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A B S T R A C T

The development of efficient hydrogen storage solutions is crucial for advancing the commercialization of 
hydrogen-based energy systems. Solid-state hydrogen storage is emerging as a highly promising method, 
attracting considerable interest and necessitating in-depth research efforts. This study systematically designs six 
novel solid-state hydrides: K2LiGaH6, K2LiInH6, K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6, using density 
functional theory (DFT). The objective is to thoroughly investigate their structural, elastic, opto-electronic, 
thermodynamic, and hydrogen storage characteristics. The dynamical stability was analyzed, and the resulting 
phonon dispersion curves confirm that these materials are stable. Furthermore, ab initio molecular dynamics 
(AIMD) simulations confirm the thermal stability of the hydrides at room temperature (300 K), as no structural 
deformation was observed. The band structure indicates that all materials exhibit indirect band gap semi-
conducting behavior, with band gap values spanning from 0.3 to 2 eV. Optical property analysis reveals that 
these hydrides are effective ultraviolet absorbers, with a noticeable red shift in the absorption edge can be 
observed resulting from the variations of bandgap. All the hydrides demonstrate mechanical stability and exhibit 
brittle characteristics. The calculated gravimetric hydrogen storage capacities indicate that K2LiGaH6 has the 
highest capacity at 3.22 wt%, followed by K2LiInH6 (2.60 wt%), Rb2LiGaH6 (2.16 wt%), K2LiTlH6 (1.88 wt%), 
and Rb2LiInH6 (1.86 wt%), with Rb2LiTlH6 having the lowest value at 1.46 wt%. A decrease in storage capacity is 
observed when the cationic atom at the Q and M site in Q2LiMH6 is replaced, due to differences in atomic radius. 
Overall, the findings of this study identify Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) as a viable candidate for next- 
generation hydrogen storage owing to its optimal gravimetric capacity and excellent stability.

1. Introduction

One of the greatest challenges faced by technologists and scientists in 
the 21st century is ensuring a reliable global energy supply. The global 
energy sector is confronting major challenges such as population 

growth, industrialization, and rising living standards drive higher en-
ergy demand and substantial carbon output linked to fossil fuel usage. In 
2008, global energy consumption reached 15 TW, and with the 
increasing population and industrial production, it is projected to nearly 
double by 2050 [1]. However, the majority of our energy supply still 
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comes from finite and non-renewable energy sources including coal, 
petroleum, and natural gas. Moreover, combustion of these 
non-renewable resources has led to severe ecological problems, such as 
contamination of air and water, alongside the escalating crisis of global 
warming. Given key factors such as the economy, environment, and 
human health, the rising energy demand must be met through renew-
able and sustainable sources. In this context, the decline of fossil fuel 
resources has spurred significant research into hydrogen (H2) as a sus-
tainable energy solution for the era beyond fossil fuels. So, there is 
widespread consensus that H2 could be the potential candidate for 
tackling the triple challenges of economy, environment, and human 
health. With a calorific value between 120 and 142 MJ/kg, hydrogen 
offers the greatest energy-to-mass ratio of any traditional fuel, ranking 
second in overall energy content [2]. H2 is regarded as a promising key 
energy source for the next generation, as it is non-toxic and capable of 
generating substantial power from natural sources like sunlight and 
water− both are clean, sustainable, and renewable. Therefore, it is now 
regarded as the primary energy solution and a versatile industrial 
resource, owing to its significant role in fostering a greener and more 
eco-friendly future for humanity [3].

In contrast to fossil fuels, hydrogen does not exist freely in the 
environment. However, hydrogen can be generated from a variety of 
primary energy sources and utilized as fuel, either by burning it in in-
ternal combustion engines or through conversion in fuel cells [4–7]. 
Once H2 is generated, it is possible to store it in the form of gas, liquid, or 
absorbed into a solid material. Although, all three storage methods have 
its benefits, storing hydrogen as a gas requires highly pressurized con-
tainers, which are expensive, while storing it as a liquid necessitates 
cooling it to an extremely low temperature of 20 K [8]. To address these 
challenges, researchers have focused on solid-state hydrogen storage 
techniques, which meet essential criteria such as cost-effectiveness, 
safety, mass, and power density for the viable application of hydrogen 
technologies [9]. Research on solid-state hydrogen storage primarily 
emphasize carbonaceous substances, metallic hydrides, and advanced 
hydride compounds [10–14]. Hydrogen retention in carbon-based sub-
stances occurs via physisorption, which necessitates a substantial pore 
volume to achieve efficient absorption. However, even though their pore 
dimensions are comparatively limited, carbon nanotubes exhibit high 
H2 storage densities [11]. Metallic hydrides form strong bonds with 
hydrogen, requiring elevated temperatures of approximately 120–200◦C 
to effectively release their stored hydrogen [15]. Metal hydrides, such as 
MgH2 and LiH, are widely recognized for their hydrogen storage capa-
bility, offering a gravimetric hydrogen density (GHD) of 5–8 wt% [15]. 
However, these hydrides face challenges due to their high 

thermodynamic stability and sluggish kinetics [16]. Furthermore, 
NaAlH4 [17–20], AlH3 [21], Mg(BH4)2 [22], and NaBH4 [23] are the 
hydrides that have met the 9 wt% gravimetric hydrogen storage targets 
set by the U.S. Department of Energy for 2015 [24–26]. Mg2NiH4 has 
garnered significant interest as a potential H2 fuel due to its notable 
storage capacity, cost-effectiveness, low density, minimal toxicity, and 
distinctive structural and bonding features [27,28].

Recently, perovskite hydride materials have gained significant in-
terest in the scientific community as potential options for hydrogen 
economy, owing to their remarkable gravimetric storage capacities. 
Perovskite-type hydrides are capable of absorbing and retaining 
hydrogen either at their surfaces or within their crystal lattices [29]. 
This makes them a promising candidate for overcoming the challenges 
related to the storage and transportation of gaseous H2. Xu et al. [30] 
investigated titanium-based hydride perovskites, reporting moderate 
gravimetric storage densities of 3.36 wt% for KTiH3, 2.22 wt% for 
RbTiH3, and 1.65 wt% for CsTiH3. Tahir et al. [31] explored XSnH3 (X =
K and Li) based simple cubic perovskites for hydrogen technology, 
reporting hydrogen densities between 1.88 and 2.35 wt%. Furthermore, 
numerous theoretical investigations have offered valuable understand-
ing into the stability and physical characteristics of hydrides, empha-
sizing their potential for hydrogen storage i.e. K2SnH6 (2.48 wt%) [32], 
Rb2GeH6 (2.09 wt%) [32], KNaMg2H6 (5.19 wt %) [33], Mg2FeH5 (4.61 
wt%) [13], Cs2CaCdH6 (1.39 wt %) [34], Rb2CaCdH6 (1.69 wt %) [34], 
Cs2SrTlH6 (1.61 wt %) [35], K2LiGaH6 (3.71 wt %) [36], Mg2LiCuH6 
(4.83 wt %) [37], Ca2LiCuH6 (3.86 wt %) [37], and Sr2LiCuH6 (2.40 wt 
%) [37]. This research has greatly enhanced the understanding and 
advancement of double perovskite materials for efficient H2 storage 
applications.

Motivated by findings from the literature review, this study utilized 
ab initio simulations to systematically and strategically design six novel 
solid-state double perovskite hydrides for hydrogen storage technolo-
gies. The structural, mechanical, thermodynamic, and optoelectronic 
properties, along with the hydrogen storage capabilities of Q2LiMH6 (Q 
= K, Rb; M = Ga, In, Tl), has been determined using a DFT approach on 
the basis of first principles calculation. To the best of our knowledge, the 
theoretical and experimental study of these features has not been un-
dertaken before, making this study a pioneering effort in examining 
these double perovskites. The results of this research broaden the scope 
by providing a more comprehensive and detailed understanding of the 
significance of perovskites in advancing hydrogen technologies for 
various industrial applications.

Fig. 1. Crystal structural representation of (a) the primitive and (b) the conventional unit cells of double perovskite hydrides (DPHs) Q2LiMH6 (Q = K, Rb; M = Ga, 
In, Tl) in the cubic phase, belonging to the Fm3m space group.
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2. Computational analysis

The first principles calculations were conducted using Density 
functional theory (DFT), implemented in Quantum ESPRESSO (QE) 
[38], which is based on the projector augmented wave (PAW) method. 
For QE calculations, ultrasoft pseudopotentials from the Garrity−
Bennett− Rabe− Vanderbilt (GBRV) library [39] was utilized to perform 
computations on single-cell unit of the perovskites. The Per-
dew–Burke–Ernzerhof (PBE) approximation within the generalized 
gradient approximation (GGA) [40,41] was applied to compute the 
exchange-correlation energy. Since the GGA functional typically un-
derestimates band gap values, the HSE06 hybrid functional [42,43], 
recognized for its enhanced accuracy in electronic structure calcula-
tions, was also utilized in this study. The simulation study identified the 
most stable structures with minimal energy using the BFGS algorithm, 
and all subsequent calculations were conducted on these optimized 
configurations. The wavefunction cutoff was fixed at 70 Ry, with a 
charge density cutoff of 700 Ry, and the convergence threshold for 
self-consistent field (SCF) calculations was set to 10⁻8 Ry. Optical 
properties are determined using the real and imaginary parts of the 
dielectric function through the Kramers-Kronig relations [44]. The 
elastic constants and other mechanical properties of the Q2LiMH6 (Q =
K, Rb; M = Ga, In, Tl) compounds were determined using the thermo_pw 
code [45], which utilizes the stress-strain approach. Phonon calculations 
were conducted using supercell and finite displacement methods, as 
implemented in the PHONOPY code [46]. A 2 × 2 × 2 supercell of the 
primitive unit cell, comprising 80 atoms, was employed with an atomic 
displacement of 0.01 Å for generating the phonon dispersion curve of 
the hydrides. The crystal structure modeling and visualization were 
carried out using XCrySDen [47] and VESTA software [48].

3. Results and discussion

3.1. Structural and hydrogen storage properties

Theoretical models of the Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) 
double perovskite hydrides (DPHs) series suggest that these perovskite 
materials crystallize in the Fm3m space group (No. 225), displaying a 
characteristic cubic structure. The crystal structure, both in its primitive 
and conventional forms, is displayed in Fig. 1a and b, respectively. The 

unit cell of these hydrides comprises four formula units, totaling 40 
atoms, with Q, Li, M, and H positioned at the Wyckoff sites 8c, 4b, 4a, 
and 24e, respectively. The structure can also be interpreted as a modi-
fied version of the ordered perovskite (ABX3) structure, where the B sites 
are evenly shared by Li and M atoms. The isolated [MH6]3− octahedra 
have hydrogen atoms directed toward the neighboring octahedral in-
terstices, which are occupied by Li atoms. The Li atoms are likewise 
octahedrally coordinated by six hydrogen atoms, while the interstitial 
sites are fully occupied by Q atoms, which are 12-coordinated with 
hydrogen atoms.

Structural relaxation calculations for all six DPHs, including shape, 
volume, and ionic positions, are conducted at 0 K within the primitive 
unit cell. The optimized structures of the six perovskites are then utilized 
to determine static energies associated with the given static volumes. 
Afterward, we found E(V) curves as displayed in Fig. 2a & b through the 
third-order Birch-Murnaghan equation of state using Eq. (1) [49,50]. 

E(V) = E0(V) +
BV
Bʹ

⎡

⎢
⎢
⎣

(
V0
V

)Bʹ

Bʹ − 1
+ 1

⎤

⎥
⎥
⎦ −

BV0

Bʹ − 1
(1) 

In Eq. (1), E(V) represents the material’s energy at a specific volume 
V, while E0 denotes the total energy of the unit cell. B corresponds to the 
bulk modulus, V0 is the equilibrium volume, and B′ signifies the 
pressure derivative of the bulk modulus. The internal parameter value is 
determined by identifying the point where total energy convergence 
occurs. Table 1 presents a summary of the static and equilibrium 
structural properties at 0 K and 0 GPa. The smallest lattice constant is for 
K2LiGaH6 (7.83 Å), and the largest lattice constant is for Rb2LiTlH6 (8.45 
Å). A rising trend in the lattice constant was noted, which is clearly 
attributed to the increasing atomic radii of the Q and M-site atoms. The 
unit cell volume follows a similar trend to that of the lattice constant; the 
calculated values can be found in Table 1. K2LiGaH6 appears to be the 
most stable among the compositions under study, owing to its higher 
ground-state energy (E0 = − 550.90 Ry). Furthermore, the bulk modulus 
(B) values follow the order K2LiGaH6 > Rb2LiGaH6 > K2LiInH6 >

K2LiTlH6 > Rb2LiInH6 > Rb2LiTlH6. With the highest bulk modulus, 
K2LiGaH6 is the most rigid compound among them.

The formation energies were calculated using Eq. (2), where EQ
tot, 

ELi
tot, E

M
tot, and EH2

tot represent the ground state energies for one Q atom, one 
Li atom, one M atom, and one H atom, respectively. EQ2LiMH6

total refers to the 
optimized total energy of Q2LiMH6 compounds. The calculated forma-
tion energies are − 1.75 Ry for K2LiGaH6, − 1.60 Ry for K2LiInH6, − 0.79 
Ry for K2LiTlH6, − 1.70 Ry for Rb2LiGaH6, − 1.56 Ry for Rb2LiInH6, and 
− 0.76 Ry for Rb2LiTlH6, suggesting that all the examined materials are 
thermodynamically stable and hold promise for feasible synthesis. 

EQ2LiMH6
form = EQ2LiMH6

total − (2EQ
tot+ ELi

tot+ EM
tot+3EH2

tot

)
(2) 

The gravimetric hydrogen storage capacity (GDH) of these com-
pounds needs to be examined in order to evaluate their potential for 
application in hydrogen technology. It refers to the quantity of hydrogen 

Fig. 2. Murnaghan fitted energy-volume graphs of Q2LiMH6 (Q = K, Rb; M =
Ga, In, Tl) hydrides.

Table 1 
The optimized lattice parameters (a, Å), volume (V, Å3), bulk modulus (B, GPa), 
pressure derivative of bulk modulus (B′), minimum energy (E0, Ry), formation 
energies (ΔHE, Ry) and H2 storage capacity (Cwt%, wt%) of Q2LiMH6 (Q = K, Rb; 
M = Ga, In, Tl).

Materials a V B B′ E0 ΔHE Cwt%

K2LiGaH6 7.83 480.05 29.41 3.19 − 550.90 − 1.75 3.22
K2LiInH6 8.10 531.44 26.50 3.01 − 269.01 − 1.60 2.60
K2LiTlH6 8.21 553.39 25.72 3.33 − 280.39 − 0.79 1.88
Rb2LiGaH6 8.11 533.41 27.12 4.63 − 533.41 − 1.70 2.16
Rb2LiInH6 8.36 584.28 24.73 4.11 − 261.34 − 1.56 1.86
Rb2LiTlH6 8.45 603.35 23.94 4.65 − 272.72 − 0.76 1.46
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Fig. 3. The band structure of Fm3m Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) HDPs is shown for GGA (red) and HSE06 (blue dashed). High-symmetry points in the 
Brillouin zone are labeled according to the conventions specified in Refs. [73,74]. The horizontal black dotted line denotes the Fermi level (EF).

Fig. 4. TDOS and PDOS of double perovskite hydrides: (a) K2LiGaH6, (b) K2LiInH6, (c) K2LiTlH6, (d) Rb2LiGaH6, (e) Rb2LiInH6, and (f) Rb2LiTlH6. The vertical black 
dotted marker represents the Fermi level (EF).
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that can be stored per unit weight of a given material. Table 1 presents 
the gravimetric hydrogen storage capacities of the analyzed perovskites, 
determined using Eq. (3). 

Cwt% =

⎛

⎜
⎝

(
H
M

)

mH

mHost +

(
H
M

)

mH

×100

⎞

⎟
⎠% (3) 

In Eq. (3), H
M is the hydrogen to material atom ratio, mH is the molar 

mass of hydrogen and mHost denotes the molar mass of the host sub-
stance. Based on the computed gravimetric densities, it is determined 
that K2LiGaH6 has the highest GDH value of 3.22 wt%, followed by 
K2LiInH6 at 2.60%, Rb2LiGaH6 at 2.16%, K2LiTlH6 at 1.88%, Rb2LiInH6 
at 1.86%, and Rb2LiTlH6 at 1.46%. When the Q and M atoms change 
from K to Rb and Ga to Tl, respectively, the GDH decreases due to the 
increase in the hydrides mass. Furthermore, the storage densities of 
these DPHs can be improved by using thin films and nanostructures with 
a larger surface area, offering greater storage potential in respect to their 
bulk counterparts [51].

3.2. Electronic properties

The electronic properties, including band structures and density of 
states (DOS), were determined across the high-symmetry directions 
within first Brillouin zone based on the optimized structural configu-
rations of Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) DPHs. Two different 
approaches were employed for this calculation: GGA-PBE (represented 
by the red solid line) and the HSE06 hybrid functional (depicted by the 
blue dotted line), as shown in Fig. 3 (a–f). It is widely recognized that 
conventional approximations, like GGA-PBE, typically underestimate 
the band gap values by around 40% when compared to result of ex-
periments [52,53]. In order to mitigate this limitation, the HSE06 
approximation was utilized, providing more accurate predictions of 
band gaps. The band structure of the targeted six materials has been 
predicted across the high-symmetry paths of the first Brillouin zone (Γ−
X− U|K− Γ− L− W− X), as illustrated in Fig. 3 (a–f). The obtained band 
gap (Eg) values using GGA-PBE (HSE06) approximations are 0.90 (1.88) 
eV for K2LiGaH6, 1.06 (1.98) eV for K2LiInH6, 0.00 (0.36) eV for 

K2LiTlH6, 0.91 (1.87) eV for Rb2LiGaH6, 1.08 (1.97) eV for Rb2LiInH6, 
and 0.00 (0.49) eV for Rb2LiTlH6, respectively. Depicted in Fig. 3 (a–f), 
the HSE06 method increases the accuracy of the band gap while main-
taining its nature unchanged compared to GGA-PBE. The GGA-PBE band 
structure of K2LiTlH6 and Rb2LiTlH6 exhibits no band gap, whereas the 
other four materials do. However, the HSE06 functional reveals that all 
DPHs have an indirect band gap, where the valence band maxima 
located at the X-point while conduction band minima at the Γ-point. 
Currently, there are no experimental results available regarding the Eg 
values of these DPHs for direct comparison with our simulation results; 
however, based on prior experience with the HSE06 functional, we 
expect that these simulation findings will provide essential reference 
points for upcoming experimental research.

Furthermore, the total and partial DOS calculations offer a more 
comprehensive understanding of the band structure and the electronic 
contributions of the materials. Fig. 4 presents the PDOS and TDOS of 
Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) within the energy span from − 7 to 7 
eV. The DOS graphs illustrate the distinct roles of Q, Li, M and H atoms 
across different energy states. As plotted in Fig. 4 (a–f), the valence 
bands of the perovskites, spanning − 7 eV to 0 eV, are primarily influ-
enced from H-s, and p-states of Q, Li, and M. On the contrary, within the 
energy spanning 0 eV to 7 eV, the conduction bands, are primarily 
occupied with s-states of Q, Li and M atoms, along with a minor role 
from H-s and Li-p orbitals. The above determined Eg values can be 
validated through analyzing TDOS of Q2LiMH6 as revealed in Fig. 4
(a–f).

3.3. Optical properties

Analyzing the optical behavior of solids is essential for understand-
ing how they respond to incident photons. The complex dielectric 
function (DF), ε(ω), quantifies how a solid reacts to an external elec-
tromagnetic (EM) field across varying frequencies (ω) and comprises two 
components: ε1(ω) and ε2(ω), as follows: 

ε(ω) = ε1(ω) + iε2(ω) (4) 

The real and imaginary portions of DF can be expressed by ε1(ω) and 
ε2(ω), respectively. These components can be determined using specific 

Fig. 5. Frequency-dependent (a & b) real and imaginary part of the dielectric function, ε(ω), (c) absorption coefficient α(ω) (in cm− 1), (d) reflectivity R(ω), (e) 
extinction coefficient k(ω), and (f) refractive index n(ω) for Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) hydrides.
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equations: 

ε1(ω) = 1 +
2
π P

∫ ∞

0

ωʹε2 (ωʹ)
ωʹ2 − ω2

dωʹ (5) 

P is the Cauchy integral. 

ε2(ω) =
(4π2e2)

(πω2m2)

∑

ij

∫ ∞

BZ

[
Mij(k)

]2

fi

(
1 − fj

)
δ
[
Ef − Ei − ω

]
d3k (6) 

In the formulae, Mij (k) represents the dipole matrix.
DF also has a direct relationship with the other optical parameters, 

covering absorption coefficient α(ω), reflectance R(ω), refractive index n 
(ω), and extinction coefficient k(ω). These properties are determined 
using the equations provided below: 

α(ω) =
̅̅̅̅̅̅̅
2ω

√
[

− ε1(ω) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
1(ω) + ε2

2(ω)
√ ]1/2

(7) 

R(ω) =
⃒
⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅
ε(ω)

√
− 1

̅̅̅̅̅̅̅̅̅̅
ε(ω)

√
+ 1

⃒
⃒
⃒
⃒

2

(8) 

n(ω) =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2

1(ω) + ε2
2(ω)

√
+ ε1(ω)

2

]1
2

(9) 

k(ω) =
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
1(ω) + ε2

2(ω)
√

− ε1(ω)

2

]1
2

(10) 

Fig. 5(a) illustrates the real components of DF for Q2LiMH6 (Q = K, 
Rb; M = Ga, In, Tl) hydrides. The static DF ε1(0) of K2LiGaH6, K2LiInH6, 
K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6 are 4.18, 4.19, 5.05, 
4.24, 4.21, and 4.89 respectively. Furthermore, the peak values of ε1(ω) 
for K2LiGaH6, K2LiInH6, K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and 
Rb2LiTlH6 are 9.73 (at 4.74 eV), 9.80 (at 4.63 eV), 8.73 (at 3.98 eV), 
10.12 (at 4.40 eV), 9.73 (at 4.38 eV), and 9.09 (at 3.85 eV), respectively. 
The presence of some negative values for these HDPs suggests limited 
transmission and optical loss at a specific photon energy [54,55]. 
Additionally, ε1(ω) of DF may become negative once the frequency of the 
imposed EM field surpasses the plasma frequency of the substance. 
Consequently, the electrons are not able to interact efficiently with the 
external electric field, leading the substance to behave as an ideal 
reflector [56]. In Fig. 5(b), ε2(ω) of DF for Q2LiMH6 (Q = K, Rb; M = Ga, 
In, Tl) initially rises and then declines as energy increases within the 
lower energy range. The peak values for the hydrides K2LiGaH6, 
K2LiInH6, K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6 in the X axis 
are recorded as 10.14 at 5.15 eV, 9.99 at 4.95 eV, 10.39 at 4.50 eV, 8.60 
at 4.94 eV, 9.84 at 4.81 eV, and 10.39 at 4.41 eV, respectively.

The absorption coefficient α(ω), indicates the extent to which a 
material absorbs incident light at its surface. Fig. 5(c) demonstrates the 
absorption spectra for the studied materials, showing their variation in 
relation to photon energy. The absorption edges for all hydrides are 
initially zero at zero incident photon energy and then appear at energy 
corresponding to the respective Eg values. Also, all materials exhibit no 
significant peak within visible range; instead, they appear in the ultra-
violet area, indicating their role as UV absorbers. The K2LiGaH6 com-
pound exhibits the highest absorption rate of 1.10 × 106 cm− 1 at 6.37 
eV, surpassing other hydrides within ultraviolet spectrum. The reflec-
tivity R(ω) is determined using Eq. (8), which determines how effec-
tively a material reflects incoming light and is strongly affected by its 
electronic properties [57]. As shown in Fig. 5d, K2LiTlH6 demonstrates 
the highest reflectivity, reaching 40% at 4.72 eV, indicating strong light 
reflection in this range. The static reflectance at zero eV of K2LiGaH6, 
K2LiInH6, K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6 are 0.118, 

0.117, 0.147, 0.12, 0.118, and 0.142 accordingly.
The extinction coefficient k(ω) serves as an essential fundamental 

parameter that quantifies a material’s ability to intake EM radiation at 
specific frequencies [58]. It is the imaginary part of the refractive index 
n(ω), characterizes how an electromagnetic wave propagates and at-
tenuates within a solid [59]. It is evident that the extinction coefficient k 
(ω) shows a similar trend to ε2(ω), while the refractive index n(ω) aligns 
with the variation of ε1(ω) with respect to photon energies, as depicted 
in Fig. 5a & b. The value of n(ω = 0) exceeding 1 indicates that the speed 
of light in the examined perovskites is reduced compared to its speed in a 
vacuum [60]. Notably, the peaks of n(ω) for all hydrides fall in the range 
of 4 eV to 6 eV, with K2LiTlH6 showing the maximum peak value around 
4.72 eV, while Rb2LiTlH6, K2LiGaH6, K2LiInH6, Rb2LiInH6, and Rb2Li-
GaH6 display progressively lower peaks.

3.4. Elastic and mechanical properties

Elastic constants (ECs) serve as crucial elements in comprehending 
the way crystals respond to applied stress, offering insight into the 
solid’s mechanical characteristics [29]. The strength and stability of a 
material can be assessed by measuring these ECs. All six hydrides possess 
a cubic lattice arrangement, which are characterized with three elastic 
constants − C11, C12, and C44 − employed to evaluate mechanical sta-
bility based on Born’s criterion. Table 2 indicates that the elastic con-
stants of Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) satisfy the Born-Huang 
criterion [61] in Eq. (11) for cubic crystals. Therefore, all six materials 
satisfy the requirements for mechanical stability as per the Born criteria 
and exhibit excellent stability during hydrogenation and dehydrogena-
tion processes. 

C11 > 0, C11 − C12 > 0, C11 + 2C12 > 0 and C11 > B0 > C12 (11) 

C11 signifies the material’s capacity to resist deformation under 
longitudinal stress, C12 reflects the response to transverse strain, 
whereas C44 expresses to material’s hardness, particularly in terms of 
shear deformation under an external load. Table 2 illustrates the C11 
values for the analyzed double perovskites are ordered as follows: 
K2LiGaH6 > Rb2LiGaH6 > K2LiInH6 > Rb2LiInH6 > Rb2LiTlH6 >

K2LiTlH6. The elastic constant C11 value is highest for K2LiGaH6 (59.92 
GPa) and lowest for K2LiTlH6 (36.67 GPa). This indicates that K2LiGaH6 
possesses the greatest resistance to longitudinal deformation, making it 
the hardest among the studied materials, whereas K2LiTlH6 is compar-
atively soft due to its minimal resistance to longitudinal deformation.

The estimated ECs values for crystalline materials enable the calcu-
lation of elastic moduli, which define various mechanical properties of 
polycrystalline compounds. The elastic moduli, including bulk modulus 
(B), shear modulus (G), Young’s modulus and Poisson’s ratio v, has been 
determined using the Voigt-Reuss-Hill (VRH) assumptions by utilizing 
the following relations: 

B = Bv = BR =
(C11 + 2C12)

3
(12) 

Table 2 
Elastic constant (Cij, GPa) of Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl).

Materials C11 C12 C44

K2LiGaH6 59.92 19.81 38.91
K2LiInH6 48.41 12.89 31.37
K2LiTlH6 36.67 17.65 28.43
Rb2LiGaH6 55.54 21.01 37.29
Rb2LiInH6 44.45 12.56 31.38
Rb2LiTlH6 43.97 21.91 28.85
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BH =
(BR + Bv)

2
(13) 

Gv =
C11 − C12 + 3C44

5
(14) 

GR =
5C44 (C11 − C12)

4C44 + 3(C11 − C12)
(15) 

GH =
(GR + Gv)

2
(16) 

Afterward, the young modulus (Y), and Poisson’s ratio (v) were 
determined utilizing Hill’s approximations for the shear and bulk 
moduli. 

Y =
9BG

3B + G
(17) 

v =
3B − 2G

2(3B + G)
(18) 

The bulk modulus (B) reflects a material’s ability to resist compres-
sion when pressure is applied. As presented in Table 3, K2LiGaH6 ex-
hibits the highest B value, indicating its superior resistance to 

compression. Conversely, Rb2LiInH6 possesses the minimal B value, 
indicating that it is the highly compressible of the analyzed perovskites. 
The shear modulus (G) represents a substance’s opposition to defor-
mation under shear force. As observed in Table 3, K2LiGaH6 exhibits the 
highest G values compared to the other materials studied, which aligns 
with the obtained B values. Young’s modulus (E) measures the stiffness 
of a solid material. Its value was calculated using Eq. (17), and the 
outcomes are presented within Table 3. It was observed that K2LiGaH6 
(68.81 GPa) exhibits the maximum Y value, followed by Rb2LiGaH6 
(64.07 GPa), K2LiInH6 (56.03 GPa), Rb2LiInH6 (53.36 GPa), Rb2LiTlH6 
(48.03 GPa), and K2LiTlH6 (43.73 GPa) which has the lowest value. 
However, as far as the author is aware, no relevant data is available in 
the literature for comparison.

A more detailed evaluation of whether a perovskite exhibits ductile 
or brittle behavior can be examined utilizing three parameters: Pugh’s 
criteria (B/G ratio), Poisson’s ratio (v), and Cauchy pressure (Cp). Cau-
chy pressure (Cp), defined as the difference between C11 and C44, acts as 
a measure of a substance’s mechanical properties− a positive result 
suggests a ductile nature, whereas a negative result implies a brittle 
characteristic. As displayed in Table 3, the negative Cp results demon-
strate that all the studied hydrides exhibit brittle behavior. Based on 
Frantsevich et al.’s [62] criterion for Poisson’s ratio, a compound is 
considered ductile if ν > 0.26, whereas brittle if ν < 0.26. The calculated 
Poisson’s ratio for Q2LiMH6 is less than 0.26, indicating that these ma-
terials display a tendency toward brittleness, as shown in Table 3. 
Another essential parameter is the Pugh ratio (B/G), which acts as a key 
indicator for distinguishing between brittle and ductile characteristics in 
a substance. Materials with a B/G ratio of less than 1.75 are classified as 
brittle, while those with a B/G ratio exceeding 1.75 demonstrate 
ductility. In this study, all the compounds analyzed show brittleness 
with B/G ratios below 1.75, consistent with Poisson’s ratio and Cauchy 
pressure results.

In various technological applications, the anisotropic nature of 
crystal structures plays a crucial role, significantly influencing key 

Table 3 
Mechanical attributes of Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl).

Materials B G E Cp = C12−

C44

ν B/G A

K2LiGaH6 33.18 29.82 68.81 − 19.10 0.154 1.112 1.940
K2LiInH6 24.73 24.97 56.03 − 18.48 0.122 0.990 1.766
K2LiTlH6 23.99 18.35 43.73 − 10.78 0.192 1.307 2.989
Rb2LiGaH6 32.52 27.37 64.07 − 16.28 0.171 1.188 2.159
Rb2LiInH6 23.19 23.91 53.36 − 18.82 0.116 0.969 1.968
Rb2LiTlH6 29.27 19.62 48.03 − 6.94 0.224 1.491 2.615

Fig. 6. The phonon dispersion curves of (a) K2LiGaH6, (b) K2LiInH6, (c) K2LiTlH6, (d) Rb2LiGaH6, (e) Rb2LiInH6, and (f) Rb2LiTlH6.

A. Hosen et al.                                                                                                                                                                                                                                   Surfaces and Interfaces 67 (2025) 106608 

7 



phenomena like phonon modes and plastic deformation [63]. Moreover, 
the anisotropy factor (A) serves as crucial indicator for understanding 
the extent of anisotropy in a material. A deviation of the anisotropy 
factor (A) from one indicates an anisotropic system, while a value equal 
to one signifies isotropy. The anisotropic factor of the materials was 
calculated using Eq. (19), revealing anisotropic behavior consistent with 
findings reported for similar materials in existing literature [34–37]. 

A =
2C44

C11 − C12
(19) 

3.5. Vibrational and thermodynamic properties

Phonon dispersion analysis is essential for evaluating the structural 
stability of crystals and understanding how vibrational modes influence 
thermodynamic behavior [64]. Currently, no experimental data is 
available on the acoustic characteristics of double perovskite hydrides 
Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl). Thus, determining the phonon 
stability of these hydrides through computational analysis, such as DFT, 
is crucial. The 2 × 2 × 2 supercells generated for six compounds were 
utilized in Quantum Espresso, and the phonon dispersion graphs have 
been determined utilizing the linear response approach. As illustrated in 
Fig. 6(a–f), the absence of negative frequencies throughout the Brillouin 
region, especially at the gamma-point, verifies the dynamic stability for 
all the analyzed hydride materials. Dynamically stable materials typi-
cally enable cyclic hydrogen absorption, allowing repeated hydrogen 
storage and release while reducing degradation or performance loss 
[65]. Notably, the maximum phonon frequencies for K2LiGaH6, 
K2LiInH6, K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6 are found to 
be 27.67 THz, 32.57 THz, 34.18 THz, 37.98 THz, 33.48 THz, and 29.14 
THz, respectively. As highlighted in previous studies [66,67], hydrogen, 
as the least dense constituent in the materials, contributes to elevated 
frequencies, whereas the lower frequencies are primarily governed by 
the heavier atoms K, Rb, Ga, In and Tl.

Afterward, utilizing processed phonon information along with uti-
lizing the quasi-harmonic Debye framework, the thermodynamic pa-

rameters of cubic Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) HDPs have been 
calculated, encompassing entropy (S), heat capacity (Cv), energy (E), 
and free energy (F) [68]. The equations based on the quasi-harmonic 
Debye model are presented below: 

S(T)=kB

{∫
ℏω/kBT

exp(ℏω/kBT) − 1
F(ω)dω−

∫

F(ω)ln[1− exp(− ℏω/kBT)]dω
}

(20) 

CV(T) = kB

∫
(ℏω/kBT)2exp(ℏω/kBT)

[exp(ℏω/kBT)− 1]2
F(ω)dω (21) 

E(T) = Etot + Ezp +

∫
ℏω

exp(ℏω/kBT)
F(ω)dω (22) 

F(T) = Etot + Ezp + kBT
∫

F(ω)ln[1 − exp(− ℏω / kBT)] dω (23) 

In the given equation, kB stands for the Boltzmann constant, while ℏ 
represents Planck’s constant. The function F(ω) corresponds to the 
phonon density of states, and T denotes the temperature of the Q2LiMH6 
hydrides. Furthermore, Etot and Ezp refer to the total energy and zero- 
point energy of these hydrides, respectively. Fig. 7(a–f) display the 
trends in thermodynamic parameters within the 0–1000 K temperature 
span. The thermodynamic properties for all six studied materials exhibit 
a similar overall trend. Entropy provides information about the level of 
randomness within a crystal and, as temperature increases, thermal vi-
brations intensify, leading to greater disorder within the system [66]. As 
shown in the entropy plot in Fig. 7, when temperature nears its minimal 
possible value (0 K), its internal energy drops substantially. It indicates 
that upon reaching zero temperature, entropy almost disappears, in 
harmony with the 3rd law of thermodynamics, denoting an exceptionally 
organized crystal system within all hydrides [69,70]. The influence of 
temperature variations on the vibrational contributions to the specific 
heat capacities (Cv) for all compounds has been analyzed and presented 
in Fig. 7. The plot reveals a rapid increase in Cv up to approximately 600 
K, followed by a plateau, indicating the onset of the Dulong-Petit limit 

Fig. 7. Variation of entropy, constant heat capacity, energy and free energy in relation to temperature curves for Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl) hydrides.
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[71]. Below 650 K, the specific heat capacities of compounds vary 
significantly with temperature and approach zero at 0 K. Furthermore, 
our observations indicate that for all six hydrides, the energy curves 
increase, whereas the free energy curves decrease as the temperature 
rises.

3.6. Molecular dynamic simulation

AIMD investigations gas been performed at room temperature (300 
K) for the cubic hydride Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl), main-
taining this temperature for a duration of 5 ps (5000 fs). The robustness 
of these double perovskites was assessed through the analysis of fluc-
tuations in total energy in relation to time. A system is considered 
thermally stable and structurally ordered if the total energy exhibits 
only minor fluctuations around a constant value [72]. As shown in Fig. 8
(a-f), the energy profiles of all hydrides indicate that they remain rela-
tively stable throughout the 5 ps simulation, exhibiting only slight 
fluctuations. Consequently, this discussion draws the outcome that 
Q2LiMH6 hydrides exhibit thermal stability. These insights improve our 
understanding of these hydrides behavior in real-world applications, 
especially in contexts where thermal stability is essential for hydrogen 
storage systems and other energy-related advancements.

4. Conclusion

This research investigates the hydrogen storage capabilities and 
physical characteristics of six newly designed double perovskite hy-
drides, Q2LiMH6 (Q = K, Rb; M = Ga, In, Tl), through first-principles 
calculations. The structural stability of the compounds was first evalu-
ated through geometry optimization. The resulting crystal structures 
exhibited a stable cubic configuration, with lattice constants of 7.83 Å, 
8.10 Å, 8.21 Å, 8.11 Å, 8.36 Å, and 8.45 Å for K2LiGaH6, K2LiInH6, 
K2LiTlH6, Rb2LiGaH6, Rb2LiInH6, and Rb2LiTlH6, respectively. The 
exchange-correlation effects were considered utilizing the GGA and 
HSE06 approximations. The band structure analysis confirmed that all 
the investigated compounds exhibit semiconducting behavior with an 
indirect band gap. The optical characteristics of these hydrides suggest 
that they possess high efficiency in UV energy absorption. The brittle 
nature of these compounds has been predominantly identified through 
the analysis of Cauchy pressure, Poisson’s ratio, and the B/G ratio. Also, 
K2LiGaH6 is identified to be the hardest substance within the examined 
DPHs. Various thermodynamic parameters, including free energy, 

enthalpy, entropy, and heat capacity, are calculated in relation to 
functions of temperature and the findings reveal that enthalpy along 
with entropy rises as temperature elevates, whereas free energy de-
clines. The gravimetric hydrogen densities (GDH) are 3.22 wt% for 
K2LiGaH6, 2.60 wt% for K2LiInH6, 2.16 wt% for Rb2LiGaH6, 1.88 wt% 
for K2LiTlH6, 1.86 wt% for Rb2LiInH6, and 1.46 wt% for Rb2LiTlH6. 
K2LiGaH6 exhibits outstanding H2 storage potential within the investi-
gated materials, making it a promising option in the field of H2 tech-
nologies. Unfortunately, no existing reference data is available for 
comparison. As far as the author’s understanding goes, this research 
represents the first comprehensive theoretical investigation of these 
double perovskite hydrides. Thus, this study serves as a valuable foun-
dation for next-generation theoretical and experimental research and 
comparisons.
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