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Abstract— This study investigates the use of WiFi signal 

strength for localization and navigation in low-cost robotic 

systems, focusing on indoor environments. Mathematical 

models are developed based on signal strength measurements, 

integrated with triangulation techniques for dynamic robot 

positioning. Both logarithmic and linear regression techniques 

are employed to determine the distances between the robot and 

access points. Through experimental verification, accurate 

localization abilities are showcased. Various navigation 

algorithms, including A*, are evaluated for effectiveness. 

Overall, this study presents a low-cost system for indoor 

autonomous positioning and navigation, with potential 

applications in home care, inventory management, and 

emergency support. 
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I. INTRODUCTION AND RELATED WORK 

The utilization of WiFi signal strength for localization 
and navigation purposes in low-cost systems is 
demonstrated in this study. The system can estimate the 
position of a moving robot dynamically which enables the 
use of such information in navigating indoor environments. 
The approach offers a promising solution for location-based 
services and indoor navigation systems, utilizing existing 
WiFi infrastructure for cost-effective implementations in 
robotic systems. 

Mathematical models are established which can 
accurately estimate the distance between transmitter and 
receiver based on signal strength measurements. This is then 
integrated to triangulation techniques to correctly calculate 
the exact location of a moving robot. Through experimental 
validation, the approach demonstrates effectiveness in 
providing precise localization.  

The study then demonstrated the application of various 
navigation algorithms for implementing in low-cost robots. 
Multiple algorithms are investigated and A* is demonstrated 
to show superior performance and effectiveness.  

Overall, the study demonstrates a complete integrated 
solution for localization and navigation and offers a cost-
efficient solution for various applications requiring 
autonomous positioning and navigation in indoor 
environments. 

The WiFi-fingerprinting method involves two phases: 
training for generating a fingerprint radio-map and 
estimation for determining user location. Traditional manual 
methods for radio-map creation are time-consuming and 
labor-intensive, especially in large areas. A contemporary 
solution is the automated robot-based method, where a robot 
collects RSS data to build the radio map, reducing time and 

effort [1,2]. Indoor robot-based solutions have diverse 
applications like home care, warehouse inventory 
management and emergency support [3,4,5].  

In our previous work [6], a robot equipped with multiple 
WiFi-transceiver nodes to construct an extensive dataset 
was demonstrated. Nodes collect Received Signal Strength 
Indicators (RSSI) at various heights, streaming data to an 
online database for localization analysis. The study focuses 
on factors like antenna height's impact on WiFi signal 
strength, aiming for a robust indoor localization system. 

Utilizing collected RSSI data and multilateration 
techniques to accurately determine unknown positions is 
demonstrated in [7]. It promises a straight-forward approach 
for location estimation called weighted three minimum 
distances method (WTM) in which a set of three distances is 
selected from a wider set of access points. This minimal set 
is then used in location estimation using triangulation 
technique. This study uses a similar approach for estimating 
the location of the robot with varying accuracies depending 
on many parameters including cell size, grid size, number of 
known anchor access points and number of collected 
samples per position to name a few. Different filtering 
techniques can be used to improve the quality of the 
collected dataset and subsequently the accuracy of the 
calculated localization information. Ref. [8] demonstrates 
the use of extended Kalman filer to ignore any outliers in 
the collected data samples. The authors of [9] proposes the 
use of outlier detection methods for removing the effect of 
such disproportionately erroneous distance estimates in 
location estimation using the RSSI. 

This study demonstrates a complete framework in which 
a fully autonomous low-cost robot is constructed for location 
estimation and navigation in indoor environments. First 
Section II introduces the robot along with its various 
subsystems, interfaces and sensors, then Section III 
introduces the selected AI algorithms that can be used in 
autonomous navigation, then Section IV discusses a 
localization technique based on triangulation of recorded 
WiFi signal strengths from a selected set of anchor access 
points, then Section V discusses the results of the 
localization and navigation experiments which were 
executed during this project, finally Section VI presents the 
conclusions and potential future work. 

II. AUTONOMOUS LOW-COST ROBOT CONSTRUCTION 

As part of this work, a completely autonomous robotic 
system was constructed to demonstrate the localization and 
navigation techniques proposed in the study. It would first 
collect all relevant WiFi-hotspot information from a 



predefined set of anchor WiFi access points throughout the 
desired indoor space. That information is then used by the 
localization algorithm described in Section IV. The 
localization formulae developed in Section IV along with 
the autonomous navigation techniques described Section III 
are then used to develop the embedded control firmware 
which is then configured on the Robot’s microcontroller to 
enable its function as an autonomous navigation system. 
The details of this robot long with the range of sensors, 
actuators and control sub-units are discussed in the 
remainder of this section. 

A. External Overview 

An overview of the robot can be seen in Fig. 1. The robot 
was housed in a sturdy and compact High-Density 
Fibreboard (HDF). This enabled the structure to contain all 
sensors and actuators needed for the robot, along with all 
control boards, power supplies and wiring while minimizing 
interference with the WiFi transceivers widely used in the 
project. The rest of this section outlines the different 
subsystems that make up the robot, providing a concise 
description of each. 

A set of four motors for controlling the movement of the 
robot were used for allowing the robot to move in a well-
controlled manner, be able to maneuver well and rotate 
freely in 360-degree angles while in position. 

A set of lithium batteries were used to power the motors 
through an H-Bridge sub-circuit. Three 3.7-volt cells were 
used in series to provide a collective voltage is 11.1-volt to 
the H-Bridge to power the motors.  

An additional 5-volt power sub-system was used to 
power the digital part of the system which includes the 
Arduino control sub-system, the ESP8266 [10] SoC used for 
localization and all other digital sensors and actuators used 
in the system. A separate power supply was used in this case 
to control the digital part of the system to minimize the 
noise interference usually associated by the motors and their 
drivers. 

The robot was quipped by set of sensors for collecting 
and storing environment metrics. Those included the water 
sensor, smoke sensor and humidity and temperature sensor 
set (DHT) to provide readings of the robot’s surrounding 
conditions that could impact the system or its users. The 
user can access those readings either by the mobile 
application developed specifically for interacting with the 
robot or by the LCD display integrated into the robot. The 
environment sensors can be used as an early notification 
mechanism in the case of alarming conditions within the 
indoor building in which it resides. 

An input-output subsystem comprising of a standard 
LCD display and keypad used for quick control of various 
functions of the robot from sensing, localization, and 
navigation. 

A camera module was also integrated to enable the 
control of the robot from an off-site location. For this 
purpose, the ESP32-CAM sub-system was configured in 
streaming mode which was viewable by the in-house 
developed mobile application.  

 

 
Figure 1 The complete autonomous navigating Robot 

This streaming functionality enables users to visualize the 
path taken by the robot and potentially interfere with the 
decisions taken by the robot if needed. This would enable 
the deployment of the robot in various applications 
including security monitoring, first-aid responding, learning 
assistance amongst other applications. 

A mobile application was developed from which all 
aspects of the robot can be observed and controlled. This 
provides an interface for both users and administrators. The 
application allows users to monitor surrounding conditions, 
including detecting emergencies such as fires, water spillage, 
alarming levels of humidity or temperatures, along with other 
indicators. It also served as a remote display for the camera 
streaming functionality. Finally, it enabled the control and 
observation of localization and navigation functionalities of 
the robot where users can track the location of the robot 
through the application and instruct the robot to navigate 
autonomously to a specific position chosen through the app. 

B. Schematic Description 

The schematic of the overall electronic system is depicted 
in Fig. 2. The main control board is an Arduino Mega sub-
system. The connections from the main control board 
towards the motor-control sub-circuit are achieved using 
two main control signals: one for the left-side motors and 
another for the right-side ones. The motor-drive signals are 
treated as analog signals using pulse-width modulation 
(PWD), which is sufficient to drive the robot to the 
designated position either for data-collection (which is used 
in development of the positioning algorithm) or for 
autonomous navigation. This enables the main control board 
to completely control the speed and direction of movement 
of the robot. 
The use of the Arduino Mega as a main control board was 
instrumental in creating a powerful and effective system with 
a multitude of peripherals integrated while maintaining the 
low-cost aspect of the system. 

III. AUTONOMOUS NAVIGATION  

In terms of robotics and grid-based navigation [11], the 
selection of algorithm can really influence the operational 
time and functionality of the robot mission. Two widely 
used methods, A* algorithm [12] and Uniform Cost Search 
(UCS) [13], have different routes for the consideration of 
the problem of the path that most optimally connects from 
the starting point to the goal point on a grid map. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

A. Uniform Cost Search 

Uniform Cost Method, as the name vouches for, is the search 
strategy that allows exploring the search space by picking the 
ones with the lowest cumulative cost. The expansion model 
ignores the cost and information of the goal state only, 
increasing the number of nodes with the priority determined 
according to the distance from the start point. 

However, this approach drives the process towards the 
shortest path, which often means that huge amounts of nodes 
are explored, thus resulting in greater computational 
complexity.  

B. A* Algorithm 

The A* algorithm differs from the uniform cost search by 
incorporating the strengths of both multi-variate search and 
goal-driven technology. By considering the cumulative node 
cost and an estimation of the node cost required to reach the 
desired goal, Algorithm A* strategically prioritizes node 
selection to efficiently achieve the goal using available 
resources. This heuristic approach often relies on distance 
measures such as Manhattan or Euclidean distances to guide 
movement and determine the next moves, thereby creating 
potential shortcuts in the search space and enhancing the 
overall efficiency of the underlying process. 

IV. TRILATERATION-BASED LOCALIZATION 

Trilateration is a fundamental technique used to 
determine the exact location of an object by measuring 
distances from three strategically placed stations, as depicted 
in Fig. 3. This method is widely employed in the field of 
robot localization, which has numerous practical 
applications. 

The problem at hand is presented as the challenge of 
finding the point where three circles intersect. This requires 
the identification of the solutions to the resulting system of 
quadratic equations. 

  (1) 
  (2) 
  (3) 

To determine the separation between the robot and the 
anchor access points, a suite of RSSI values is recorded and 
analyzed and then an estimation of the distance is made 
using a guided numerical regression where a formula is 
produced that relates a recorded RSSI value to the distance 
of a known access point. Those formulae are used at a later 
stage to enable approximate distances from the known access 
points to be calculated. Once these distances are calculated, 
trilateration according to Eqn. 1-3 is utilized to determine the 
approximate position of the robot within the specified grid 
coordinates. 

 
Figure 2. Robot overall circuit diagram 



 

Figure 2. Trilateration-Based Localization 

Figure 

3. Grid defining the anchor nodes positions 

Table 1 Collected RSSI values sample. 

Points RSSI 1 RSSI2 RSSI3 D1 D2 D3 

(22,22) 53 61 65 71.47027 115.1217 159.8061 

(67,22) 46 67 63 31.82766 131.3697 131.8825 

(112,22) 47 49 62 31.1127 159.1006 115.317 

(22,67) 60 58 63 95.46203 71.47027 131.8825 

(67,67) 53 53 56 70.83784 95.46203 96.16652 

(112,67) 52 54 55 70.5195 131.0267 71.7844 

(22,112) 61 66 61 131.0267 31.82766 115.317 

(67,112) 64 60 56 114.3372 70.83784 71.7844 

(112,112) 64 59 51 114.1403 114.3372 32.52691 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 

A. Automated collection of RSSI data 

To begin our experiment, a set of RSSI information is 
collected from three access points that were set up using a 
set of ESP8266 sub-systems that were strategically placed at 
predetermined locations. Following this, the robot was 
positioned at a set of known locations within a grid 
arrangement, as shown in Fig. 4. 

The scanning operation is then commenced for RSSI 
data, repeating the process for a duration of 20 to 30 
iterations per location. The purpose of this was to ensure 
that the data collected at each location remained consistent. 

To aid in this process, an additional ESP8266 module 
was utilized centrally to the robot. Each ESP8266 was 

assigned a unique SSID and configured to operate on a 
channel that did not overlap with the others in the system, 
thereby minimizing the likelihood of collisions occurring. 
Table 1 presents a sample of the gathered RSSI values. 
The data obtained for every individual position was 
subjected to outlier detection using box plots to detect and 
emphasize any abnormalities. This method ensures that our 
calculations are not affected by data points that deviate 
significantly from the overall set of measurements for each 
location. 

  
Figure 5. A comparison between A* and uniform cost search in grid word (a) A* (b) UCS 



V. RESULTS AND DISCUSSION 

The results of the various navigation and localization 
techniques are discussed in this section. 

A. Assessment of Navigation Algorithms 

A decision regarding whether to apply A* algorithm or a 
Uniform Cost Search algorithm to a robotic platform 
depends on parameters like the size of the grid, complexity 
of the environment, and the available computational 
resources. In cases where the environment is a simple one 
and the price of displacement between subsequent cells is 
identical, Uniform Cost Search might bring good 
competition with a low computational price. 

But, the more complex situations where the usual cost of 
movement varies or where there is a presence of barriers that 
cannot be avoided, A* algorithm stands apart. It enables this 
algorithm to narrow down the goal's heuristic information 
resulting to the best path with just minimal exploration of 
nodes. This means that in most of the actual usage, A* often 
shows better results than the Uniform Cost Search algorithm 
as regards both pathfinding speed and resource utilization. 

In the end, in grid navigation of robots, both A* 
algorithm and Uniform Cost Search represent tool cases that 
are able to fulfil very specific tasks based on the 
requirements and constraints of the given case. In any case, 
A* algorithm stands high chances to outperform in cases 
where execution time and fault tolerance count the most, 
thanks to using heuristic-driven mechanism to find its way 
through complicated settings. Fig. 5 presents a comparative 
analysis between the two algorithms. 

As shown in the figure, a comparative analysis has been 
conducted between two algorithms in a grid world 
environment. Both algorithms identified the best route, but 
A* tended to investigate fewer areas seeking the optimal 
path. Notably, the numbers in each square relate to how each 
algorithm works: A* depends on the estimated cost of the 
cheapest solution through node n (f(n)), while UCS relies on 
travel costs so far (g(n)). 

B. Evaluation of the Localization Algorithms 

After analyzing logarithmic and linear regression 
methods to calculate the distances between the robot and the 
access points, our objective was to identify the more 
effective approach. Upon analyzing the RSSI data from the 
anchor access points and the expected distances, the specific 
regression equations for each access point are numerically 
solved as demonstrated in Fig. 6 to 8. 

Using these formulae, the distance between every access 
point and the robot could be calculated at any position. 
Table 2 illustrates the distances calculated through 
logarithmic regression. Table 3 illustrates the distances 
calculated through linear regression. Table 4 provides the 
estimated locations based on the distance estimations 
obtained from both regression methods after applying the 
triangulation technique. The calculations using either 
regression showed similar results. However, when compared 
to the actual distance as shown in Table 1, there is some 
error, and that is due to the randomness that can occur in the 
RSSI values and environmental elements that could affect 
the values like reflections, obstacles, and moving objects 
within vicinity. 
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Figure 6. Logarithmic and Linear Regression for distance 

estimation between Robot and access point one. 
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Figure 7. Logarithmic and Linear Regression for distance 

estimation between Robot and access point two. 
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Figure 8. Logarithmic and Linear Regression for distance 

estimation between Robot and access point three. 

 
Table 2 Calculated distances using logarithmic regression. 

Points Calculated 

D1 

Calculated 

D2 

Calculated 

D3 

(22,22) 88.93465532 104.4407568 131.5208677 

(67,22) 65.30145642 113.9969194 124.1127273 

(112,22) 68.88958611 82.12846438 120.3199872 

(22,67) 109.6317977 99.30398604 124.1127273 

(67,67) 88.93465532 90.12140264 96.19329519 

(112,67) 85.756624 92.02534032 91.92216703 

(22,112) 112.3895729 112.4651958 116.4655738 

(67,112) 120.3995078 102.7571201 96.19329519 

(112,112) 120.3995078 101.0451857 74.02376617 

 
 
 
 



Table 3 Calculated distances using linear regression. 

Points Calculated D1 Calculated D2 Calculated D3 

(22,22) 82.6 107.919 140.035 

(67,22) 53.9 127.473 129.557 

(112,22) 58 68.811 124.318 

(22,67) 111.3 98.142 129.557 

(67,67) 82.6 81.847 92.884 

(112,67) 78.5 85.106 87.645 

(22,112) 115.4 124.214 119.079 

(67,112) 127.7 104.66 92.884 

(112,112) 127.7 101.401 66.689 

 
Table 4 Calculated location using the distance estimation from both regressions. 

Cell Points Calculated points 

using log regression 

Cell using log 

regression 

Calculated points 

using linear 

regression 

Cell using 

linear 

regression 

1 (22,22) (43.8, 55.6) 4 (38.01, 44.97) 1 

2 (67,22) (58.6, 44.2) 2 (65.51, 31.8) 2 

4 (22,67) (46.98, 76.8) 5 (41.01, 75.04) 4 

5 (67,67) (63.3, 78.9) 5 (60.4, 78.2) 5 

8 (67,112) (72.3, 100.3) 8 (76.1, 108.07) 8 

9 (112,112) (85.02, 110.05) 8 (89.1, 119.2) 8 

 

VI. CONCLUSION 

The study has provided valuable insights into the 
utilization of WiFi signal strength for localization and 
navigation in low-cost robotic systems operating in indoor 
environments. Through the utilization of mathematical 
models and the integration of triangulation techniques, we 
have successfully facilitated the dynamic positioning of 
robots. Our localization capabilities have been validated 
through experimental verification, showcasing a good 
accuracy and precision of our approach.  

Moreover, our evaluation of uniform cost search and A* 
navigation algorithms, notably A*, has shed light on their 
effectiveness in guiding robots through indoor spaces.  

In addition to the findings reported, one exciting path for 
future research is the use of neural network models to 
improve triangulation procedures. By using the power of 
artificial intelligence, we have the ability to improve the 
accuracy and efficiency of our localization systems. 
Incorporating neural networks into the triangulation process 
may allow the system to learn and adapt to changing 
environmental conditions, resulting in more robust and 
consistent localization outcomes. This approach has the 
potential to advance the capabilities of low-cost robotic 
systems in indoor navigation. 
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