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Abstract In this article we use the Balanced Truncation (BT) method for constructing a re-
duced order model for both stable and unstable finite dimensional linear time-invariant (LTI)
dynamical systems with non-homogeneous initial conditions. The L2-error bound for the sta-
ble system has been obtained by interpolating the non-zero initial conditions as an extra input
by choosing the Dirac’s delta function δ0 ∈ L2. This approach has been successfully extended
to develop a framework for model reduction over a finite interval [0, T ] for unstable (LTI) sys-
tems. The advantages and flexibility of this approach are demonstrated with variety of numerical
examples.

1 Introduction

Control design is one of the central themes in system theory. It examines the system settings
through feedback, so that the closed loop system behaves as expected with a minimum cost.
There are many physical, chemical and biological phenomenon, which are modeled in terms
of partial differential equations. The state space formulation for such model requires infinite
dimensionality design control. Thus, for purpose of computation and implementation, this is
not practical. Therefore, it is important to find a low order controller for infinite dimensional
system. Model reduction is a major issue for control, optimization and simulation of large-scale
system that can be used to obtain low order controller [1]. A number of methods have been
proposed to reduce order of infinite dimensional linear time invariant [FDLTI] systems such as
balanced truncation (BT) [1],[2], Hankel norm approximation and singular perturbation approx-
imation (SPA) [3], [4], [5], [6]. All these methods preserve certain properties of the original
system such as stability, passivity and gives an error bound that easily commutable [7], [8], [9].
Although balanced truncation and singular perturbation approximation methods give the same
upper bound of the error reduction , but the characteristics of both methods are contrary to each
other [10],[11],[12]. It has been shown that the reduced systems by balanced truncation has a
smaller error at high frequencies, and tend to be greater at lower frequencies [13]. Moreover, the
reduced systems through SPA method behave otherwise, i.e., the error goes to zero at low fre-
quencies and tend to enlarge at high frequencies [14],[15]. Balanced model reduction of linear
control systems has been under investigation for quite a long time due to the ubiquity of large-
scale linear systems in wide range of applications in science and engineering [11],[13],[16]. The
general idea of balanced model reduction is to restrict the system to the subspace of easily con-
trollable and observable states which can be determined by the Hankel singular values associated
with the system [17],[18]. All these methods give a stable reduced system and guaranteed upper
bound of the approximation error provided that the initial conditions are homogeneous, i.e., that
x0 = 0. Balanced model reduction of linear systems with non-homogeneous initial conditions
has received very little attention, with [19],[20],[21],[22] being the only exceptions known to
authors. In these papers, the authors extend balanced truncation to the case of non-homogeneous
initial conditions ( in case of [19],[20],[21],[22] using an L2 regularization of the non-smooth
input due to the initial data). Most of these model reduction methodologies have been developed
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originally for asymptotically stable dynamical systems, that is, systems having all their poles in
the left half-plane. On the other hand, there exist prominent applications where model reduction
of unstable systems becomes a vital tool. Examples include the worst-case identification of un-
stable plants [23], and obtaining low-order approximations to Hamiltonian systems common in
physics such as large collections of coupled oscillators [24]. Controllers are designed to derive a
plant into desirable and robust performance settings [26]. However, many controller design tech-
niques, such as LQG andH∞ techniques, lead to controllers that have the same order as the plant
to be controlled [25],[26]. High-order controllers are problematic for real-time applications due
to the potential for degraded numerical accuracy, and computational difficulties. Alternatively,
one could replace the original high-order controller with a low order but high-fidelity approxi-
mation.
Since controllers are usually unstable systems [27], the controller reduction problem leads di-
rectly to a model reduction problem involving unstable systems [26],[27],[28],[29],[30]. Most of
these ways are based on balanced truncation. However, a different framework have been pursued
in [31] which uses rational Krylov methods and an interpolatory framework for model reduction.
The linear time-invariant (LTI) system is of the form

·
x = Ax+Bu,

y = Cx,

x(t0) = x0,

(1.1)

where x ∈ Rn is an n-dimensional, u ∈ Rm and y ∈ Rl are the states, inputs and outputs of
(1.1), and A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n are matrices of appropriate size, x0 ∈ Rn
is the non-zero initial condition prescribed at t0 = 0. A common feature of (1.1) is that it is
high-dimensional, with n ranging from a few tens to several thousands as in control problems
for large flexible space structures, and that it displays a variety of time scales. If the time in
the system are well separated, it is possible to eliminate the fast degrees of freedom and to
derive low-order reduced models, using averaging and homogenization techniques. In this article
we use the Balanced Truncation (BT) method for constructing a reduced order model for both
stable and unstable finite dimensional linear time-invariant (LTI) dynamical systems with non-
homogeneous initial conditions. The L2-error bound for the stable system has been obtained
by interpolating the non-zero initial conditions as an extra input by choosing the Dirac’s delta
function δ0 ∈ L2. This approach has been successfully extended to develop a framework for
model reduction over a finite interval [0, T ] for unstable (LTI) systems. The advantages and
flexibility of this approach are demonstrated with variety of numerical examples.

2 Error Bound for Stable In-homogeneous System

Consider the linear system described in equation (1.1) and x0 is the non-zero initial condition
can be partitioned into the form

x(t0) =

(
x1(0)
x2(0)

)
,

Assumption 2.1. Assume the system described by equation (1.1) is Controllable, Observable
and Asymptotically Stable.

Now, we choose a non-singular matrix W ∈ Rn×n and applying the method of balanced
truncation to obtain a reduced order model written in the form:

˙̄x = Āx̄+ B̄u,

ȳ = C̄x̄,
(2.1)

where
Ā =WAW−1, B̄ =WB, C̄ = CW−1

and the initial condition of the reduced system is

x̄(t0) =W−1x(t0),
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Assumption 2.2. Assume the system described by equations (2.1) is Controllable, Observable
and Asymptotically Stable.

We introduce the following two Lyapunov equations:

ACo + CoA
T = −BBT ,

and
ATOb +AOb = −CTC,

where Co and Ob are the Controllability and Observability Gramian respectively defined as:

Co =

∞∫
0

eAtBBT eA
T tdt,

Ob =

∞∫
0

eA
T t CTC eAtdt,

The balancing transformation W satisfies the following equation:

W−1CoW
−T =WTObW

T = Σ = diag(σ1, · · · , σn),

where
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

are the Hankel Singular Values (HSVs).
In the case the initial condition x(0) is zero and for all u : (t0,∞) −→ Rm and r < n, equations
(1.1) and (2.1) satisfy the standard error bound [22]

‖y − ȳ‖L2(t0,∞) ≤ 2
n∑

r=i+1

σi‖u‖L2(t0,∞), (2.2)

We introduce a new error bound between the output of the full system (1.1) and its reduced
system (2.1). We extend the system in equation (1.1) to get the following system

ẋe = Axe +
(
B X0

)( u

δ0

)
,

ye = Cxe,

(2.3)

where A,B,C are defined the same as in equation (1.1), xe is the state vector, ye is the output
vector and X0 = x(t0) is the initial condition and δ0 defined as

δ0(t) = lim
ε→0

δε(t)

The Dirac’s delta function denoted by δ(t) is defined as:

δ(t) =

{
0 t 6= 0
∞ t = 0

such that
t2∫
t1

δ(t)dt = 1,

where 0 ∈ [t1, t2].
The important property of the delta function is the following relation∫

f(t)δ(t− t0)dt = f(t0),
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Assumption 2.3. Assume the system described by equations (2.3) is Controllable, Observable
and Asymptotically Stable.

Now, the extended system in (2.3) can be reduced using balanced truncation method to get
the following reduced system:

˙̄xe = Āx̄e +
(
B̄ X̄0

)( u

δ0

)
,

ȳe = C̄x̄e,

(2.4)

where Ā, B̄, C̄ the same as in equation (2.1).
The non-zero initial condition for the reduced system (2.4) is given as:

X̄0 =W−1x(t0),

The solution xe(t) of the extended system in equation (2.3) found to be:

xe(t) =

t∫
t0

eA(t−τ)
(
B X0

)( u

δ0

)
dτ

=

t∫
t0

eA(t−τ)Bu(τ)dτ +

t∫
t0

eA(t−τ)X0δ0(τ)dτ

=

t∫
t0

eA(t−τ)Bu(τ)dτ + eAtX0

= eAtX0 +

t∫
t0

eA(t−τ)Bu(τ)dτ

= x(t),

(2.5)

Systems (1.1) and (2.3) have the same state space solution and hence the outputs of the systems
must be the same, that is:

ye(t) = y(t) = C

eAtX0 +

t∫
t0

eA(t−τ)Bu(τ)dτ

 , (2.6)

Also the reduced systems (2.4) and (2.1) have the same solution:

x̄e(t) =

t∫
t0

eĀ(t−τ)
(
B̄ X̄0

)( u

δ0

)
dτ

=

t∫
t0

eĀ(t−τ)B̄u(τ)dτ +

t∫
t0

eĀ(t−τ)X̄0δ0(τ)dτ

=

t∫
t0

eĀ(t−τ)B̄u(τ)dτ + eĀtX̄0

= eĀtX̄0 +

t∫
t0

eĀ(t−τ)B̄u(τ)dτ

= x̄(t),

(2.7)
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and the outputs of the two reduced systems are equal:

ȳe(t) = ȳ(t) = C̄

eĀtX̄0 +

t∫
t0

eĀ(t−τ)B̄u(τ)dτ

 , (2.8)

Let Co be the Controllability Gramian of the full system (1.1) and Coe be the Controllability
Gramian of the extended system (2.3), then we show that the two matrices are not equal:

Coe =

∞∫
t0

eAt
(
B X0

)(
B X0

)T
eA

T tdt

=

∞∫
t0

eAt
(
BBT +X0X

T
0

)
eA

T tdt

=

∞∫
t0

eAtBBT eA
T tdt+

∞∫
t0

eAtX0X
T
0 e

AT tdt

= Co +

∞∫
t0

eAtX0X
T
0 e

AT tdt,

(2.9)

Let Ob be the controllabilty Gramian of the full system (1.1) and Obe be the Observability
Gramian of the extended system (2.3), then the two matrices are equal:

Roe =

∞∫
t0

eA
T tCTCeAtdt = Ro, (2.10)

Let σ1 ≥, σ1 ≥ · · · ,≥ σ1 ≥ 0 are the Hankel Singular Values, then we write:

Σ1 = diag(σ1, · · · , σr), Σ2 = diag(σr+1, · · · , σn), r < n

and

Σ =

(
Σ1

Σ2

)
,

Since Obe = Ob, then using the balanced transformation W , we obtain:

WTObW =WTObeW = Σ = diag(σ1, · · · , σn), (2.11)

We factorize the Observability Gramian as:

Roe = Ro = LT , L ∈ <n×n,

where

LTL =

∞∫
t0

eA
T tCTCeAtdt,

The following Theorem contains our new error bound between the outputs of the full and reduced
systems.

Theorem 2.4. [32]
Let W ∈ Rn×n be a non-singular transformation matrix and let

σ1 ≥, σ1 ≥ · · · ,≥ σ1 ≥ 0,

are the Hankel Singular Values of the extended system (2.5-2.6), then for all

u ∈ L2(t0,∞),
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the error bound between y ∈ L2(t0,∞) and ȳ ∈ L2(t0,∞) is:

‖y − ȳ‖L2(t0,∞) ≤ ‖LX0‖2
2 + ‖

√
Σ1X̄0‖2

2 + 2
n∑

r=i+1

σi‖u‖L2(t0,∞), (2.12)

Proof. We consider the two cases x(t0) = 0 and u = 0

‖y − ȳ‖L2(t0,∞) = ‖ye − ȳe‖L2(t0,∞)

= ‖
t∫

t0

eA(t−τ)
(
B X0

)( u

δ0

)
dτ −

t∫
t0

eA(t−τ)
(
B X0

)( u

δ0

)
dτ‖

= ‖eAtX0 +

t∫
t0

eA(t−τ)Bu(τ)dτ − eĀtX̄0 −
t∫

t0

eĀ(t−τ)B̄u(τ)dτ‖

≤ ‖eAtX0 − eĀtX̄0‖+ ‖
t∫

t0

eA(t−τ)Bu(τ)dτ −
t∫

t0

eĀ(t−τ)B̄u(τ)dτ‖,

for the case x(t0) = 0, we have the error bound

‖
t∫

t0

eA(t−τ)Bu(τ)dτ −
t∫

t0

eĀ(t−τ)B̄u(τ)dτ‖ = 2
n∑

r=i+1

σi‖u‖L2(t0,∞),

for the case u = 0, we have

‖eAtX0 − eĀtX̄0‖ ≤ ‖eAtX0‖+ ‖eĀtX̄0‖,
since Ob is factorized as

LTL =

∞∫
t0

eA
T tCTCeAtdt,

then we want to estimate the first term

‖eAtX0‖L2(t0,∞),

This can be achieved by

‖eAtX0‖L2(t0,∞) ≤ XT
0

 ∞∫
t0

eA
T tCTCeAtdt

X0

≤ ‖XT
0 L

TLX0‖
≤ ‖(LX0)

T (LX0)‖
≤ ‖(LX0)

T ‖‖LX0‖
≤ ‖LX0‖L2 ,

We do the same for the second part

‖eĀtX̄0‖,

and obtain this bound
‖eĀtX̄0‖L2(t0,∞) ≤ ‖

√
Σ1X̄0‖L2 ,

Consequently, we get the error bound:

‖y − ȳ‖L2(t0,∞) ≤ ‖LX0‖L2 + ‖
√

Σ1X̄0‖L2 + 2
n∑

r=i+1

σi‖u‖L2(t0,∞), (2.13)
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3 Error Bound for Un-Stable In-homogeneous System

In this section, we introduce an approach for computing the L2[t0, T ] induced norm to obtain
the the error bound between the outputs of the original and reduced order un-stable systems
with non-zero initial condition. To estimate the L2[0, T ]-induced norm for the system defined
by equations (2.3) and (2.4), we compute the H∞ norm of a shifted version of the system under
consideration. This bound can be used to solve the problem of model reduction for unstable
system over finite horizon with non-zero initial condition. Officially, the L2[0, T ]-induced norm
of a given LTI system is equivalent to L2[0,∞)-induced norm of a time-variant system with
convolution kernel [30].
Assume that the error bound in equation (2.13) is written as:

‖y − ȳ‖L2(t0,∞) ≤ β, (3.1)

where

β = ‖LX0‖L2 + ‖
√

Σ1X̄0‖L2 + 2
n∑

r=i+1

σi‖u‖L2 ,

The linear dynamical systems in equations (2.3) and (2.4) is stable and in virtue of [30],[33] we
have the following Lemma:

Lemma 3.1. Consider a strictly proper, finite dimensional LTI stable system, given as:(
A [B X0]

C

)
,

Then the following are equivalent:

(i) The L2[0,∞)-induced gain is bounded by β > 0:

‖y − ȳ‖L2(t0,∞) ≤ β,

.

(ii) The following linear matrix inequality admits a positive definite solution X > 0:(
ATX +XA+ CTC XH

HTX −β2I

)
< 0, (3.2)

where H = [B X0]

Now, in the case that the linear dynamical system in equations (2.3) and (2.4) is unstable and
in virtue of [30],[33] with finite interval [t0, T ], we have the following lemma:

Lemma 3.2. Consider a strictly proper, finite dimensional not necessarily stable LTI system,
given as: (

A [B X0]

C

)
,

Assume the following differential matrix inequality avow a positive definite solution X(t),∀t ∈
[0, T ]: (

ATX +XA+
·
X + CTC X[B X0]

[B X0]TX −β2I

)
< 0, (3.3)

where H = [B X0]

Let u ∈ L2[t0, T ] be an arbitrary input and y be the corresponding output, then the following
holds [30]: ∫ T

0
yT ydt < β2

∫ T

0
uTudt,

The following corollary contain the L2-norm for a finite interval [t0, T ]:
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Corollary 3.3. If the inequality (3.3) holds, then:

‖y − ȳ‖L2[t0,T ] < β, (3.4)

Consider the following step window function defined as:

W (t) =

{
1 0 ≤ t ≤ T
0 otherwise

,

and define the convolution kernel as:

(y − ȳ)(t, τ) =W (t)(y − ȳ)(t− τ), (3.5)

To make the computations efficient, we approximate the step window by exponential window of
the form e−at where the time constant a satisfy e−at < 1 for t > T .
If we use this approximation, then the resulting kernel e−at(y− ȳ)(t) can be associated with the
new LTI system whose frequency response is a shifted version of the frequency response of the
original system. The constant a can be chosen such that, our new LTI system is stable. The next
step is to compute its L2[0,∞)-induced norm or H∞ norm.

To approximate the error bound between the original and its reduced system defined in equa-
tions (2.3) and (2.4) using L2[0, T ]-induced norm, we introduce the following theorem which
contains the main result.

Theorem 3.4. Consider a strictly proper finite dimensional, LTI (not necessarily stable) system
G, given as: (

A [B X0]

C

)
,

if there exist a such that: (
A− aI [B X0]

C

)
,

is stable with ‖(y − ȳ)a‖∞ < β, then the following holds:

‖(y − ȳ)‖L2[0,T ],ind < βeaT , (3.6)

Proof. Assume that the bound

‖eaT (y − ȳ)a‖∞ < βeaT ,

From Lemma (3.1) there exists Xa ≥ 0 such that:(
ATaXa +XaAa + eaTCTCeaT XaH

HTXa −β2e2aT I

)
< 0, (3.7)

where Aa = A− aI and H = [B X0]
The next step, we define the solution X(t), ∀t ∈ [0, T ] as:

X(t) = e−2atXa,

If we multiply equation (3.7) by e−2atI(n+m,n+m), then we have:(
ATaXae

−2at + e−2atXaAa + e2a(T−t)CTC e−2atXaH

HTXae
−2at −β2e2a(T−t)I

)
< 0

(
ATX +XA+

·
X + e2a(T−t)CTC XH

HTX −β2e2a(T−t)I

)
= 0

(
ATX +XA+

·
X + CTC XH

HTX −β2e2aT I

)
≤ 0

,

where the last inequality relies on a > 0 and t ≤ T .
From Lemma (3.2) and corollary (3.3), we obtain our result and hence the proof is complete.
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Finally, we can write the error bound in theorem (3.4) in the form:

‖(y − ȳ)‖L2[0,T ],ind < eaT ‖
√

Σ‖2
2‖X0‖2

2 + 2eaT
n∑

i=r+1

σi, (3.8)

4 Numerical Examples and Results

To illustrate the effectiveness of our approach we consider the following numerical examples for
both stable and unstable systems with non-homogeneous initial conditions.

Example 4.1. Consider the following continuous linear time-invariant stable dynamical
model reduction of a build example system [34] with n = 48 degrees of freedom and the size of
the reduced system is r = 3.

The maximum error bound of the dynamical system obtained by applying the result in equa-
tion (2.13) is illustrated in Figure (2). The L2 norm for the difference between the two outputs y
and ȳ in equation (2.13) is computed for r = 3 and is shown in Figure (1). Moreover, Table (1)
contains the L2 norm of difference between the two outputs y and ȳ using the result in equation
(2.13).

Table 1. The Maximum Error Bound and The Outputs of The Results in equation (2.13) With
n = 48, r = 3 for The Build Example.

r |y − ȳ|L2 2
48∑

i=r+1
σi

1 1.3302e-05 0.0243
2 1.3322e-05 0.0194
3 1.3334e-05 0.0156
4 1.3345e-05 0.0117
5 1.3349e-05 0.0103
6 1.3353e-05 0.0089
7 1.3356e-05 0.0076
8 1.3359e-05 0.0064
9 1.3361e-05 0.0055
10 1.3362e-05 0.0047
11 1.3364e-05 0.0042
15 1.3368e-05 0.0022

Example 4.2. In this example, we study a continuous linear time-invariant unstable dynamical
model reduction of a resistor–capacitor circuit (RC-circuit) described in Figure (3). We take the
size of the full dynamical system and its reduced system to be n = 20 and r = 2 respectively.

We use the result in equation (3.8) to compute the approximating values of the L2 norm for
the outputs of the full and its reduced order model. The maximum error bound in equation (3.8)
is computed and shown in Figure (4). The L2[0, T ], ind norm for the difference between the
outputs y and ȳ with r = 2 is illustrated in Figure (5). Table (2) contains the L2[0, T ], ind norm
of difference between the two outputs y and ȳ using the result in equation (3.8).

5 Conclusion

In this work we used the Balanced Truncation (BT) method for constructing a reduced order
model for both stable and unstable finite dimensional linear time-invariant (LTI) dynamical sys-
tems with non-homogeneous initial conditions. The L2-error bound for the stable system has
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Figure 1. The L2 Norm of The Difference Between The Outputs of The Full And The Reduced
Models with n = 48, r = 3 for The Build Example

Figure 2. The Maximum Error Bound of The Build Example With n = 48, r = 3

Figure 3. Simple RC-circuit

been obtained by interpolating the non-zero initial conditions as an extra input by choosing the
Dirac’s delta function δ0 ∈ L2. This approach has been successfully extended to develop a frame-
work for model reduction over a finite interval [0, T ] for unstable (LTI) systems. The theoretical
results have been validated numerically to show the advantages and flexibility of this approach.
Conflicts of Interest: The authors declare that they have no conflict of interest.
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Table 2. The Maximum Error Bound and The Outputs of The Results in (3.4) and (2.4) With
n = 48, r = 3 for The RC Example.

r |y − ȳ|L2[0,T ],ind 2
20∑

i=r+1
σi

2 0.0264 0.6807
4 0.0041 0.0925
6 0.000194 0.0167
8 7.5842× 10−7 0.0089
10 5.2526× 10−9 0.0056
12 3.026× 10−13 0.0031
14 2.3145× 10−15 4.6517× 10−4

Figure 4. The MSVD and the error bound when r = 2
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