doubly-fed wind-driven induction generator in large
power systems. In Prajapati et al.,14 a hybrid energy sys-
tem was proposed which combines both wind-based
generators and solar panels. Moreover, a control tech-
nique was proposed to track the operating point at
which the PV system and the wind-based generators
produce the maximum power.

In Fernández et al.,15 two equivalent models for
wind farms with fixed speed were proposed through
aggregating wind turbines into an equivalent wind tur-
bine. One of the models was developed for aggregated
wind turbines with similar winds, and the other was for
aggregated wind turbines under any incoming wind.
Manyonge et al.16 attempted to address general objec-
tives of wind turbine modeling through the examination
of power coefficient parameters. In addition, Bianchi
et al.17 described in detail the control of variable speed
wind turbines, both variable-pitch and fixed, using gain
scheduling techniques. Sitharthan et al.18 discussed
some major possibilities in India for exploration of
wind power employment in electricity generation. Zhou
et al.19 investigated the management of a merchant
wind energy farm co-located with a grid-level storage
facility and connected to a market through a
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transmission line. Tazay et al.20 provided detailed
design, control strategy, and performance evaluation of
a grid-connected large-scale PV/wind hybrid power sys-
tem in the Gabel El-Zeit region located along the coast
of the Red Sea, Egypt.

Actually, due to the uncertainty of wind speed, the
wind turbine output current is a major challenge for
any prediction model. Based on that, many researchers
have proposed models to predict the output current.
Marugán et al.21 presented a review of artificial neural
networks used in wind energy systems, identifying the
most employed methods for different applications.
Maldonado-Correa et al.22 presented a literature review
on the predictive models of wind energy, focusing to
create the baseline for the development of a short-term
wind energy prediction model that employs artificial
intelligence tools to be applied in the Villonaco Wind
Power Plant. Jaseena and Kovoor23 proposed wind
speed forecasting framework that combines the features
of various data decomposition techniques and
Bidirectional Long Short-Term Memory (BiDLSTM)
networks. Vaitheeswaran and Ventrapragada24 used an
LSTM neural network model to predict and validate
wind power using time series measurements of online
available wind power measurements. Zhou et al.25 pro-
posed a K-Means-long short-term memory (K-Means-
LSTM) network model for wind power spot prediction,
and a nonparametric kernel density estimation (KDE)
model with bandwidth optimization for wind power
probabilistic interval prediction.

Shahid et al.26 proposed, a genetic long short-term
memory (GLSTM) framework comprising long short-
term memory and a genetic algorithm (GA) to predict
short-term wind power. Adedeji et al.27 investigated the
effect of clustering algorithm on the performance of a
standalone Adaptive neuro-fuzzy inference system
(ANFIS) and ANFIS optimized with particle swarm
optimization (PSO) technique using a manufactured
wind turbine power output data of a potential site in
the Eastern Cape, South Africa. Shamshirband et al.28

evaluated the performance of different types of Deep
Learning (DL) algorithms applied in the field of solar
and wind energy resources. Vargas et al.29 presented an
overview of the analysis methodologies of wind speed/
energy over 30 years for decision-making processes.
Lipu et al.30 presented the recent advance of AI-enabled
hybrid propositions for wind power forecasting acceler-
ating classification, strength, structure, weakness, and
performance analysis. Al-Janabi et al.31 presented a
model for generating electrical energy from the wind
called multi-objective renewable energy-generation
(MORE-G), also developed another model as a multi-
layer neural network based on the linear combination
and multi-objective functions. Delgado and Fahim5 dis-
cussed a data analysis framework to visualize the col-
lected data from the SCADA system and recurrent

neural network-based variant LSTM based prediction.
Woo et al.32 proposed a machine learning approach to
predict wind turbine returns by using the wind flow
data as a direct input. Precisely by using Multi-Tasks
Convolutional LSTM Network to simultaneously pre-
dict the energy output and structural load from the tar-
get wind turbine while modeling the Spatio-temporal
structure of the input wind flow.

Yu et al.33 proposed an improved Long Short-Term
Memory-enhanced forget-gate network model, abbre-
viated as LSTM-EFG, used to forecast wind power.
López and Arboleya34 proposed a developed approach
with the application of linear regression models as the
baseline, and RNN, LSTM network, and Dynamic
Neural Networks (DNN), Nonlinear Autoregressive
Exogenous (NARX) network to perform accurate wind
speed forecasting in complex terrain in the Ecuadorian
Andes to identify feasible places for wind energy appli-
cations. Srivastava and Tripathi35 predicted the power
generated from wind energy using wind velocity via
wind turbine, using RNN, LSTM, and GBM, to find
out which is the better one based on the performance
parameters values.

In Malakouti et al.36 to predict wind turbine power,
they proposed algorithmic approaches utilizing
machine learning techniques. The Applied algorithms
include light gradient boosting machine, ensemble
methods, extremely randomized trees, and the CNN-
LSTM method. And in Zhang et al.37 besides the utili-
zation of LSTM model for deep learning to predict
wind power generation, an Auto Encoder was
employed to reduce the data dimension, shorten the
training time, and improve the generalization ability of
the model.

Methodology

In this section, the procedure used in this research will
be discussed. According to Palestinian Meteorology
and weather conditions, Spring and Autumn seasons
normally have big variations in wind speed and direc-
tion. The selection of these two seasons only is because
Summer and Winter seasons have no significant varia-
bility in wind speed and direction and thus they cannot
be used to validate the proposed models.

The proposed model

The first step was to find a suitable study location
which is a wide space with a feasible wind speed. The
location was south-east of the west bank (Shaab al
Butum/Hebron). The average wind velocity in this loca-
tion is about 6.94m/s. Hence, it is also is isolated urban
location. Then to predict the wind energy and mechani-
cal power, a step-by-step procedure is followed.
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Figure 1 shows the flowchart of the procedure used
in this research, described as follows:

Data collection and preprocessing

Dataset collection. The used wind dataset was collected
every 15min time window from the location of this
study during Spring and Autumn 2021 seasons. As
aforementioned, the data were collected by and taken
from the Palestinian Meteorology and weather condi-
tions. Hence, the data were taken from their local ser-
ver. Figure 2 and Figure 3 show the speed and direction
samples for 1week in Spring 2021 and for 1week in
Autumn 2021. Also, Figure 4 and Figure 5 show the
average daily wind speed and direction for Spring and
Autumn seasons.

Dataset analysis. The next step was to prepare datasets.
The wind data values were analyzed and categorized,
and the frequency for each category was determined.
Figure 6 and Figure 7 show the frequency of each speed

and direction category for both seasons. The collected
data were using the Weibull model as shown in Figure
6 and Figure 7.

Testing, validating, and train splitting

For each season, the data values were partitioned into
training and testing and validation. Accordingly, three
different scenarios were performed. The first two sce-
narios were used to train and test the proposed models.
While scenario 3 is used to validate real-world use of
the results.

1- In the first scenario, 67% of the values were used
for training and the remaining 33% of the values
were used for testing.

2- In the second scenario, all the readings of each
season were used for training and 1month’s
readings were reused for testing. For the Spring
season, April month readings were reused for
testing, while for the Autumn season, October
month readings were reused for testing.

3- In the third scenario, each season’s readings
were used for training and other different
month’s readings were used for testing. For the
Spring season, May month was for testing, and
for the Autumn season, November month was
for testing.

LSTM-based neural network model

To predict the most suitable values of the proposed
models’ parameters of the presented case study and
data, the model was evaluated and examined many
times for different values. As a result, the model con-
sists of: an LSTM layer with 10 cells, followed by a
Dropout layer with a dropout rate of 0.25, and finally a
Dense layer with one cell and sigmoid activation func-
tion. Figure 8, represents the data by 15-min sample in
the training and testing processes.

Model training

The fitting of the model was examined through 20
epochs with validation split=0.2 and batch size=256.

Predictions

The used model was for short-term prediction. It was
used to study and analyze the short-term behavior of
the wind for 1week. Therefore, the LSTM-based model
is developed in a way to capture patterns of 15min for
1week each to predict wind behavior.

Figure 1. Used procedure flowchart.
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Figure 2. Wind data values during 1 week of Spring 2021.

Figure 3. Wind data values during 1 week in Autumn 2021.

Figure 4. The average daily wind speed and direction during Spring 2021.
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Figure 5. The average daily wind speed and direction during Autumn 2021.

Figure 6. The frequency of each wind speed and direction category during Spring 2021.

Figure 7. The frequency of each wind speed and direction category during Autumn 2021.
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Performance metrics

To check the reliability and validity of the results, dif-
ferent metrics were used for both training and testing
processes. Mean Absolute Error (MAE), Mean
Squared Error (MSE), R-Squared, and Main Bias
Error (MBE) were used.

Experiments and results

This section is divided into two subsections. The first
subsection focuses on the Spring season’s wind speed,
direction forecast, and the resulting mechanical power.
While the second subsection focuses on the Autumn
season’s wind speed, direction forecast, and the result-
ing mechanical power. Model’s training and testing
were performed using a high-performance laptop, a
DELL Inspiron 15 7000 Gaming Intel(R) Core(TM)
i7–7700HQ CPU @ 2.80GHz CPU with 16GB RAM.
The anaconda Jupyter Notebook platform was used,
with Python 3.8 programing language.

Spring season scenarios and results

1- As aforementioned, the first scenario was done
by using 67% of the data values for training and
the remaining 33% for testing. Figure 9 shows
the daily average for the training and testing
wind speed, direction, and mechanical power.
Knowing that the mechanical power can be pre-
dicted by the given equation (1)38:

Pm =
Cp(l,b)rAV 3

w

2
ð1Þ

Where:
Pm: Mechanical output power of the turbine (W)
Cp: Performance coefficient of the turbine
r: Air Density in kg/m3 (about 1.225 kg/m3 at sea

level)

A: Rotor Swept Area in m2=pr2 (r=radius or
blade length=9.8m)=p 3 (9.82)=301.72m2

Vw: Wind speed (m/s)
l: Tip speed ratio of the rotor blade tip speed to

wind speed
b: Blade pitch angle (deg)
Table 1 shows different metrics for the average daily

wind speed, direction, and mechanical power of the
achieved model for training and testing.

2- The second scenario was to use all the wind data
for the Spring season of 2021 as training data as
shown in Figure 10. Then the wind data for
April are reused as testing data as shown in
Figure 10. In addition, by applying equation (1)
to the predicted results, Figure 11 shows the
daily average testing mechanical power. Table 2
shows different metrics for the achieved daily
average training and testing data.

3- Finally, the model was examined using all the
wind data for the full spring season of 2021 as
training data as shown in Figure 10. Then, new
wind data for May are used as testing data as
shown in Figure 11. Again, by applying equa-
tion (1) to the predicted results, Figure 12 shows
the daily average testing mechanical power.
Table 3 shows different metrics for the achieved
daily average training and testing data.

The metric values are shown in Tables 1 to 3 confirm
the correctness of using the presented model for the
Spring season.

Autumn season scenarios and results:

In this subsection, the same approach as in subsection
A was followed.

1- The first scenario in this subsection was by using
67% of the wind data values for training and
the other 33% for testing. Figure 13 shows the

Figure 8. Illustrated structure of the proposed model.
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daily average training and testing wind speed,
direction, and mechanical power from applying
equation (1). Moreover, Table 4 shows the user
training and testing metrics for the average daily
wind speed, direction, and mechanical power of
the achieved model.

2- Next, the model was examined using the wind
data for the full Autumn season 2021 as training
data as shown in Figure 14. Then the wind data

for October were reused as testing data as shown
in Figure 15. In addition, by applying equation
(1) to the predicted results, Figure 14 shows the
daily average testing mechanical power. Table 5
shows different metrics for the achieved daily
average training and testing data.

3- The last step was to examine the model of the
wind data for the full Fall season of 2021 as
training data as shown in Figure 14, then new

Figure 9. Daily average for the training and testing wind speed, direction and mechanical power for season Spring 2021.
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wind data for November were used as testing
data as shown in Figure 16. Moreover, by apply-
ing equation (1) to the predicted results, Figure
15 shows the daily average testing mechanical
power. Table 6 shows different metrics for the
achieved daily average training and testing data.

The results in Tables 4 to 6, and those from subsection
A, confirm again the robustness and correction of the
presented model for both seasons.

Figure 17 shows a comparison of the resulting
metrics used examine the reliability and validity of the
results. The results show clearly that are nearly the
same for both Spring and Autumn seasons. They show
also R square test is about 0.95 and the average error
(MAE, MBE, and MSE) are less than 3%.

To verify the correctness and accuracy of the results,
the results were compared to the values found in Chen
et al.39 and in Noman et al.40 The work in Chen et al.39

proposed a hybrid machine-learning model for short-
term wind prediction. A framework combining EEMD,
GA, and LSTM for short-term wind speed prediction
is proposed. While the work in Noman et al.40 pro-
posed a multistep short-term wind speed prediction.
The presented work evaluated the performance of eight
transfer learning methods. The work in both cases was
for a very short period with higher error rates. This
confirms the novelty and originality of this work since
the work has more enhanced metric values. In addition,
the presented model predicts wind speed, direction, and
mechanical power for 48 h.

Discussion and conclusion

Wind energy is considered as a clean and cheap source
of energy. The main purpose of this work was to deliver
electric power to outlying areas with the best efficiency
and the least cost by exploiting wind energy.

In this research, an LSTM based model was intro-
duced to predict wind speed, direction and mechanical
power. To achieve the best results, the presented model
was evaluated using three different scenarios. As afore-
mentioned, the wind speed of the chosen location is
6.9m/s. This speed is capable to generate an average
power of around 29,800kW for the used wind turbine.
According to the Palestinian Electricity Distribution

Table 1. Metrics for the average daily wind speed, direction,
and the mechanical power.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.035 0.034 0.015
Train MSE 0.033 0.038 0.033
Train R square 0.957 0.947 0.949
Train MBE 0.033 0.021 0.022
Test MAE 0.032 0.032 0.016
Test MSE 0.038 0.037 0.035
Test R square 0.955 0.945 0.944
Test MBE 0.026 0.028 0.025

Figure 10. Daily average for the training wind speed, direction, and mechanical power for the season Spring 2021.
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Company and the Palestinian Central Bureau of
Statistics,41 the average annual household consumption
of energy is between 3000 and 3600 kW/h. This number
decreases significantly to 2000kW/h in the isolated
urban locations.

Also, knowing that the price of electricity in
Palestine is relatively very high, such that it costs $
0.19 kW/h. Consequently, this information leads to the
following benefits:

1- The installation of one turbine may cover the
needs of 10–15 households.

2- The total price of one turbine was about
$64,000. So, the payback period can be calcu-
lated as follows:

The total estimated energy production=the predicted
annual energy output 3 price of electricity

=29,800 3 0.19=$5,662
Then the estimated payback period=64,000/

5,662=11years
This period is very promising since the average pay-

back period is about 15 years.42 And that the average
use of wind turbines is from 20 to 25 years.
Consequently, the price of electricity is decreased by
about 40% (if the turbine is used for 20 years)

3- The use of wind energy can guarantee lower
emission of CO2 and thus lower pollution.

4- Since chosen locations are far from electricity
distribution network infrastructure, the use of
wind energy benefits these locations by provid-
ing them with a significant amount of their elec-
tricity needs.

Consequently, the results of the experiments were very
promising and the used performance metrics showed
the robustness and correctness of the proposed model.
With such results, the presented model can be used to

Figure 11. Daily average for the testing wind speed, direction, and mechanical power. April values were used for testing.

Table 2. Metrics for the average daily wind speed, direction,
and the mechanical power-April testing.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.026 0.029 0.013
Train MSE 0.023 0.018 0.023
Train R square 0.946 0.935 0.959
Train MBE 0.028 0.028 0.015
Test MAE 0.021 0.019 0.021
Test MSE 0.027 0.024 0.015
Test R square 0.957 0.941 0.959
Test MBE 0.023 0.020 0.016
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Figure 12. Daily average testing wind speed, direction, and mechanical power for May.

Table 3. Metrics for the average daily wind speed, direction,
and the mechanical power-May testing.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.037 0.049 0.013
Train MSE 0.027 0.015 0.027
Train R square 0.946 0.946 0.949
Train MBE 0.036 0.018 0.027
Test MAE 0.025 0.036 0.011
Test MSE 0.037 0.015 0.028
Test R square 0.944 0.945 0.950
Test MBE 0.035 0.015 0.026

Table 4. Metrics for the average daily wind speed, direction,
and the mechanical.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.027 0.038 0.014
Train MSE 0.021 0.019 0.025
Train R square 0.949 0.947 0949
Train MBE 0.024 0.027 0.026
Test MAE 0.029 0.030 0.015
Test MSE 0.021 0.018 0.025
Test R square 0.949 0.956 0.951
Test MBE 0.023 0.022 0.023

Table 5. Metrics for the average daily wind speed, direction,
and the mechanical power-October testing.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.023 0.031 0.014
Train MSE 0.021 0.018 0.023
Train R square 0.943 0.953 0.959
Train MBE 0.027 0.027 0.029
Test MAE 0.025 0.031 0.011
Test MSE 0.022 0.020 225.3715
Test R square 0.951 0.952 0.957
Test MBE 0.025 0.028 0.028

Table 6. Metrics for the average daily wind speed, direction,
and the mechanical power-November testing.

Metric Wind
speed

Mechanical
power

Wind
direction

Train MAE 0.032 0.016 0.025
Train MSE 0.013 0.026 0.032
Train R square 0.949 0.947 0.946
Train MBE 0.024 0.023 0.023
Test MAE 0.027 0.010 0.015
Test MSE 0.019 0.019 0.035
Test R square 0.945 0.947 0.949
Test MBE 0.024 0.025 0.025
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predict wind energy feasibility in new areas. Moreover,
the results showed how wind energy can help to
decrease global warming and climate changes, by
decreasing the reliance on traditional power generation
techniques.

The next step of this work is to the use of further
conversion models. Hence, mechanical power can be
transferred to electrical power. This can contribute to
estimate the development and installation of electrical
systems cost based on wind energy.

Figure 13. Daily average training and testing wind speed, direction, and mechanical power for season Autumn 2021.
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Figure 14. Daily average for the training wind speed, direction, and mechanical power for the season Autumn 2021.

Figure 15. Daily average for testing wind speed, direction, and mechanical power. October values were used for testing.
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Figure 16. Daily average for testing wind speed, direction, and mechanical power. November values were used for testing.

Figure 17. Comparison between different metrics used in Spring and Autumn 2021.
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