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A B S T R A C T   

The 1/N expansion method has been used to investigate the problem of an electron moving in a two-dimensional 
semiconductor quantum ring with an off-center impurity. The energy spectra, magnetization, and magnetic 
susceptibility have been calculated as a function of the magnetic field, impurity position, temperature, and 
quantum ring parameters. Interesting energy-level crossings attributed to QR confinement manifest themselves 
as low-temperature oscillations in the magnetization and magnetic susceptibility curves. On the contrary, the 
presence of impurity at the QR center eliminates these level crossings. This work shows that changing the im-
purity position can manipulate the magnetic field value correspondence to these diamagnetic-paramagnetic 
phase transitions.   

1. Introduction 

As a result of nanostructure fabrication methods, carriers can be 
confined in all spatial dimensions, resulting in fully quantized spectra 
for quantum dots (QDs). A quantum ring (QR) was created using the 
same techniques, and the carriers within it were bound by the ring’s 
walls [1]. The QR research area has received much attention due to its 
applications, such as photonic detectors and quantum computing [2]. 

Many theoretical and experimental studies of the electronic, thermal, 
magnetic, and optical properties of QRs have recently been published 
[3–14]. For example, the presence of a magnetic field can influence the 
electronic structure of carriers confined in a low-dimensional system. 
This topic has attracted the interest of researchers [15–20]. Further-
more, doped impurities are also crucial in changing the properties of 
nanomaterials [21–34]. 

Various techniques have been used to solve the reduced-dimensional 
Hamiltonian, including the magnetic field effect. The authors of Ref [35] 
used a variational method to study the energy spectra and the magne-
tization of a two-electron quantum dot. Their results show that the 
magnetization oscillates due to the presence of a Coulomb potential. The 
effect of dimensionality on the ground state energy of a quantum dot 
system was investigated using the 1/N expansion method [36]. 
Furthermore, the numerical diagonalization method was used to deter-
mine the magnetic properties of the quantum dot in the presence of a 
magnetic field [37]. At a low temperature (0.3 K), Schwarz et al. 

experimentally studied the magnetization of a quantum ring, which 
exhibits oscillation behavior [38]. 

This work investigates the effect of an off-center impurity on the QR 
properties. We shall calculate the energy spectra, binding energy (BE), 
magnetization, and magnetic susceptibility of an off-center donor im-
purity in a quantum ring system under the presence of an external 
magnetic field. We shall use the shifted 1/N expansion technique to 
solve the quantum ring Hamiltonian. 

2. Theory 

2.1. Model and formulation 

In this work, we considered a 2D-GaAs QR subjected to a magnetic 
field perpendicular to the QR plane. The confinement along the growth 
direction (z-axis) is much stronger, so we don’t consider any excitation 
in that direction. 

The confinement potential of the quantum ring is given by, V(r) =
a1
r2 + a2r2 − V0. The first term in the confinement potential represents the 
repulsive term, the second one is a harmonic oscillator-type potential 
that constrains the electron to the ring, and the final term is V0 =

2 ̅̅̅̅̅̅̅̅̅̅a1a2
√ , the confinement potential has a minimum at R0 =

̅̅̅̅̅̅̅̅̅̅̅̅
a1/a2

4
√

,

with R0 is the average radius of the ring. The potential V(r), for r near 
R0, can be simplified by parabolic form 1

2 m∗ω2
0(r − R0)

2, where ω0 =

* Corresponding author. 
E-mail address: Ayham.shaer@najah.edu (A. Shaer).  

Contents lists available at ScienceDirect 

Chemical Physics Impact 

journal homepage: www.sciencedirect.com/journal/chemical-physics-impact 

https://doi.org/10.1016/j.chphi.2023.100194 
Received 30 December 2022; Received in revised form 19 March 2023; Accepted 23 March 2023   

mailto:Ayham.shaer@najah.edu
www.sciencedirect.com/science/journal/26670224
https://www.sciencedirect.com/journal/chemical-physics-impact
https://doi.org/10.1016/j.chphi.2023.100194
https://doi.org/10.1016/j.chphi.2023.100194
https://doi.org/10.1016/j.chphi.2023.100194
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chphi.2023.100194&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chemical Physics Impact 6 (2023) 100194

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8a2/m∗

√
describes the strength of the transverse confinement, m∗ is the 

effective mass of the electron in the material. 
Moreover, we can control the shape of the confinement potential 

because the width and the radius of the quantum ring can be adjusted 
independently by a suitable choice of a1 and a2 [39]. 

The Hamiltonian of a two-dimensional QR system in the presence of 
off-center donor impurity can be expressed as follows: 

Ĥ =
ℏ

2m∗

(
P +

e
c

A
)2

+
1
2

m∗ω2
0(r − R0)

2
+

1
2
g∗μBBσz −

α e2

∈ | r − ρ |
(1)  

where P (r) indicates the 2D momentum (position) operator of an 
electron with effective mass m* and charge e, A represents the vector 
potential associated with the magnetic field B applied perpendicular to 
the QR plane, ω0 is the confinement strength and R0 is the main radius of 
the QR. The applied magnetic field, B= ∇× A in the z-direction, in-
troduces a Zeeman splitting given by 12g

∗μBBσz, where g∗, μB, σz are the 
Lande g factor, Bohr magneton, and the Pauli matrix, respectively. 

The confinement frequency is inversely proportional to the width of 
the ring, as ω0 increases, the ring becomes narrower. 

The last term in the Hamiltonian is due to the presence of the donor 
impurity, where ∈ is the dielectric constant and ρ is the impurity posi-
tion vector. 

Using the symmetric gage for vector potential, A= B
2 (-y, x, 0), and 

the impurity location depicted in Fig. 1(a), the Hamiltonian of the sys-
tem can be shown as follows: 

Ĥ =
− ℏ2

2m∗
∇2 +

1
2

m ∗ ω2
0(r − R0)

2
+

1
8

m ∗ ω2
cr2 +

1
2

ℏ ωc (Lz + g ∗ Sz)

−
α e2

∈
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + d2

√

(2)  

ωc =
eB
m∗ is the cyclotron frequency, Lz is the z-component of the orbital 

angular momentum with eigenvalues mlℏ where ml = 0,±1,±2, and d 
represent the distance between the impurity and the ring center. 

A flat QR can be obtained by droplet molecular-beam epitaxy tech-
nique [40], where the impurity is located in the AlGaAs layer to avoid 
electron-impurity collision. 

The shifted 1/N expansion approach was utilized to compute the 
system spectra, and the obtained energies were then used to determine 
the system properties. 

The 1/N method is efficient in the case of a spherical symmetric 
Hamiltonian, and it gives accurate results [41]. As a starting point, using 
the N-dimensional radial Schrodinger equation written as: 

[

−
ℏ

2 m∗

(
d2

dr2 +
N − 1

r
d
dr

)

+
l(l + N − 2)

r2 +V(r)
]

ψ(r) = E ψ(r)

(3)  

Where, 

V(r) =
1
2

m∗ω2
0(r − R0)

2
+

1
8
m∗ω2

cr2 +
1
2
ωc (ml + g∗S) −

α e2

∈
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + d2

√ (4) 

For further details, refer to previously published work [42,43]. 

2.2. Binding energy and magnetic properties 

Binding energy (B.E) can be defined as the difference in ground-state 
energy EG between the absence and presence of the impurity, 

B.E = EGα=0 − EGα=1 (5) 

Initially, the energy spectra have been used to calculate the statistical 
average energy as, 

〈E〉 =

∑Nmax
j Ej e− Ej/kBT

∑Nmax
j e− Ej/kBT

(6) 

Where the summation is taken over all the energy spectra of the 
system. 

The magnetization (the magnetic susceptibility) can be obtained by 
finding the first (second) derivative of the average energy of the QR 
system with respect to B, mathematically, 

M(T,ω0,B,R0, d) = −
∂〈E〉
∂B

(7)  

χ(T,ω0,B,R0, d) = −
∂2
〈E〉

∂B2 (8)  

3. Result and discussion 

The previous theory is valid for any material type, but in this work, 
we have considered QR made from, for which the material parameters 
are given by: m∗ = 0.067me, ∈= 12.4, g∗ = − 0.44. 

3.1. Energy spectra 

The energy spectra of a single electron confined in GaAs QR as a 
function of the magnetic field are displayed in Fig. 2. Fig. 2(a) displays 
the well-known Fock-Darwin levels in case (R0 = 0)and without impu-
rity (α = 0), which matches the parabolic quantum dot spectra provided 

Fig. 1. (a) the QR scheme in the presence of the off-center impurity. (b) The parabolic confinement potential of QR as a function of radial position r.  
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by (n + |m| + 1)ℏω − ℏ m ωc/2 , where ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
0 + ω2

c /4
√

and the spin 
term was neglected. Fig. 2(b) shows the system spectra in the case of R0 
= 15 nm, we can observe interesting level crossings; consequently, m =
0 will no longer be the ground state as the magnetic field increases, 
which is consistent with the experimental results of Ref [44]. 

Fig. 2(c) shows the system spectra in the case of R0 = 20 nm and ℏω0 
= 10 meV. In this figure, we can notice fascinating level crossings 
shifting to lower magnetic field strength; consequently, m = 0 will no 
longer be the ground state as the magnetic field increases. 

Fig. 3(a) shows the influence of impurity on the QR spectra. We can 
see a considerable shift in the ground state m = 0, without level cross-
ings, due to electron-impurity coulomb interaction. In Fig. 3(b) and (c), 
the off-center impurity case has been studied for d = 12 nm and d = 20 
nm; we can notice that as d increases, the electron-impurity coulomb 
interaction decreases, so the level crossings shift to lower magnetic field 
strength. 

3.2. Binding energy 

The impurity binding energy is studied in Fig. 4 as a function of the 
quantum ring radius (R0)and the impurity distance (d). In Fig. 4(a), the 
BE is plotted for B = 6T, ℏω0 = 7 meV and different values of d: (0,5,10) 
nm. From this figure, we can conclude that as the radius of the ring 
increases, the electron-impurity repulsion coulomb interaction de-
creases, so the BE curves decline. Moreover, we can notice the decrease 
in the BE curves as d increases due to reducing the electron-impurity 
repulsion coulomb interaction. In Fig. 4(b), the BE is plotted for ℏω0 =

7 meV , B = 0 T and two values of the radius, R = 0 nm (quantum dot 
case) and R = 15 nm. This figure shows the decline in BE curves as 
d increases because of the decrease in the electron-impurity repulsion 
coulomb interaction. It can be noticed that the values of BE in the R = 0 
nm case are higher than in the R = 15 nm case. This is because, in the 
case of R = 0 nm, the impurity is centrally above the electron, increasing 
the attraction between them, so the BE values decrease. 

3.3. Statistical energy 

The statistical average energy has been plotted as a function of 
temperature in Fig. 5. The curves show that at low temperatures 
(T < 10K), the electron has a small probability of being in the higher 
states. As a result, 〈E〉 approaches the same value regardless of the in-
crease in the levels taken by Eq. (6). For relatively higher temperatures, 
we can conclude that, after examining the convergence up to a tem-
perature of 20 K, it is considered sufficient to deal with the value of Nmax 
up to 40 since all the observations in this work are within the range 
(T < 40 K ). 

We have plotted in Fig. 6 the average statistical energy as a function 
of magnetic field strength. In two cases: the presence and absence of the 
donor impurity for ω0= 10meV, T = 0.5 K, and various values of R0 and 
d. We found that in the absence of the donor impurity ( α = 0 ), the 

curve of average statistical energy is smooth as it has no crossing in the 
energy levels when R0 = 0. In contrast, in the case of R0 = 15 nm, cusps 
appear in the curve due to the crossing of the energy levels. In the 
presence of the donor impurity (α = 1), we have displayed the curves of 
the average statistical energy for two values of d, d = 20nm, and d =

Fig. 2. Energy spectra as a function of the applied magnetic field in the absence of the impurity at ℏω0 = 10 meV and various values of R0: (a) R0 = 0 nm, (b) R0 

= 15 nm and (a) R0 = 20 nm. 
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50nm. For both curves, we can notice the cusps in the curves. The cusps 
in average statistical energy curves manifest themselves in the magnetic 
properties’ curves. 

3.4. Magnetization and magnetic susceptibility 

In Fig. 7, we have investigated the dependence of the magnetic 
properties (M and χ) on the magnetic field, at ω0= 10meV, T = 0.5 K and 

R0 = 15nm, for both cases: α = 0 and α = 1 and for different values of 
d. In Fig. 7(a), the cusps in the magnetization curves resulting from 
energy levels crossings can be noticed clearly. These cusps in the mag-
netic susceptibility curve can be seen in Fig. 7(b). In addition, we can 
notice in both figures, Fig. 7(a) and (b), that as d increases, the electron- 
impurity coulomb interaction decreases, so the levels crossing shifts to 
lower magnetic field strength. As a result, the cusps in the magnetic 
properties curves move to lower B values. 

Fig. 3. Energy spectra as a function of the applied magnetic field for α = 1 at ℏω0 = 10 meV, R0 = 15 nm and various values of d : (a) d = 0 nm, (b) d = 12 nm, and 
(a) d = 20 nm. 

Fig. 4. Impurity Binding energy for ω0 = 7 meV, as a function of (a,) impurity position d, (b) quantum ring radius R.  
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The contour plots of the magnetic susceptibility have been demon-
strated in Fig. 8. At T = 1K. The plot shows a diamagnetic-paramagnetic 
transition occurs at B ≈ 6.2T (7.6 T) in the absence (presence) of the 
impurity. For higher temperatures, the transition occurs at the lower 
magnetic field due to the spectral line shape of the magnetic suscepti-
bility. The present result is in agreement with a published work [45]. 

To show the effect of the impurity position on the susceptibility, the 

contour plot for χ, as a function of the magnetic field and off-center 
impurity position, is given in Fig. 9. The figure shows the significant 
effect of the impurity position in manipulating the dia-paramagnetic 
phase transition. In the case of the on-center impurity, the ground 
state energy shifts to a lower value, lifting the level crossings, which 
enhances the diamagnetic behavior of the material for all ranges of the 
magnetic field. On the other hand, as the impurity is moved away, the 
shift in the ground state decreases gradually. as a result, the transition 
point moves to a lower magnetic field value. Eventually, it converges to 
the magnetic field value (B ≈ 6.2T), the transition point in the absence 
of impurity, as previously mentioned. 

4. Conclusion 

In this work, we consider the Hamiltonian of a single electron 
moving in a two-dimensional (2D) quantum ring, taking into account 
the presence of an off-center impurity. We have used the shifted 1/N 
expansion method to solve the QR Hamiltonian and find the energy 
spectra as a function of the system parameters. In addition, the 
computed eigenvalues are used to calculate the statistical average en-
ergy, binding energy, magnetization, and magnetic susceptibility as a 
function of confinement strength, ring average radius, impurity loca-
tion, and temperature. It has been shown that the QR nanostructure 
generates ground-state transitions due to its geometric heterostructure, 
resulting in oscillatory magnetic behavior. Furthermore, the results 
show that energy level crossings depend on the QR radius and impurity 
location, attributed to the attraction-coulomb interaction between the 
confined electron and the donor impurity. 

Moreover, the results explain the dependence of the binding energy 
on the quantum ring radius, impurity position, and the applied magnetic 
field. We have found that the binding energy for the quantum dot 
(R0= 0) is more enhanced than the quantum ring. 

The crossings of the energy levels manifest themselves as oscillations 
in the magnetic properties of the QR system. We can conclude that the 
magnetization and the magnetic susceptibility peak positions depend on 
the QR radius and impurity location. As a result, changing the impurity 
position can manipulate the magnetic field value correspondence to 
these diamagnetic-paramagnetic phase transitions. 
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