
A Leader-Follower Communication Protocol for
Multi-Agent Robotic Systems

Lubna Najjar
Computer Engineering Department

An-Najah National University
Nablus, Palestine

lubna najjar@yahoo.co.uk

Noor Johari
Computer Engineering Department

An-Najah National University
Nablus, Palestine

noor-johari@outlook.com

Manar Qamhieh
Computer Engineering Department

An-Najah National University
Nablus, Palestine

m.qamhieh@najah.edu

Abstract—The implementation of multi-agent robotic systems
is becoming a trending technology due to its useful applications
that require the coordination between multiple robots without
external interference from humans. Such systems require the
combination of successful communication, artificial intelligence
and self-organization. In this paper, a new leader-follower com-
munication protocol is proposed, implemented upon wireless
communication to establish the coordination between multiple
robots. The communication protocol specifies the message format
between a leader robot and its followers in the system while tak-
ing into consideration some practical considerations like obstacle
avoidance and communication loss scenarios. The correctness of
the proposed communication protocol is tested on two robotic
cars using Arduino microcontroller boards and nrf24l01 wireless
module.

Index Terms—leader-follower, multi-agent robots, communica-
tion protocol, communication networks, Arduino robots.

I. INTRODUCTION

Daily life requirements are becoming more and more de-

manding to the point where human efforts alone are not

enough to keep up with these rapid demands. Hence, a

trend towards robotics and automated embedded systems has

emerged in the last decade as a solution to human demands

in many life sectors such as agriculture, environmental moni-

toring, military tasks and many other applications.

The evolution of robotics has already started to penetrate

humans daily life [1], [2]. There are many robotic applications

ranging from small systems such as nanorobotics [3] that

are used mainly in medical treatments, to vast systems that

are used for agriculture, manufacturing, transportation and

aerospace applications [4], [5].

One trending example of robotics is multi-agent or swarm

robots which are defined as a group of collaborative and

coordinated robots that are programmed to perform certain

tasks without the necessity for human interaction or com-

manding. Inspired from the behaviour of some animals, insects

and birds, swarm robots usually follow a leader-follower

relationship, in which one unit of the group is designated as

a leader that issues controls to the rest of units to follow. In

order to implement successful leader-follower robots, some

techniques should be implemented, such as Artificial Intelli-

gence (AI) logic, efficient network communication and high-

quality hardware.

The aim of this paper is to design a multi-agent robotic

system that consists of at least two robots based on leader-

follower approach. The main contribution of this paper is the

innovative design of the communication protocol that defines

the format of exchanged messages between the leader and its

followers which is implemented over a wireless transmission

channel. The proposed communication protocol provides a

two-way communication between leader and followers while

taking into consideration some practical issues regarding

sensing the environment for obstacles and communication

problems. Two car robots were designed to test the correctness

of the communication protocol. The hardware specification

of robots is designed mainly using Arduino microcontroller

boards, nrf24l01 wireless module as a communication channel

between robots and a set of ultra-sonic sensors to detect

obstacles nearby in the environment.

This paper is organized as follows; Section II summarizes

the major researches done previously related to our leader-

follower approach. Section III describes in details our leader-

follower communication protocol and Section IV discusses

some practical considerations such as communication problem

and obstacles. Then Section V describes briefly the hardware

implementation of two actual robot cars designed to test

the communication protocol. Finally, Section VI provides a

conclusion of the paper and some possible future work.

II. RELATED WORK

The idea of robot design began in the 1960s, but it is not

until the 1980s when robots were used in industrial operations

[6]. They were used as a solution to many technical problems

in important sectors such as manufacturing, agriculture, trans-

portation and others [7]. Hence, robotic applications usually

need a high level of artificial intelligence in order to be

successful specially when these applications involve critical

tasks such as in scientific and medical domains [8].

One example of robotic applications is swarm robots or

multi-agent robots [9]–[12] which has been recently one

of the most trending research topics in automation control

and robotics. A multi-agent system consists of a number of

autonomous agents (robots) with coordinated behaviour in

order to perform collective tasks. The coordination between

robots requires a particular agent acting as a leader to steer

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

������ !�"���#�� $��$%!�&���'��������� 742



the other agents of the system (followers). Challenges such as

tracking control of multiple mobile robots, self-organization

techniques and environment sensing features require a so-

phisticated leader-follower communication protocol. There are

many possible implementations for such protocol like using

cameras [13], proximity sensors [14] and absolute location

sensing using GPS [15].

One interesting technique for leader-follower communica-

tion uses wireless transmission systems. The idea is to use low-

priced easy-to-use wireless communication modules between

the leader and its followers to establish a reliable coordination

through formatted message exchange. For example, a leader-

follower architecture that uses multiple communication pro-

tocols was implemented in [16] in order to control several

follower devices with artificial intelligence. Likewise, Rosner
et al. [17] provided a leader-follower system that assumes

fault tolerant communication. While Dimargonas et al. [18]

proposed a leader-follower cooperative architecture where

multiple leaders are involved in a decentralized heterogeneous

system with feedback control feature.

This review of related researches demonstrates that leader-

follower systems are not limited to one type of architecture and

can be applied in swarm robots and multi-agent systems. In

the following sections, a new generic leader-follower protocol

over wireless communication is presented between one leader

and multiple follower agents with environment sensing and

feedback features that can be easily integrated in swarm

robotic systems.

III. LEADER-FOLLOWER COMMUNICATION PROTOCOL

In this section, the generalized communication protocol

is explained based on the leader-follower architecture of a

multi-agent robotic system. This communication protocol is

implemented over wireless transmission between agents and

it defines the messaging format exchanged between the leader

and followers that ensures correct transmission, automated

control, reception feedback and environment sensing features.

In the first step of the communication protocol, the leader

agent has to establish a reliable communication with its

followers in the system in order to control their actions and

movements. Then, the leader should be aware of any arising

problems in the environment such as communication loss

or obstacle detection and avoidance techniques. The detailed

format of the proposed communication protocol is discussed

in the following subsections and the hardware implementation

of the system is provided later on in Section V.

A. Leader Message Format: Request Message

The leader agent can initiate the communication with the

followers by broadcasting a request message over wireless

transmission. The leader message has many purposes:

• Send a command1 to a specific follower.

• Broadcast a command to all followers in range.

1Implemented commands so far are: move forward, backward, turn right,
left and stop.

• Solve problems related to the leader such as communi-

cation loss with followers or obstacle avoidance.

Fig. 1. Leader Request Format

The leader message format is shown in Figure 1 and its

fields are explained as follows:

• Request ID: A unique ID to identify each request sent by

the leader.

• Follower ID: The ID of a specific follower to whom the

request is sent. A special broadcast ID is applied here

for all followers to receive the message. This field can be

expanded to support an unlimited number of followers.

• Category ID: An ID to define the type of request. Until

now, two categories were implemented as follows:

– Movement Control (ID = 0).

– Check Movement Possibility (ID = 1).

• Movement Type: The type of movement that the follower

has to execute (move forward, backward, left, right and

stop).

• Stepper Motor Elements2: Specific movement data re-

quired for the follower to keep up with the leader.

– Motor speed.

– Motor acceleration.

– Distance: The distance for the follower to move.

• Leader Actual Distance: The actual distance moved by

the leader. This data is used only when the follower

encounters an obstacle. Otherwise, this field is unused.

• Leader Error Status: An error ID to indicate the status of

the leader system:

– No error (ID = 0).

– Obstacle error (ID = 1).

– Communication error (ID = 2).

• Is Command Available: This flag is used when the

follower faces an obstacle and the leader is required to

communicate with the follower to check which command

the follower can execute (more details in Section IV).

Otherwise, this field is unused.

Fig. 2. Follower Response Format

2Stepper motors are used in the hardware design of the wheels of robots.

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

743



B. Follower Message Format: Response Message

A follower agent usually communicates with the leader’s

request by sending a feedback response message or a trap

message to report a local problem at follower’s side.

The format of the response message is shown in Figure 2

and its fields are explained as follows:

• Response ID: Message’s ID that corresponds to the

request ID (from leader’s request message).

• Follower ID: The ID of the follower that sends this

message.

• Category ID: Same field from leader request message.

• Movement Type: The type of movement that the follower

should execute.

• Follower Error Status: An error ID to indicate the status

of the follower system:

– No error (ID = 0).

– Obstacle error (ID = 1).

It is worth mentioning that all fields of leader and follower

messages have variable length and can be generalized and

expanded to include any future categories and features. Hence,

the architecture of this proposed communication protocol is

general and scalable.

IV. PRACTICAL CONSIDERATIONS AND CASES

After describing the format of exchanged messages of the

leader-follower communication protocol, this section explains

the application of the protocol while taking into consideration

some practical cases that may face the agents of the system.

These cases include the ideal case where no errors encounter

the leader and the followers. The second case considers the

problem of obstacle avoidance on the leader side and how

artificial intelligence is used to allow the leader to steer its

followers into avoiding any obstacles. Respectively, the third

case considers the obstacle avoidance on the follower side.

Finally the communication loss case is considered when the

leader loses communication with one of its followers.

A. The Ideal Case

In this case and after the leader establishes a successful

connection with the follower, it starts sending commands to

the follower so as to control its movement. After each control

request from the leader, the follower has to respond with a

feedback message once it completes the requested command.

There are no problems considered in this case, hence the

follower must mimic the movement of the leader. The ideal

case scenario is demonstrated in Figure 3.

In the ideal case, the leader stores the generated request in

a queue based on the Request ID. Then it sends the request

message to the follower and it increments the Request ID

afterwards so as to ensure a unique request ID. Finally the

command is executed by the leader.

The follower receives the leader request, parses it, and stores

each field of the request in local variables in a queue based

on the Request ID. Then the follower starts executing the

command, and it sends a feedback response once the execution

Fig. 3. Ideal Case

is done. In the ideal case, it is assumed that there are no

problems in the execution of the command and, hence, the

Follower Error Status is set to 0 in the response message.

B. Leader Obstacle-Avoidance Case

This case considers that the leader faces an obstacle while

a command is being executed. Hence, the leader should use

artificial intelligence so as to find an alternative path to avoid

the obstacle. At the same time, the leader should inform the

follower of the new commands. A flow diagram of this case

scenario is shown in Figure 4.

Fig. 4. Leader Obstacle-Avoidance Case

While the leader is executing a movement command, it

constantly checks for obstacles by using ultrasonic sensors

(hardware design to be explained later) which were set to

detect obstacles at 30 cm distance. When an obstacle is

detected, the leader immediately stops its current task, creates

a request message whose Leader Error Status is set to 1,

Leader Actual Distance is set to the actual distance moved

by the leader before aborting and stop command is set as

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

744



Movement Type. Then the leader sends this message to the

follower.

As for the follower and during its execution of the received

command, it performs a continuous check for abort messages

from the leader. When an abort message is received, the

follower immediately stops the current command, parses the

message and stores the fields in local variables. The follower

then uses the data from Leader Actual Distance to calculate

how much distance was not executed by the follower due to

the abort message. Afterwards, the follower continues to move

until the Leader Actual Distance is reached, then the follower

stops and waits for the next command from the leader.

C. Follower Obstacle-Avoidance Case

This case deals with obstacle avoidance performed by the

follower. It happens when the follower is executing a command

received from the leader, and it faces an obstacle. Hence, the

follower has to inform and guide the leader in avoiding the

obstacle by using an artificial intelligence algorithm. The flow

diagram of this scenario is described in Figure 5.

Fig. 5. Follower Obstacle-Avoidance Case

As mentioned previously in Subsection IV-A, when the

follower finishes performing a command, a feedback is gen-

erated and sent back to the leader. It should be mentioned

that the follower does not send this feedback response unless

the command has been completed fully and successfully

without any obstacles or problems. However, if an obstacle is

detected at follower’s side, it responds with the same format

of the Feedback Response Protocol, with the only difference

being that the Follower Error Status is equal to 1, making

this response a trap command. The follower also traces the

command steps that had been executed, before the obstacle

was confronted.

Whenever the leader receives a feedback response, the

leader parses this message and checks the value of the Fol-
lower Error Status. If it is equal to 1, the leader immediately

stops movement and retrieves these commands from the queue

according to the current Request Id and movement type fields.

Next, the leader starts communicating to avoid the obsta-

cle by checking with the follower which movement type is

currently available to move. Each command has a different

priority based on the command that initiated this scenario.

This was implemented in order to be able to avoid the

obstacle while ensuring that the leader does not get far off its

initial target path. The different commands along with their

corresponding priorities are shown in Table I.

Command
Priority Degree

1 2 3
Forward Right Left Backward

Backward Right Left Forward
Right Left Forward Backward
Left Right Forward Backward

TABLE I
PRIORITY DEGREE TABLE

According to command priorities, an algorithm was intro-

duced in this research in order to detect and avoid obstacles

effectively and intelligently. This process is fully automated

and does not require human interference. Through continuous

communication between the leader and follower, a correct path

will be chosen to avoid obstacles and return to the leaders

target path. This algorithm is summarized in Figure 6.

The automated communication between the leader and the

follower is implemented with the leader transmitting the same

Leader Request message that was introduced previously in

Subsection III-A, but with slight changes such as setting the

Category Id to 1 and enabling the IsCommandAvailable field

to verify that the command requested by leader is acceptable to

be performed by the follower. Then the follower responds with

the regular Feedback Response Format mentioned previously

and sets the Follower Error Status according to whether

the received command can be executed or not. When the

leader receives this feedback, the availability of performing

this command can be known by checking the Follower Error
Status. If the follower responds that the command can be

performed, both the leader and follower execute the command.

However, if the follower responds that the command cannot

be executed, due to another obstacle being in the path, the

leader reruns this process by proposing the next command

based on the priority order in Table I. When all options are

explored, the process is retried, and it will keep getting retried

until a suitable obstacle-free path is found.

D. Communication Loss Case

According to the proposed communication protocol archi-

tecture, the leader agent should maintain a valid communica-

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

745



Fig. 6. Check Command Availability

tion between all of its followers at all times. Hence, all robot

agents of the system move together to perform a certain task

or operation. So, when the leader sends a request and fails

to receive a feedback response message from a follower, this

is an indication that there is a communication loss problem

due to a hardware malfunctioning at the follower’s side. The

following algorithm steps are performed:

• The leader broadcasts a request message with Leader
Error Status set to 2 (communication loss error flag).

• Any follower receives this message immediately aborts

its current command.

• The leader traces a specific number of commands so as

to ensure the correctness of the system.

• The leader waits for a certain amount of time and then

tries to reconnect with the follower.

– If the connection is regained successfully, the sys-

tem resumes normally starting from the initial state

before the connection was lost, and the leader clears

the Leader Error Status to 0, indicating that there

are no communication problem anymore.

– If the connection is still down, the leader traces

commands back until it reaches the last successful

command executed by the malfunctioning follower.

If the connection problem persists, the leader reports

the problem to the administrator of the system.

The flow diagram of the communication loss case is shown

in Figure 7.

Fig. 7. Communication Loss Case

V. EXPERIMENTAL HARDWARE DESIGN

After explaining the leader-follower communication proto-

col and algorithm, a multi-agent hardware robotic system is

designed to test and prove the correctness of the architecture.

The system consists of two robotic cars, one of them serves

as the leader agent and the other serves as a follower. Extra

follower robots can be added to the system simply without

changing the current hardware design. There is no difference

in the hardware design between the leader and the follower

robotic cars, but they differ only in their software so as to im-

plement the leader-follower communication protocol described

earlier in Section III.
Each robotic car consists of the following modules:

• Controller Module: An Arduino MEGA-2560 develop-

ment board is used as the core controller of the car and

it is programmed using Arduino Software. This module

is responsible for interfacing and controlling the other

modules in the system.

• Motion Module: It consists of four stepper motors with

L298N H-Bridge Motor Drivers for the control of the

wheels. Stepper motors were chosen so as to guarantee

accurate wheel movement for better coordination between

the leader and followers.

• Communication Module: A nRF24L01 wireless

transceiver is used in each car to establish a wireless

connection between the leader and followers. The

nRF24L01 transceiver is a low-cost module that

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

746



communicates with the controller module through SPI

protocol.

• Sensory Module: Each car is equipped with ultrasonic

sensors for environment sensing and for obstacle de-

tection. The cars were programmed to detect objects at

distances equal to 30cm.

• Power Module: Each car is equipped with a battery of 9v

and 1.8A which provides enough power for all hardware

modules.

Figure 8 shows the designed robotic car.

Fig. 8. Robotic Car

By using the designed robotic cars, the communication

protocol was tested successfully. The leader agent was pro-

grammed to move to a specific target location remotely using a

mobile application and the follower agent followed the leader’s

movements. Both cars were able to arrive at the destination

successfully. The practical application scenarios described in

Section IV were tested as well. A demo of the experiment,

which includes four videos of the cases described in Section

IV is available at [19].

The first video shows the ideal case where the leader-

follower protocol is executed without errors. The second video

shows the leader encountering various obstacles and how it

deals with this scenario. The leader stops its movement and

instructs the follower to stop instantly as well. The third video

presents the follower facing an obstacle and by communicating

with the leader, both agents coordinate their movement so as

to avoid this obstacle without disorienting from their target

destination. The final video shows the follower’s battery being

disconnected, and how the leader detects communication loss

problem and traces back to the follower promptly so as to

move apart from each other.

VI. CONCLUSION AND FUTURE WORK

The importance of leader-follower systems in the world

of robotics is inarguable. They can be implemented in many

domains such as transportation, agriculture, aerospace systems

and much more so as to facilitate human life in the future.

The main objective of this research was to build a system

that includes a powerful and generic communication protocol

that allows a fully automated coordination between a leader

device and any number of follower devices that are part of

robotic system. Although the system was tested for movement

controls so far, it was designed in a generic way so that new

controls and operations can be added easily in the future.

In the future, a more sophisticated environment sensing can

be improved by using image processing so as to develop a

more intelligent avoidance protocol. Also, it is possible to use

other modules for positioning and geo-locationing so as to

improve the placement of robots such as GPS modules and

electronic compasses.

REFERENCES

[1] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, no. 1-4, pp. 113–126,
2001.

[2] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection science, vol. 15, no. 4, pp. 151–190,
2003.

[3] R. A. Freitas, “Current status of nanomedicine and medical
nanorobotics,” Journal of computational and theoretical nanoscience,
vol. 2, no. 1, pp. 1–25, 2005.

[4] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2016.

[5] J. Billingsley, A. Visala, and M. Dunn, “Robotics in agriculture and
forestry,” in Springer handbook of robotics. Springer, 2008, pp. 1065–
1077.

[6] M. W. Spong, S. Hutchinson, M. Vidyasagar et al., Robot modeling and
control. Wiley New York, 2006, vol. 3.

[7] J. J. Craig, Introduction to robotics: mechanics and control. Pear-
son/Prentice Hall Upper Saddle River, NJ, USA:, 2005, vol. 3.

[8] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[9] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, “A survey
on recent advances in distributed sampled-data cooperative control of
multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–1701, 2018.

[10] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of
multi-agent systems: A brief survey,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 6, pp. 4972–4983, 2017.

[11] B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader–
follower dynamic network with switching topology,” IEEE Transactions
on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008.

[12] E. Şahin, “Swarm robotics: From sources of inspiration to domains of
application,” in International workshop on swarm robotics. Springer,
2004, pp. 10–20.

[13] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision-
based, distributed control laws for motion coordination of nonholonomic
robots,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 851–860,
2009.

[14] J. F. Roberts, T. S. Stirling, J.-C. Zufferey, and D. Floreano, “2.5 d
infrared range and bearing system for collective robotics,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Confer-
ence on. IEEE, 2009, pp. 3659–3664.

[15] C. Zhang, N. Noguchi, and L. Yang, “Leader–follower system using two
robot tractors to improve work efficiency,” Computers and Electronics
in Agriculture, vol. 121, pp. 269–281, 2016.

[16] L. E. Rosner, K. Rajaiah, K. D. Pedersen, J. Krisciunas, M. Culler,
V. Kertesz, and J. A. Wolf, “Fault tolerant communication monitor for
a master/slave system,” Oct. 2 2001, uS Patent 6,298,376.

[17] A. W. Blackett, B. J. Gilbert, and M. A. Hancock, “Method and system
for master slave protocol communication in an intelligent electronic
device,” Sep. 14 2004, uS Patent 6,792,337.

[18] D. V. Dimarogonas, P. Tsiotras, and K. J. Kyriakopoulos, “Leader–
follower cooperative attitude control of multiple rigid bodies,” Systems
& Control Letters, vol. 58, no. 6, pp. 429–435, 2009.

[19] Experiment demo. https : / / drive . google . com / open ? id =
1hO6QT1uzxGrjWEvVbYoB8CMi40LGQILe. Accessed: 2019-01-
17.

����������	
��
��������
��
�
��	
�����
���������
����������
��������������
������
��
��
�������
�
����	�����

747


