The Journal of Systems and Software 234 (2026) 112728

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

journal homepage: www.elsevier.com/locate/jss

An architecture framework for architecting IoT applications: From design

to deployment

Moamin Abughazala

ab* Mohammad Sharaf

b

2 Mai Abusair ¥ 2, Henry Muccini

2 Department of Computer Science Apprenticeship, An-Najah University, Palestine
b Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy

ARTICLE INFO

Editor: Dr. Christoph Treude

Keywords:

Internet of Things

Software Architecture
Model-Driven Engineering
Multi-View Architectural Modeling
Architecture-to-Code Generation

ABSTRACT

Context - The Internet of Things (IoT) refers to a distributed network of smart, connected devices that collabora-
tively sense, process, and act upon real-world environments. Designing such systems requires managing complex
architectural concerns spanning software logic, hardware configuration, and spatial deployment, as well as vali-
dating non-functional properties like energy consumption and communication efficiency. Objective - To provide
a unified, architecture-centric framework that supports the description, simulation, and automated code gener-
ation of IoT applications across software, hardware, and physical space dimensions. Method - We use Model
Driven Engineering(MDE) approaches to develop CAPS, a framework that uniquely integrates multi-view archi-
tectural modeling, energy- and traffic-aware simulation via CupCarbon, and seamless generation of deployable
Arduino code from high-level design models. Result - CAPS enables a traceable and cohesive development pro-
cess from architectural design to physical deployment. Case studies from diverse domains demonstrate its ability
to improve modeling expressiveness, maintain transformation fidelity, and reduce development time through
automation. Conclusion - CAPS unifies architectural modeling, simulation, and code generation into a novel,
end-to-end toolchain, addressing fragmentation in the IoT development lifecycle and enhancing early validation

and traceability.

1. Introduction

The Internet of Things (IoT) is a rapidly growing field with the poten-
tial to change how we engage with our surroundings (Sundmaeker et al.,
2010). It transforms everyday objects into a connected, intelligent net-
work of devices that can exchange data and automate processes across a
vast array of environments. From smart cities that monitor and optimize
traffic flow to precision agriculture that provides real-time data on crop
health, IoT systems are increasingly becoming the backbone of digital
infrastructure (Malavolta et al., 2015).

Designing IoT systems, however, is challenging due to the inher-
ent complexity of integrating diverse cyber-physical components and
ensuring seamless interaction between software, hardware, and phys-
ical spaces. IoT developers must coordinate software behavior, hard-
ware limitations, network interactions, and environmental conditions
that influence performance, energy efficiency, and usability. Additional
difficulties arise from maintaining consistency across design artifacts,
evaluating non-functional properties early in the lifecycle, and ensuring
traceability from architectural models to executable implementations

* Corresponding author.

(McEwen and Cassimally, 2013; Abdmeziem et al., 2015; Jajodia et al.,
2010).

Existing tools and frameworks typically address only subsets of
these concerns. For example, ThingML supports model-driven devel-
opment of embedded software components and partial code genera-
tion (Harrand et al., 2016); UML4IoT (Thramboulidis and Christoulakis,
2016) and CHESSIOT (Thirwe et al., 2023) provide modeling con-
structs for software architecture abstraction in the IoT domain; and
CupCarbon (Bounceur, 2016) enables the simulation of wireless sen-
sor networks with spatial deployment and energy analysis. Yet these
tools are often used in isolation and rarely offer unified, end-to-end
support spanning architectural modeling, simulation, hardware spec-
ification, spatial deployment, and automated code generation. The
resulting fragmentation yields disjointed workflows, repeated man-
ual specification, and limited validation of system-wide behavior in
early stages. A unified, architecture-centric framework that integrates
software, hardware, and physical domains-while ensuring semantic
consistency and traceability across the development lifecycle-remains
lacking.

E-mail addresses: moamin.abughazalal @univagq.it, m.abughazaleh@najah.edu (M. Abughazala), sharaf@najah.edu (M. Sharaf), mabuseir@najah.edu (M.

Abusair), henry. muccini@univagq.it (H. Muccini).

https://doi.org/10.1016/j.jss.2025.112728

Received 20 March 2025; Received in revised form 31 October 2025; Accepted 1 December 2025

Available online 10 December 2025

0164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0003-4946-6269

$\leftrightarrow $

$\leftrightarrow $

$\rightarrow $

$\rightarrow $

$\leftrightarrow $

$\leftrightarrow $

CO_2

CO_2

CO_2

CO_2

CO_2

CO_2

${\rm CO_2}$

${\rm CO_2}$

CO_2

CO_2

CO_2

CO_2

CO_2

CO_2

100

$\mathrm {min}$

$\approx $

1.67

$\mathrm {h}$

0.601

$\mathrm {Wh}$

1.452

$\mathrm {Wh}$

0.465

$\mathrm {Wh}$

$\sim 42\,\%$

$\leq 15\,\%$

$E(m)$

$m \in \{\texttt {Normal}, \texttt {Eco}, \texttt {ExtremeEco}\}$

$\texttt {ExtremeEco} < \texttt {Eco} < \texttt {Normal}$

$\hat {E}(m) = E(m) / E(\texttt {Normal})$

$\texttt {ExtremeEco} < \texttt {Eco} < \texttt {Normal}$

$\texttt {ExtremeEco} < \texttt {Eco} < \texttt {Normal}$

0.464

0.311

0.189

$_2$

$_2$

~ 95

< 100

$O(N{+}E)$

N

$O(N{+}E)$

≤ 50

$\leq k$

https://orcid.org/0009-0008-8155-7105
https://orcid.org/0009-0005-9832-113X
https://orcid.org/0000-0001-6365-6515
mailto:moamin.abughazala1@univaq.it
mailto:m.abughazaleh@najah.edu
mailto:sharaf@najah.edu
mailto:mabuseir@najah.edu
mailto:henry.muccini@univaq.it
https://doi.org/10.1016/j.jss.2025.112728
https://doi.org/10.1016/j.jss.2025.112728
http://creativecommons.org/licenses/by/4.0/

M. Abughazala et al.

To address this gap, we introduce CAPS (Cyber-physical Architec-
tural Platform for IoT). This unified, model-driven engineering frame-
work integrates architectural modeling, simulation, and deployment
within a single, architecture-centric workflow. CAPS adopts a multi-
view approach aligned with domain-specific concerns: software logic,
hardware topology, and spatial deployment. It provides traceable transfor-
mations between these views, supports simulation of energy consump-
tion and communication traffic via CupCarbon, and generates Arduino-
compatible deployment code directly from the model, enabling early
validation and streamlined transition to implementation.

Beyond integrating our earlier CAPS results, this journal article uses
Mapping View Modeling Languag MAPML/ Deployment View Model-
ing Language DEPML for end-to-end cross-view traceability, formalized
model-to-simulation and model-to-code transformation pipelines based
on versioned, semantics-aware templates, and a Textual Modeling Lan-
guage (TML) with IDE-backed static checks. It further broadens the em-
pirical evaluation (three case studies and transformation conformance
checks) and adds a systematic comparison to the state of the art. We sign-
post reused background versus extended/new material in Sections 3-6
and report quantitative evidence in Sections 8-11.

Novel contributions of this journal extension include:.

e Multi-view architectural modeling: CAPS integrates software
(SAML), hardware (HWML), and physical space (SPML) in line with
ISO/IEC/IEEE 42010 (ISO/IEC/IEEE, 2022).

e Cross-view traceability: Two auxiliary languages-MAPML (model-
artifact provenance) and DEPML (dependency and deployment
flow)-capture structural and semantic links across views and gen-
erated artifacts, supporting consistency checks and traceable trans-
formations.

¢ Formalized transformation pipelines: We define and operational-

ize metamodel-driven, template-based transformations from models

to CupCarbon simulation artifacts and to deployable C+ + /Arduino
code, preserving behavioral semantics such as timing behavior, sens-
ing/tx frequency, and energy modes.

Executable simulation for early validation: CAPS automatically

generates simulation artifacts for CupCarbon, enabling design-time

exploration of network traffic, radio propagation, energy consump-
tion, and deployment feasibility.

Textual Modeling Language (TML): We introduce a textual DSL

and accompanying editor that complements graphical modeling with

features such as autocompletion, static checks, model previews, and
scalability to large system designs.

¢ Comprehensive evaluation across real-world case studies: We
evaluate CAPS on three real CPS deployments (NdR, UFFIZI,
VASARI), demonstrating model-to-code correctness, simulation/de-
ployment consistency, and energy-behavior trend preservation.

¢ Systematic comparative analysis: We position CAPS relative to ex-
isting MDE frameworks (ThingML, UML4IoT, etc.), highlighting its
broader scope, deeper integration of physical aspects, and bidirec-
tional traceability (see Tables 10-11).

This journal version unifies previously separate prototypes into a
single, traceable toolchain; uses MAPML/DEPML for cross-view inte-
gration; elevates TML; formalizes the model-to-simulation and model-
to-code pipelines; and expands both empirical evaluation and compara-
tive analysis to meet journal-level novelty and rigor. These capabilities
ensure consistency across views, support design-space exploration, and
simplify the transition from model to deployment. CAPS further distin-
guishes itself by supporting physical-space modeling with attenuation-
aware deployment-an aspect absent from most existing IoT modeling
frameworks. This enables informed architectural decisions based on sim-
ulation feedback while reducing manual development overhead.

Finally, we present the design and implementation of CAPS and eval-
uate its capabilities through three real-world case studies: NdR (a smart

The Journal of Systems & Software 234 (2026) 112728

event), UFFIZI (museum crowd management), and VASARI (urban mon-
itoring). These case studies demonstrate flexibility, usability, and effec-
tiveness from early design to physical deployment.

The rest of the paper is organized as follows: Section 2 provides back-
ground information on the IEEE/ISO/IEC 42,010 architecture descrip-
tion standard, the CupCarbon Simulator, and Prior Foundations. Sec-
tion 3 presents an overview of the. Section 4 presents the modeling lan-
guages. Section 5 details the simulation approach, its process, and the
transformational approach. Section 6 presents the Arduino code gener-
ation process and tool. Section 7 applies the modeling, simulation, and
Arduino code generation approach to the UnivAq Street Science appli-
cation. Section 8 shows the evaluation, while Section 10 discusses some
results. Section 11 presents related work. Finally, Section 12 concludes
the paper.

2. Background & prior foundations

This section summarizes the standards and tools relevant to our work
(Sections 2.1 and 2.2) and clarifies how earlier CAPS artifacts relate
to this journal version, including the gaps it addresses (Section 2.3).
We explicitly distinguish material recapped for completeness from the
elements that are extended or newly introduced later (Sections 4-6) and
evaluated comparatively and empirically (Sections 11-8).

2.1. Standards background: ISO/IEC/IEEE 42010

CAPS builds upon ISO/IEC/IEEE 42010:2022, Systems and software
engineering-Architecture description (ISO/IEC/IEEE, 2022), which struc-
tures architecture descriptions in terms of stakeholders, concerns, view-
points, views, and correspondence rules. Fig. 1 illustrates the content
model prescribed by the standard, which we operationalize via multi-
ple architectural views and explicit correspondence across them. The
core metamodels (SAML/HWML/SPML) summarized later follow this
scheme and are included here for context; the journal-specific additions
(traceability models and formalized pipelines) are introduced in Sec-
tions 4 and 6.

2.2. Tools background: CupCarbon IoT/WSN simulator

CupCarbon (Bounceur, 2016) is an open-source platform for model-
ing and simulating [oT/WSN deployments (e.g., smart-city scenarios). It
supports multiple wireless standards (e.g., Wi-Fi, ZigBee, LoRa) and en-
ables early assessment of energy consumption, data traffic, and spatial lay-
outs prior to physical deployment. These capabilities make it a suitable
target for our model-to-simulation transformations used to reason about
non-functional properties early in the design process (see Section 5).

2.3. Prior CAPS foundations and gap analysis

Earlier publications presented (i) CAPS multi-view modeling con-
cepts and editors (software, hardware, and spatial views), (ii) a proto-
type transformation to CupCarbon for simulation, and (iii) a prototype
Arduino code generator (Muccini and Sharaf, 2017b; Sharaf et al., 2017,
2018a) Sharaf et al. (2017). These artifacts established the feasibility of
an architecture-centric approach across parts of the IoT lifecycle and are
recapped here for completeness.

Despite these foundations, important limitations remained:

e Absence of a unified toolchain with explicit cross-view correspon-
dence to maintain consistency across software, hardware, and spatial
deployment.

¢ Transformations not formalized as metamodel-driven, template-based
pipelines with semantics notes or invariants for modes, ports, and
links.

o Lack of a first-class textual workflow to complement graphical editing
for modeling at scale.

M. Abughazala et al.

Environment

is situated in

The Journal of Systems & Software 234 (2026) 112728

Entity of Interest

1

Stakeholder identifies

identifies

expresses

1 Architecture
Rationale

1 Architecture

Perspective 1.0

identifies

Description
5 \ 0.*

Correspondence

4 1 Correspondence
frames Hetnod
1
Ar - governs Archi Architecture
Viewpoint ; View ed i Aspect
1 1.°
1
Model 1 View L d
Kind Component caem
govermns

Fig. 1. Content model of an architecture description (following ISO/IEC/IEEE 42010:2022).

No systematic comparative positioning against prominent IoT MDE
frameworks.
Limited quantitative evaluation beyond single-case demonstrations.

This journal article addresses the above by:

Utilizing auxiliary mapping languages MAPML (model-artifact prove-
nance across software-to-hardware) and DEPML (dependency/flow
across hardware-to-space) to enable end-to-end cross-view traceability
within a single framework (Section 4).

Formalizing ~ metamodel-driven, template-based = model-to-
simulation and model-to-code transformation pipelines with
semantics-aware constraints (timing, port multiplicity, energy
modes, spatial attenuation) (Sections 5 and 6).

Presenting a Textual Modeling Language (TML) with IDE support
(autocomplete, static checks, auto-validation) as a scalable counter-
part to graphical editors (Section 4.3).

Providing a broadened evaluation (three real-world case stud-
ies), a user study on modeling productivity, and transformation-
conformance checks aligning simulation with deployed behavior
(Section 8).

conducting a systematic comparative analysis that positions CAPS
relative to established IoT MDE frameworks, with quantitative cov-
erage and traceability metrics (Section 11).

For clarity, Table 1 maps prior artifacts to their identified gaps and to
the elements contributed by this journal version.

3. Overview

This research presents (Cyber-physical Architectural Platform for
IoT) as a unified, model-driven toolchain that spans multi-view architec-

tural modeling, cross-view traceability, simulation, and deployable code
generation within a single framework. Unlike approaches that treat soft-
ware, hardware, or deployment in isolation, CAPS integrates software
behavior, hardware topology, and spatial deployment into a cohesive
multi-view architecture. Fig. 2 provides an overview of the CAPS frame-
work, showing the flow from architectural modeling through traceabil-
ity, simulation, and code generation.

Modeling IoT systems must address diverse stakeholder concerns
(e.g., software engineers, integrators, IoT specialists, and spatial mod-
elers) and non-functional goals such as energy efficiency, communica-
tion reliability, and environmental coverage (Fig. 3). IoT designs are
strongly influenced by time and space, bringing challenges like data ex-
change frequency, coverage constraints, topology selection, and power
consumption. addresses these concerns by defining and integrating three
viewpoints derived from ISO/IEC/IEEE 42010 (ISO/IEC/IEEE, 2022)
and insights from prior work on adaptive and component-based IoT sys-
tems (Malavolta et al., 2015; Crnkovic et al., 2016):

e SAML (Software Architecture Modeling Language): component in-
teractions, communication patterns, and behavioral modes;

e HWML (Hardware Architecture Modeling Language): device capa-
bilities, energy sources/usage, sensors/actuators, and connectivity;

e SPML (Spatial Deployment Modeling Language): physical arrange-
ment of nodes, range, and attenuation in the target environment.

3.1. Modeling

The CAPS framework introduces a multi-view architectural modeling
approach structured around three primary viewpoints. It utilizes the aux-
iliary mapping languages MAPML (software < hardware) and DEPML
(hardware < space) to maintain cross-view traceability and present

M. Abughazala et al.

Table 1

The Journal of Systems & Software 234 (2026) 112728

From prototypes to the journal article: prior CAPS artifacts, identified gaps, and the additions provided here.

Prior item Gap

This journal article adds

Multi-view modeling

Model-to-simulation
Model-to-code (Arduino) Default mappings unclear
Graphical editing only

Limited empirical evaluation
comparative evidence
No systematic comparative positioning
frameworks

Weak traceability between views

Ad-hoc scripts; missing semantics

Limited scalability for large models
Only single-case demonstrations; lacked

Fragmented relation to existing MDE

MAPML/DEPML MAPML/DEPML for explicit cross-view
mapping (Section 4)

Formalized transformation pipeline (Section 5)
Semantics-aware, traceable model-to-code pipeline
(Section 6)

Textual Modeling Language (TML) with IDE support
(Sections 4, 6)

Three case studies, simulation-deployment comparisons,
and energy-behavior consistency validation (Section 8)
Comparative analysis Quantitative comparison against
ThingML, UML4IoT, CHESSIoT, showing broader scope
and integration (Section 11)

CAPS MODELING
FRAMEWORK

=

MAPML

(4] — &)
SAML E_E_E SPML

HWML
i System . i
Architect Engineer Cyber-Physical

Space Designer

DEPML _’

ARDUINO CODE
GENERATION

@ RESULTS ¢

Fig. 2. Overview of the CAPS framework.

a Textual Modeling Language with IDE support (autocomplete, static
checks, auto-validation) as a first-class, scalable counterpart to graphi-
cal editors.

The three viewpoints (SAML, HWML, SPML), originally introduced in
prior work (Muccini and Sharaf, 2017b), are systematically integrated
here into a unified, executable framework. This integration allows stake-
holders to explore designs holistically and to keep software, hardware,
and spatial decisions consistent through explicit correspondence rules
and mappings. Section 4 details the modeling stack, including the role
of MAPML/DEPML and TML in high-throughput editing and reuse.

3.2. Simulation

We formalize a metamodel-driven, template-based model-to-
simulation pipeline with the aim of preserving behavioral semantics
for modes, ports, and links, improving repeatability and fidelity over
earlier generators.
integrates CupCarbon to evaluate candidate architectures under realistic
deployment conditions, enabling early assessment of energy consumption

and data traffic and supporting design-space exploration before physical
rollout. Section 5 details the simulation process and the transformation
pipeline.

3.3. Arduino code generation

We systematize the model — code pipeline (Arduino) with explicit
protocol defaults and traceable mappings from architectural constructs
to executable behavior.
transforms architectural models into deployable Arduino-compatible
code, aligning implementation with design decisions and reducing de-
velopment effort through automation and reuse. Section 6 describes the
code generation process and its role in ensuring implementation consis-
tency with the modeled architecture.

4. CAPS modeling framework

The CAPS modeling framework enables a structured, multi-layered ar-
chitectural description of IoT systems. It separates concerns into three

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

CAPS Architecture Framework

Stakeholders and Concerns

Definition of

Architecture Description

l

(= H

SAML,HWML,SPML

Definition of

Definition of
Viewpoints Architecture Views

1
'
1
Component-Based loT :
Architecutures .

1

'

Correspondence Rules

Conformance checks
with respect to the framework

Fig. 3. Overview of the CAPS elicitation process.

CAPS Modeling Framework

SAML
&= s
o=gs MAPML DEPML N
FWMT
Architect S\/s.tem Cyber—PhYS|caI
Engineer Space Designer

Fig. 4. IoT views and stakeholders.

coordinated primary views-software (SAML), hardware (HWML), and
spatial deployment (SPML)-aligned with the ISO/IEC/IEEE 42,010 stan-
dard for architectural modeling. To ensure consistency and traceabil-
ity between views, CAPS introduces two auxiliary mapping languages
(MAPML and DEPML) , as shown in Fig. 4. A Textual Modeling Language
(TML) further complements graphical modeling by supporting scalable,
scriptable modeling workflows.

4.1. Multi-view architectural model

CAPS defines three coordinated architectural viewpoints, each cap-
turing a specific dimension of IoT systems:

¢ SAML (Software Architecture Modeling Language)' specifies the
logical structure and behavior of the software layer. It defines com-
ponents, behavioral modes, message ports (input/output), and com-
munication links (unicast, multicast, broadcast). Each component
may operate in one or more modes, with distinct actions triggered
by events or conditions.

— Structural metamodel: Components and their interactions are
modeled using typed ports and links (see Fig. 5).

- Behavioral metamodel: Modes represent operational states; tran-
sitions model condition-based changes, such as entering an
energy-saving mode (see Fig. 6).

SAML captures the control logic and communication behavior of IoT
applications, enabling precise modeling of dynamic behavior, energy
states, and interactions among software components.

e« HWML (Hardware Architecture Modeling Language)? describes
the hardware setup, including microcontroller units (MCUs), radios,
power sources, sensors, actuators, and communication parameters.
Each hardware configuration includes properties like:

— Energy sources and consumption models

! The original SAML metamodel was introduced in Muccini and Sharaf
(2017b) and is summarized here for completeness.

2 The HWML metamodel originates from Muccini and Sharaf (2017b); a sum-
mary is included below to maintain context.

- Communication interfaces (ZigBee, Wi-Fi, LoRa, etc.)
- Protocol parameters: data rate, transmission power, range, la-
tency

Fig. 7 illustrates the HWML metamodel that represents the struc-
ture of IoT devices, including radios, sensors, and energy attributes.
HWML enables accurate hardware specification, supporting simula-
tion assumptions, code generation, and compatibility checks with
the software and spatial views.

e SPML (Spatial Deployment Modeling Language) ° captures the
physical environment where devices are deployed: rooms/areas with
coordinates, obstacles (e.g., walls) with material attenuation, eleva-
tion, and geometric constraints for coverage/connectivity. The root
CyberPhysicalSpaces class represents the deployable 3D/2D envi-
ronment; elements are defined by names, coordinates, dimensions,
elevation, mobility, doors/windows, angles, and material attenua-
tion coefficients (0-1). To avoid reimplementing 3D editing,* inte-
grates Sweet Home 3D (SWEETHOME-SWEET) for spatial visualiza-
tion and editing (see Fig. 8).

4.2. Cross-view traceability via MAPML and DEPML

The auxiliary mapping views ensure consistency among software,
hardware, and spatial perspectives:

e MAPML links SAML elements (components, ports, modes) to HWML
entities (nodes, interfaces, hardware modes), enabling checks that
logical interactions are realizable on the selected hardware. A
Mapping aggregates HW mappings (component—HW) and refined
links such as SensingMapping, ActuatingMapping, CommunicationDe-
viceMapping, and ModeMapping.

e DEPML relates HWML hardware configurations to SPML spatial lo-
cations via DeploymentLinks. Each link specifies where a hardware
configuration is instantiated, supporting multiplicity for repeated
deployments and enabling spatial feasibility checks (range, atten-
uation, obstacles).

These mappings provide explicit correspondence rules used for (i) au-
tomated conformance checks, (ii) traceable model-to-simulation gener-
ation, and (iii) traceable model-to-code generation.

4.3. Textual modeling language (TML)

The Textual Modeling Language (TML) is a scripting-based alterna-
tive to graphical models like SAML, HWML, and SPML. It allows for
flexible and scalable modifications to models programmatically, making
it efficient for those familiar with programming. TML facilitates rapid

3 The SPML metamodel was previously presented in Muccini and Sharaf
(2017b); it is recapped here for continuity.

4 Detailed information on spatial tooling integration (via Sweet Home 3D) is
available in Muccini and Sharaf (2017a).

M. Abughazala et al. The Journal of Systems & Software 234 (2026) 112728

[<enumeration= =] B Expression H InitialMode i H softwarearchitecture
£ PrimitiveType = name : string = name : string
= integer 1 i source|H OutMessagePort]
- boolean B EnterMode i O..'@beha\nouralElemems T eaiements
= =] type p.1 - .. H Mode 0. 1
- string valug i entries = name : strin H sAglement
ero=tiiode H ExitMode ’ B i
- o> ' D.» 'J 4 = name : string
H structuredDataDeclaration| exits modes)
H Component H connection
= name : string 1 B InMessagePort]
H PrimitiveDataDeclaration po— 0.*
T type : PrimitiveType ? rge ports

Fig. 5. SAML metamodel: structural concepts (external metaclasses in green). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Actu. B MeasureHumidiq =] Dehecmslasssreaq H DetectGassmo

0
g
£
=
3

L 1 | 1 [1
[[|
H ALSmeasure
] [Hion | [HFork | ETimerfired | fimer
[] [[= timerName : string
[[1 [
7
———1 Seracecall
timer|_B StopTimer | [Bchoice | = servicen .“ -
IE RFlDReaderReai —‘ - l I’_ serviceName : string —
=y 5 _ . =
EligeteciietslPosition : I | [: I —————1
1
B sense H Actuate I B SendMessage =] Callsmeg — © Servicecallback |
= dataDeclarationName : string | | i i i — dataReCi] - I STservicatlame Ts5ia | |
1 dataRecipient (fdata data % P calledService
- B startTimer [| E_l—
= cyclic : bool H BroadcastsendMessa H UnicastsendMessage MulticastsendMessage - —
— = delay : integer < receiverName : stri i - stri &l ReceveMessa
: string 15 receiverNames : string = >
| © period : integer = dataRecipientName : string
H RFIDTAGsend 1
_— 1 data 0.1
N) 0.1 dataRecipient
StoreData ! 0.1 o[Hpreson | [Ml‘m dataRecipient
pdata 1 I —]0.a dataRecipient
dataRecipient 0.1 0.1 1M

Fig. 6. SAML metamodel: behavioral concepts (actions in orange, events in red). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

disabled
= E] 10-* H SensingUnit | sensingUnits
HW HWElement []
1
T RTOS : string
0.."| =@ middieware : string
AWS 0
‘ B muaur_q.rmll
ingUnits |
modes 0.~
E Memory <<enumeration>>
T size : integer StorageMemory Type
E ContinuousEnergySource) ~ configuration
— ? - program
5 Apc — archive
.| = resolution : integer ||
0.t | = channels : integer g Y H Volati oyl -
yType | | 1 <<en >
H Processor oy [] & Type
E pac [T frequency : integer % initialStoredEnergy : double v — { - Wired
= resolution : integer |_| T cpi : double P - UPB
= integer -) 4 E CommunicationUnit — INSTEON
1. 1. [T v = type : CommunicationType | | — Z-WAVE
0.* r o = transmissionPower : double | | - ZIGBEE
E Timer = receiveSensitivity © double = WI-FI
= bits : integer oE 4 & HarvestedEnerg 5 freq) : double - BLUETOOTH
T timers | | — g i = 3ain © double = THREAD
1) 1 - - : string - APPLEl HOMEKIT b -
ades [92c8 f = encryption : string -
r = latency : double CommunicationUnits
= BW : double
0.1 = routingProtocol © string
= macProtocol : string
= transportProtocol : string

Fig. 7. HWML metamodel.

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

0.1 area
areas Y
0.* B cyberpPhysicalSpace 0. [E CyberPhysicalSpacd H NamedElement
' E Coordinate H Area paces = name : EString elements
2 x: EDouble | " = xOffset : EDouble 0.
T y: EDouble | shell = yOffset : EDouble ﬁs
] m Y
o1 1 B roo g.»fooms
area . h i cyberPhysicalElement
0.. ocor -
walls Y Feiling b..1 = X : EDouble
walls i 0.1 | = Y : EDouble
. e ’
0. _B Wall_ 0.. H ceiling s = Width : EFloat
= material : EString - = = = = Depth : EFloat
© attenuation : EDouble = material : EString = material : EString = Height : EFloat
© thickness : EDouble = thickness : EDouble = thickness : EDouble © Elevation : EFloat
. — o Xoffset: EDouble = Xoffset : EDouble 5)
L O xstart: EDouble area ; ; © Fixed : EBoolean
= ystart : EDouble = yoffsc-t : EDouble = yoffset : EDouble = DoorOrwindow : EBoolean
= yend : EDouble = height : EDouble = height : EDouble = Elementmaterial : EString
= height : EDouble st ClEEooican =Gl 3B = Elementattenuation : EDouble
= QutsideLayer : EString S Elevstion : EFost SEleVatoni:IEHST = ElementAngle : EDouble

Fig. 8. SPML metamodel.

import "
import "L

SoftwareArchitecture returns SoftwareArchitecture:
{SoftwarehArchitecture}

'softwarelx tecture"
name=EString
v

'SAElements' '{°

SAElement returns SAElement:
Component | Connection;

MessagePort returns MessagePort:

InMessagePort | OutMessagePort;
Mode returns Mode:
Mode_Impl | InitialMode;

DataDeclaration returns DataDeclaration:
PrimitiveDataDeclaration |

BehaviouralElement returns BehaviouralElement:

grammar org.xtext.example.mydsl.MyDsl with org.eclipse.xtext.common.Terminals

SAElements+=SAElement (",

StructuredDataDeclaration;

EnterMode | ExitMode | CalllAsyncService | Human | Alarm | Server | SmartCard | SenseVibration
| RfidTag | TouchScreen | ReadRfid | ReadSmartCard | EmergencyButton | SenseOccupancy | Start
| SenseInductive | SenseHumidity | SenseGlassBreakage | SenseOxygen | SensePosition | SenseGyroscope
| Senselhcoustic | Senselccelerometer | SenseVisual | SenseWind | SenseTemperature | SensefAmbientLight
| SenseGasSmoke | CountPeople | CCTVCcapture | CallSyncService | StartTimer | StopTimer | StoreData
| BroadcastSendMessage | UnicastSendMessage | MulticastSendMessage | Sense | Actuate | Join | Fork
| Choice | ServicecCallback | Servicecall | ReceiveMessage | TimerFired | Link;
Expression returns Expression:
IntegerConst | BooleanConst | RealConst | StringConst | EnumConst | StructureConst | NullExp
| DataRef | StructureMemberRef | ArithmeticExpr | BooleanExpr | RelationalExpr;

" SAElements+=SAElement)* '}’

Fig. 9. Part of CAPS grammar file.

modifications and batch changes to models, which is particularly ben-
eficial in complex projects or when integrating with other automation
tools. Within TML, the CAPS platform includes a textual editor with au-
tocomplete and autosuggestion features for predefined classes like com-
ponents and connections. Additionally, it offers auto-validation based on
the grammar file, ensuring accuracy and consistency in model creation
and modification.

Fig. 9 illustrates a portion of the grammar file that underpins the
Textual Modeling Language (TML) used in CAPS. This grammar defines
the syntactic structure for elements such as components, connections,
ports, and actions, enabling CAPS to parse and validate textual models
with high accuracy. It serves as the foundation for features like auto-
complete, static checking, and automated transformation from textual
definitions to graphical representations or simulation inputs.

Textual modeling language is a precise and accessible way to de-
scribe complex systems and data structures using human-readable text.

It provides a comprehensive and expressive approach for documenting
complex systems, making it possible to capture the nuances of various
domains with unmatched precision and versatility (Mazanec and Macek,
2012). In software engineering, textual modeling languages present nu-
merous benefits (Gronninger et al., 2014): Readability, Integration, Tool
development, and Collaboration. With Textual Modeling Language, we
can define a component with an average of 30 lines of code. Most
of these lines are auto-suggested, while the rest require the user to
provide names to be filled between the double quotation marks, see
Fig. 10.

While the modeling framework in CAPS involves three domain-
specific languages and multiple mappings, this structure is necessary
to capture the multi-view nature of IoT systems, including behavior,
hardware topology, and spatial deployment. To balance this complex-
ity, CAPS offers both graphical (via Eugine) and textual (via Xtext-based
DSLs) modeling environments. While graphical modeling aids intuitive

M. Abughazala et al.

@9 RoomPeopleCounter

; Qe
i momtorT\merJ: 0 (5,000)
the
get (count) D

sendicount {count)

#h count:integer = C

The Journal of Systems & Software 234 (2026) 112728

ports{
CutMessagePort "OutPecpleCounterPort™
¥
modes {
InitialMede "InitialMode"(
behavioural

toMessagePorts (OutPeopleCounterPort)
//dataRecipient "PecpleCounterData®

dataExp StringConst (value ""}

}
}
+
applicationData

{

PrimitiveDataDeclaration

{

dataName

valueExp StringConst (value "0"}

1

Fig. 10. Graphical and textual modeling languages.

visualization, the textual interface significantly enhances productivity
for larger or repetitive architectures by supporting batch editing, reuse,
and rapid iteration. This dual modeling strategy allows designers to
choose the most appropriate interface based on system complexity and
personal expertise, ultimately improving usability without sacrificing
modeling precision.

5. CAPS simulation

Simulation, in CAPS, requires transforming CAPS models into the
equivalent CupCarbon project. The CAPS code generation framework
for CupCarbon comprises the parsing, analysis, script generation, and
project generation activities to produce files used to build the CupCar-
bon project.

We formalize a metamodel-driven, template-based (model-to-
simulation) pipeline targeting CupCarbon and propagate trace links
from SAML, HWML, and SPML via MAPML and DEPML into all gener-
ated artifacts. The pipeline is designed to preserve behavioral semantics
(modes, ports, links), radio and energy parameters, and spatial attenua-
tion, thereby improving repeatability and explainability beyond earlier
prototypes.

Fig. 11 illustrates the framework and its code generator. By executing
the CupCarbon project on the CupCarbon simulator, the performance of
the CAPS architecture in terms of energy consumption, battery level,
and data traffic can be evaluated.

5.1. Scope and inputs

Given a validated design (Section 4), the generator consumes:

e SAML (software): components, ports, links, modes, timers;

e HWML (hardware): radio parameters, energy sources, driver de-
faults;

e SPML (space): coordinates, obstacles, material attenuation coeffi-
cients;

¢ MAPML/DEPML (mappings): component to device and device to lo-
cation bindings;

5.2. Formalized template pipeline

The pipeline is specified as a sequence of metamodel-to-template
steps (templates are reusable and versioned), each step emitting Cup-
Carbon artifacts and recording traceability:

S1 - Topology synthesis (SPML and DEPML): Instantiate nodes at SPML
coordinates according to DEPML deployment links; export obstacles and
material coefficients to the map layer.

S2 - Device and radio configuration (HWML): Parameterize node ra-
dios (power, frequency, and bitrate, RX and TX current, duty cycle) and
energy sources (initial charge) from HWML.

S3 - Application behavior mapping (SAML and MAPML): Translate
components, modes, and ports into event/state handlers and traffic in-
tents; MAPML bindings select the executing device and bind logical ports
to physical interfaces.

S4 - Sensing and traffic schedules (SAML and HWML): Derive periodic
and aperiodic transmissions from SAML events and timers and HWML
timers; generate sampling and actuation tasks with jitter and offsets as
specified.

S5 - Packaging: Generate an executable CupCarbon simulation project
with topology, node configurations, and behavior scripts that link Cup-
Carbon entities back to SAML, HWML, SPML, MAPML, and DEPML ele-
ment IDs for debugging and explainability.

5.3. Semantics alignment

We align key semantic aspects so simulation outcomes reflect mod-
eled intent:

e Communication: SAML links to CupCarbon routes; port direction and
multiplicity (uni, multi, and broadcast) preserved. Backoff and retry
policies come from HWML.

Temporal behavior: SAML events/timers and HWML timers to task
schedules; mode changes generate enable and disable hooks so only
the active mode executes.

Energy model: Energy is computed from HWML parameters and Cup-
Carbon per-event costs.

Spatial attenuation: SPML obstacles (material, thickness) contribute
to path loss on links crossing their polygons; range checks use SPML
coefficients with CupCarbon’s propagation model.

M. Abughazala et al.

Parsing

SAML description CupCarbon description Senscriot i
= (e | 2 Gova iy enScript files
~ 1 4 i ~

!

Analyzing Script Generation

The Journal of Systems & Software 234 (2026) 112728

Project Generation Act
ctivity

Generating Script

()

SAML templates
(Java classes

Table 2

Mapping rules & invariants (Components, modes, links, hardware, physical).

|
CupCarbon templates|
(Java classes)

Generating Project
i
HWML || SPML
model model

Project folders
(config,natevents, scripts, etc)

|
! activity flow,

=
|

artifact flow

—————————— >

R
|

Fig. 11. CAPS automatic code generation framework.

Construct Mapping Simulation Invariant & Check

Components Node/module per component. module/class with 1:1 correspondence. Metamodel conformance or fail with
init/loop. the source pointer.

Modes Control flow is expressed as a mode-driven state machine; “No handler in inactive mode.” Transitions occur only

a state variable selects the guarded block to execute, and
predicates trigger transitions between modes.

when guard holds (e.g., set mod 1/0). Unguarded
handlers warned/blocked.

Links (ports)

Simulation uses channels; code binds to typed messaging
interfaces with structured payloads (e.g., send $p 3).

Direction, multiplicity, and payload schema preserved;
incompatible links rejected with diagnostic.

Hardware params

CupCarbon radio/device params (e.g., radio_standard:

Required interfaces present; Respecting resource

ZIGBEE, radio_data_rate: 250000)

constraints.

Physical params spatial config in sim (e.g., device_longitude,

device_latitude, device_elevation);

Spatial attribution preserved in simulation; missing SPML
emits warning and defaults are explicit.

5.4. Transformation engine: Implementation and correctness strategy

The CAPS transformation engine is metamodel-driven, rule-based,
and template-based. It realizes the S1-S5 pipeline (topology synthesis;
device/radio configuration; behavior mapping; scheduling; packaging)
and records trace links from architectural views (SAML/HWML/SPML)
through mapping views (MAPML/DEPML) into generated simulation ar-
tifacts (CupCarbon).

Mapping Rules and Invariants This section walks through a single
component end-to-end to illustrate how the transformation engine ma-
terializes the architectural views into executable artifacts. The engine
applies metamodel-to-artifact mappings guarded by explicit invariants
and generator checks (see Table 2).

Fig. 15 shows how hardware parameters declared in HWML (e.g., ra-
dio standard, data rate, interfaces, and energy model) are mapped to the
corresponding CupCarbon device configuration. Fig. 16 complements
this by mapping the component’s physical parameters from SPML (coordi-
nates, elevation, and attenuation/obstacles) into the simulation’s spatial
configuration for the same device. Finally, Fig. 17 presents the generated
Senscript that captures the component’s software behavior: the file repre-
sents the entire component, including the control logic as a mode-driven
controller. Within this script, mode guards select the active region, and
transitions are effected only when their guard predicates hold, ensuring
exclusive execution of handlers under the current mode.

Correctness Assurance We assure correctness at three levels. Syn-
tactic checks validate models and templates against their grammars.
Structural checks enforce metamodel conformance and cross-view cor-
respondence (so what is wired in the architecture is what is generated).
Semantic checks preserve behavior-communication, timing/scheduling,
energy assumptions, and spatial effects-via guarded dispatch, protocol/-
type validation, and simulator/code-level invariants.

Construct Coverage We summarize which modeling constructs the
engine translates into simulation/code artifacts and to what extent they
are supported.

SAML components; provided/required ports; links (uni-/multi-
/broadcast); modes and guarded behavior; timers (period/offset); sim-
ple data payloads (typed fields). Checks/Invariants: directionality/multi-

plicity preserved; exclusive-mode execution; timer periods/offsets vali-
dated. Current constraints: payloads are structural (no user-defined seri-
alization logic); hierarchical components flattened at generation time.

HWML device type; MCU (Microcontroller Unit) class; radio stan-
dard and data rate; sensor/actuator bindings; energy model parame-
ters; interface bindings; memory footprints (RAM/flash). Checks/Invari-
ants: required interfaces present; RAM/flash/pin capacity not exceeded;
device-protocol compatibility enforced; drivers selected by binding. Cur-
rent constraints: one sensing unit per simulated node (CupCarbon ex-
port); when protocol is unspecified, code generation applies a safe de-
fault (e.g., SPI) that can be overridden in HWML.

SPML device coordinates (Latitude / Longitude), elevation; obsta-
cles/attenuation parameters; deployment topology. Checks/Invariants:
spatial attribution preserved in simulation; missing values trigger ex-
plicit defaults with warnings. Current constraints: physical effects are re-
alized in simulation only (not enforced in firmware), though constants
may be emitted for calibration.

Bindings (MAPML/DEPML) component« device bindings and
port < interface/protocol bindings; deployment associations. Check-
s/Invariants: bound elements must exist and be type-compatible; every
generated artifact carries a trace link to its source model element.

In summary, the current engine covers the core SAML/HWML/SPML
constructs used in our case studies, with two documented constraints
(one sensor per simulated node; default protocol selection in code gen-
eration) and simulator-only realization of physical effects. These con-
straints are engineering choices and are straightforward to relax by ex-
tending the templates.

Validation Protocol Beyond unit checks in the generator, we ver-
ify semantic preservation by (1) comparing simulated energy/behavior
against modeled modes and (2) cross-referencing outcomes with hard-
ware results reported in Section 8. This provides an end-to-end oracle
for faithfulness.

Calibration Option CAPS supports an optional, one time calibration of
the energy model: (i) profile per state currents on the target board (sleep,
CPU active, sensor warm up/sampling, RX, TX at each power level); (ii)
import measured duty cycles (timers, message intervals/retries) from

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

Code Generation

A"

Arduina Descripti
7 N ey " 4 Arduino Code files
2 7
p
-

-

-

Generating Code

N
i

Activity

activity flow,

artifact flow

Parsing Analyzing
SAML file(XML) - SAML file (java)
| |
v - v
Parsing o Analyzing

T T
SAML templates Arduino templates
(Java classes {Java classes

HWML
maodel

Fig. 12. Arduino automatic code generation framework.

deployment logs; (iii) set regulator efficiency and cable/connector loss;
and (iv) enable variable TX power and obstacle aware path loss in SPML.
When enabled, the simulator reports energy normalized as J/min and
J/message and computes deviation vs. measurements (MAPE).

6. CAPS code generation (Arduino)

The CAPS Arduino code generation Sharaf et al. (2018a) is a frame-
work that converts CAPS models into Arduino code that can be installed
on Arduino boards Arduino (2022) . Arduino boards are versatile mi-
crocontrollers known for their ability to interact with sensors, actuators,
and other devices via digital and analog I/O pins. Running the converted
codes on Arduino boards allows us to evaluate the CAPS architecture
in real environments. The CAPS models participate in three activities:
parsing, analyzing, and generating Arduino code. Fig. 12 illustrates the
entire code generation process.

We systematize a metamodel-driven, template-based model-to-code
pipeline that carries trace links from SAML, HWML, and SPML via
MAPML and DEPML into generated Arduino artifacts. The pipeline
makes protocol defaults explicit, preserves communication and mode
semantics, and is reproducible and configurable, which improves re-
peatability and explainability over earlier prototypes.

6.1. Scope and inputs
Given a validated design, the generator consumes:

e SAML (software): components, ports, links, modes, timers;

¢ HWML (hardware): board and MCU, radios, sensors and actuators,
power modes;

e MAPML (bindings): component-to-device, port-to-interface, mode-
to-hw-mode;

e DEPML and SPML (optional): deployment profiles that become
compile-time constants (e.g., node IDs, region tags);

6.2. Formalized template pipeline

We specify the generator as staged, metamodel-to-template steps;
each stage emits code or configuration and records traceability.

S1 - Target resolution (HWML and MAPML): Select the Arduino board-
/core and libraries per HWML device; resolve component-to-board via
MAPML.

S2 - Interface binding (MAPML): Bind SAML ports to device interfaces
and pins. Emit a typed bindings.h with pin maps and driver handles.

S3 - Behavioral scaffolding (SAML): Generate per-component modules
implementing event/handler skeletons, mode gates, and timer hooks;
create a main loop that dispatches active handlers per current mode.

S4 - Protocol configuration (HWML): Emit driver init with explicit
defaults (bitrate, TX power, retries/backoff).

10

S5 - Packaging and trace links: Assemble a buildable sketch and library
with linking code entities to SAML, HWML, and MAPML (and DEPML
and SPML if used).

6.3. Mapping rules (Model-to-code)
We make the main mappings explicit to avoid ambiguity:

e SAML component-to-module: one C/C+ + module per compo-
nent; constructor wires interfaces from bindings.h; state includes
currentMode and application data.

e SAML ports and links-to-handlers & send/recv wrappers: IN
ports generate callbacks; OUT ports generate send APIs; link mul-
tiplicity (uni/multi/broadcast) maps to driver-level addressing utili-
ties.

¢ SAML modes-to-mode gates: compile and run-time guards ensure
only handlers for the active mode are executed; mode transitions
produce enter and exit hooks.

¢ Timers (SAML/HWML)-to-schedulers: periodic and aperiodic tasks
emitted as timer callbacks; jitter and offset become scheduler param-
eters.

¢ MAPML comm and device bindings-to-pin and driver selection:
each bound port selects the device interface and driver instance;
compatibility is checked before emission.

 DEPML and SPML-to-deployment constants (optional): node IDs,
region tags, or channel plans emitted to deployment.h for multi-
binary deployments.

6.4. Semantics alignment

e Communication preservation: port direction and link multiplicity
are preserved in generated send/recv paths; QoS parameters default
from HWML or BuildConfig.

e Temporal behavior: timers and mode gating mirror the SAML
schedule; disabled modes cannot dispatch handlers.

¢ Resource conformance: HWML constraints (RAM and flash, inter-
face availability) are checked; violations stop generation with precise
traces.

7. Application of CAPS models, simulation, and arduino code
generation to the NdR case study

CAPS has been evaluated through three case studies: NdR, UFFIZI,
and VASARI. Due to space limitations, this section will concentrate on
the NdR case study to showcase the framework’s capabilities. The case
study explores CAPS’ comprehensive modeling, simulation capabilities,
and automated code generation features. CAPS models are used for two
purposes:

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

@9 CO2Sensor & RoomPeopleCounter
Normal]
Critical
readingTimer : 0 (90,000) criticalTimer : 0 (1,000)
0 i monitorT\'mel: 0 (5,000)
&4
@@ o
] | CO2>=1200 senseC0O2_2(CO2) send|2 (COZ) get (count) @
@ @ : send ount (count)
send 1 {C!L’] > C02<1200 =T
senseCO2_1(CO2) !
il count:inteasr = 0
Wl CO2:real = 0 T
L @ B2
ﬁ EntrancelockActuator ﬁ WindowsLockActuator | | I; | |
&8 RoomController x
(‘ CO2<1200 !
1 K>y C0O2>=1200 2 4
enalIle disa$le L)s EI} - (> e 2(CO2)
s 1 send 4 (close) - ~ B receive 2 (
‘ ‘ afftuate ' - — send;3 (open) pCount>rCapaci
- = il (— i - 2
enable (enable) Eif O send 2 (close)
(eriable) (disaib\e] - pCount<rCapacity \
! @ e >
: X 3 =
Ml enabke: boolean = 1 ! Ml enable : boolean = 1 - \D receive 1 (pCount)
- send 1 (open)
"t w @ &
_fF [send (COZ pCount,roomID) Upd:
WP Server]
7 ik CO2:real =0
(dl il pCount: integer = 0
- -— & m i -
‘-JJ N . = 4 [COEPTSURErSSmID] M roomID: integer =7
. B — b rCapacity : integer = 35
(MobileApp) (x] ik open: boolean = true
ik close : boolean = false

Fig. 13. The software architecture of the scenario in NdR case study.

¢ The primary objective is to demonstrate that the CAPS simulator can
experiment with the IoT system architecture in a simulated environ-
ment. To achieve this, we will utilize CAPS models in the CAPS sim-
ulation, and the results obtained from it will be used to generate
Senscript and configuration files required to operate the CupCarbon
simulator. Afterward, the CupCarbon project will be assessed based
on the proposed scenario’s energy consumption and data traffic gen-
erated.

e The second objective is to demonstrate that the CAPS models used
in the IoT system architecture description can be implemented in
a real-world setting using Arduino code generation. We will utilize
CAPS models to generate Arduino code, which will be uploaded onto
real Arduino boards. The energy consumption of the suggested sce-
nario will be analyzed by examining the actual application of the
generated Arduino codes.

In Section 7.1 we describe the NdR case study to be used. Then, we
describe the CAPS models application, simulation and code generation
in Sections 7.2-7.4, respectively.

7.1. NdR case study

The "UnivAq Street Science" is an event organized by the University
of L’Aquila as part of the European Researchers’ Night (NdR). It aims to
bring together the research community and the general public to share
information and entertainment. The event is an all-day event held in the
city center of L’Aquila, and it includes performances, lectures, demon-
strations, and workshops in various locations such as squares, main
streets, and buildings. We have gathered valuable evidence based on
our experience organizing the event in L’Aquila. Firstly, approximately
20,000 visitors attend the NdR every year. Secondly, the late hours of

11

the event tend to be more crowded than the early hours. Thirdly, the
weather influences visitors’ preferences regarding what to see and where
to stay. Lastly, visitors often struggle to locate specific activities quickly,
so they may miss out on some of them.

Our research group has been invited to enhance the visiting expe-
rience at a certain location. We have developed an IoT application to
achieve this goal, which serves as the initial step in enhancing the visi-
tor experience. The application utilizes physical environmental sensors
deployed in the area and a mobile app available to visitors on their
smartphones. The following services are provided:

1.
2.
3.

Access control to rooms, laboratories, and parking lots.

Monitoring of open and closed spaces.

Balancing people crowds among different events and spaces by using

the mobile app to inform visitors about the degree of the crowd in a

place.

. Creating a planner that generates a tour while minimizing waiting
time and crowd in an area.

. Ensuring urban security, specifically in the case of earthquakes, fires,

and overcrowding.

7.2. CAPS modeling for the NdR

To discuss how the NdR case study can be modeled using CAPS, we
will run an example. We will present a scenario that involves monitor-
ing a room’s people and CO2 levels. This will help to understand how
CAPS can be used in real-world situations to improve indoor air qual-
ity and ensure the safety and well-being of the occupants of IoT. The
scenario will be represented using CAPS models (SAML, HWML, SPML).
Fig. 13 shows the SAML model of the CAPS tool that will be used later
for simulation (Section 7.3) and Arduino code generation (Section 7.4).

M. Abughazala et al.

1 SoftwareArchitecture

SAElements{
Connection{
source”PeopleCounter.OutPeopleCounterPort”
target“Controller.ControllerInPort™

v

CENOnAWN

¥s

Component “PeopleCounter”{
ClientOrServer server
ports{

OutMessagePort "OutPeopleCounterPort™

13 3

e
14 modes {
15 InitialMode “InitialMode"{
16 behaviouralElements
17 {

Link "StartTimeLink"{
source StartTimerl
target PeopleCounter
)

s
Link "PeopleCounterToSendMessagelink”{
source PeopleCounter
target SendPeopleCounterData
1

I,
StartTimer "StartTimerl™ {
delay=1000
outgoing (StartTimeLink)

¥s

CountPecple “PeopleCounter™{
dataDeclarationiame
data "PeopleCounterData”
incoming(StartTimeLink)
dataRecipient “PeopleCounterData"

S

Woww
Bowon

}

data "PeopleCounterData”
receiverName "PeopleCounterData”

//dataRecipient "PeopleCounterData
dataExp StringConst {value "}

o EwN
~

“PeopleCounterbData™

UnicastSendMessage "SendPeopleCounterData”{ 76

incoming(PeopleCounterToSendMessagelink)
toMessagePorts (OutPeopleCounterpPort)

The Journal of Systems & Software 234 (2026) 112728

4 applicationData
48 {
49 PrimitiveDataDeclaration
S r

dataName “PeopleCounterData”
52 type string
valueExp StringConst {value "@"}
54 }
55 }
3.
5 Component “Controller*{
58 ClientOrserver client
59 ports{
6 InMessagePort “ControllerInPort™

modes {

InitialMode “InitialMode™{
64 behaviouralElements

65 {
66 StartTimer "StartTimer2" {
delay=1208
//outgoing (StartTimeLink)

Fig. 14. CAPS: Textual modeling language.

The model comprises five main components: CO2Sensor, RoomPeo-
pleCounter, RoomController, EntranceLockActuator, WindowsLockAc-
tuator, and Server. These components work together to effectively mon-
itor the CO, level and people in the room. It is important to note that
the CAPS model is a screenshot of our CAPS tool, which was designed
to handle such scenarios.

The CO2Sensor component is designed to monitor the concentration
of CO, in a room. It has two modes of operation:

1. Normal mode: In this mode, the CO, sensor measures the concen-
tration of CO, in a room every 90 s. The CO, value is then sent as a
message from the output message port of the CO2Sensor component
to the in-port of the RoomController component. If the CO, reading
equals or exceeds 1200 ppm, the room has entered the critical mode.

2. Critical mode: In this mode, the CO, sensor reads the concentration
of CO, in a room every second. The CO, value is sent from the out-
put message port of the CO2Sensor component to the in-port of the
RoomController component. If the reading of CO, is less than 1200,
it indicates that the system has returned to normal mode.

The RoomPeopleCounter component tracks the number of people in
a room and updates the RoomController with the count every 5 s. It
sends this data from its out port to the RoomController’s in port. Fig. 14
shows CAPS Textual Modeling Language for RoomPeopleCounter. The
RoomController is essential for receiving sensor data and making de-
cisions about opening and closing windows and doors by sending con-
trol messages to actuators. It transmits CO2, pCounter, and roomID val-
ues to the Server through its out port. The WindowsLockActuator opens
and closes windows, while the EntranceLockActuator does the same for
doors. The Server processes incoming data and updates NdR mobile app
users, indicating whether rooms are full based on roomID and pCount
from RoomControllers.

According to the HWML model, we will demonstrate the CO2Sensor
component as an example for CAPS simulation and Arduino code gener-
ation in Sections 7.3 and 7.4, respectively. In Fig. 15(b), the CO2Sensor
measures carbon dioxide levels in a room using the 802.15.4 radio stan-
dard with a 20-meter radius. It communicates via a Texas Instruments

12

ChipCon 2420 RF transceiver and operates on two AA batteries, pro-
viding up to 19,159 Joules of energy. As part of the SPML model, the
CO2Sensor is a component of the physical environment in the NdR sce-
nario and will be used for CAPS simulation in Section 7.3. Fig. 16(b)
illustrates the physical deployment location of the CO2Sensor. It is im-
portant to note that the elements of the SPML model can be adjusted
using the Sweet Home 3D tool, also known as SH3D (SWEETHOME-
SWEET). SH3D provides a 3D representation of the real world and is
linked to our CAPS tool (Muccini and Sharaf, 2017b).

7.3. The CAPS simulator application

In this section, we use the SAML, HWML, and SPML models as de-
scribed in Section 7.2 in the CAPS simulation to generate the CupCarbon
project.

The CupCarbon project comprises a set of files resulting from model
interpretations. To explain, let’s take the example of the CO2Sensor com-
ponent’s representation in SAML, HWML, and SPML models. Fig. 17
displays the SenScript code generated by the CAPS simulation generator
for the CO2Sensor component, primarily derived from the SAML model.
Line 3 and Line 19 represent the normal and critical modes, respectively.
Lines 13 and 25 represent the timers in the normal and critical modes,
respectively. Lines 4, 9, and 21 contain the instructions for reading the
current CO2 level from the CO2 sensor.

The text describes a screenshot of a radio module information for a
CO2 Sensor that has been extracted from HWML. This information has
been used to fill in a CupCarbon configuration file. The simulator then
uses this file, which contains communication information, to execute
the simulation. The screenshot can be seen in Fig. 15(a).

The CupCarbon configuration file specifies the CO2Sensor’s location
parameters in the SPML model (Fig. 16(a)). We used Sweet Home 3D to
create the space model and developed an adapter to convert it into SPML
for the simulator. In our NdR case study, we tested three CO2Sensor
behaviors: normal mode, critical mode, and both modes together. Using
our CAPS framework, we generated SAML, HWML, and SPML models,

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

BB CO2Sensor - OS: TinyOS, mac: ZIGBEE, routing: GEAR

Power Modes
IRProbe [)\

Microcontroller

@ Atmel SAM R21
Processors
{5X AVRCPU - 8 Mhz, CPE 1

ADC

B adc
DAC
Timers
o e @ timer
&2 ~ - -
s \“o(- Memory
(,oé‘i‘:z&‘\?’ " EH SRAM - 4Kb
s Program Memory
.- i EEPROM - 4 Kb
-
List of radio Modules for the CO2Sensor Storage Memory

B flash - 128Kb

currenc_radio_name:radiol\
radio_standard:ZIGBEE
radio_radius:100.0
radio_etx:5.92E-5
radio_erx:2.86E-5
radio_esleep:1.0E-7
radio_elisten:1.0E-§6
radio data rate:250000

7

Radio Chip

Additional Memories

RF Communication Devices

Y ChipCon 2420 - 2,400 MhZ

@ battery - 19,158.816)

CupCarbon parameters

(b) CO2Sensor using HWML

Fig. 15. An example of HWML model and its representation in CupCarbon.

List of parameters (,oée

fdevice_id:1
| device_longitude:-4.4930936890670115
device_latitude:48.39209577425822

-

I N K

(a) CupCarbon parameters

e
G\Not\g -

e

g

SH3D to SPML
adapter

AV

[% Cyber Physical Element CO2Sensor

4 Cyber Physical Element RoomPeopleCounter
4 Cyber Physical Element RoomController

4 Cyber Physical Element WindowsLockActuator
4 Cyber Physical Element EntranceLockActuator
4 Cyber Physical Element Server

4 Cvber Physical Element Security Camera

[Properties 52
Property
Depth
Door Or Window
Element Angle
Elementattenuation

2000

Elementmaterial
Elevation

Fixed

Height

Level

Neme

Width

X

v

39209577425822

(b) 3D SPML model

Fig. 16. An example of SPML model and its representation in CupCarbon.

created separate CupCarbon projects for each behavior, and analyzed
data traffic, energy consumption, and battery levels of the IoT nodes.

We have standardized the simulation time to be 6000 s for all exper-
imentation and set the maximum energy for all nodes to 19,159 Joules.
To generate natural events for CO2Sensor, we have selected a random
range between 0-2200. Similarly, for people counter natural events, we
have set a random range between 15-45.

The CO2Sensor and RoomPeopleCounter components always send
messages and do not receive any, while the WindowsLockActuator, En-
tranceLockActuator, and server components always receive messages
but do not send any. The RoomController component, on the other hand,
sends and receives messages. This two-way data traffic explains why
some values in Table 3 are zero. The table displays the exchanged mes-
sages between components via the IN and OUT ports when running the
three behaviors in CupCarbon, including the data traffic in kilobytes for
each component.

Based on the data presented in Table 3, we can conclude that the
CO2Sensor, RoomController, and Server nodes experience the highest

13

amount of data traffic when we run the critical mode behavior. This
is due to the many messages exchanged between these nodes during
this mode. On the other hand, the normal mode receives a low amount
of traffic but is not capable of detecting the CO, level in a room with
sufficient accuracy. It is worth noting that using both critical and nor-
mal modes results in a lower range of data traffic compared to us-
ing only the critical mode. However, using both modes together is
still considered to be a safe behavior. This highlights how even small
changes in the system architecture can have a significant impact on its
efficiency.

Table 3 shows the battery level and energy consumption for the simu-
lator running under three scenarios. The left side of the Table 4 displays
the battery level, while the right side shows the energy consumption.
When focusing on the CO2Sensor (S1 in blue) and RoomController (S3
in red) nodes, we observe that S3 experiences the highest battery level
drain because it receives the highest data traffic. However, there is a
minor improvement on RoomController when running the two modes
together. For CO2Sensor, we notice that it experiences the lowest bat-

M. Abughazala et al.

set mod 0O

The Journal of Systems & Software 234 (2026) 112728

y < (Smod==0) ~

areadsensor var \ -

rdata $var t sensorVall 1

Normal mode

data p sl S$sensorVall 1 representation in
send $p 3 .

while ($sensorVall<=1200.0) Senscript

rdata $var t sensorVall N ('n't'al mode) /

data p sl
send Sp 3

Rk
[

end

representation in

(Conditions
‘ end

delay 90000

|

1

1

1

| areadsensor var
1

1

1

1

lif (S$sensorvVall>=1200.0)
1

$sensorVall

'
<

Senscript

\

1

1

I data p =2
|l send Sp 3
1

end

in Senscript

o J \

Mode transitions

T (Smod==T)

while ($sensorvVall>1200.0)
areadsensor var

rdata $var t sensorVall

delay 1000

if ($sensorvVall<1200.0)

$sensorVall

Critical mode
representation in
Senscript

_I\,______/ ~
\‘

Fig. 17. SenScript generated by CAPS code generator for CO2Sensor component.

Table 3
Messages exchanged in components during simulation.
C Comp Name # of sent messages # of received messages Data traffic in KB
D Normal | Critical mode Normal+ Normal | Critical mode Normal+ Normal | Critical mode Normal+
mode Critical mode Critical mode Critical
Co2Sensor o
S1 81 1459 123 0 0 3 40 4
RoomPeopleCounter 0
S2 151 151 151 0 0 5 5 5
s3 RoomController 403 2628 460 22 1610 274 17 97 19
WindowsLockActuator 55
S9 0 0 Q 902 70 1 4 1
EntrancelockActuator 117
S11 0 0 0 117 117 1 1 1
Server 231
S13 0 0 0 1609 273 7 47 8

tery level drain when running only in normal mode. The highest drain
for CO2Sensor is when it runs in critical mode. Running the two modes
together provides better battery level improvements than running only
the critical mode. When observing the energy consumption charts for
the same nodes, we can see that running critical and normal modes to-
gether shows significant improvements compared to running only crit-
ical modes. Furthermore, the energy consumption in normal mode is
close to that in normal and critical modes.

Balancing safety, energy efficiency, and data traffic is essential in
IoT systems, particularly for achieving optimized system performance.
In normal mode, the system prioritizes energy efficiency by significantly
reducing data traffic, as it sends and processes fewer messages. This mode
is ideal for situations where environmental conditions are stable and im-
mediate responses are not critical. However, energy consumption in IoT
systems is closely linked to data traffic; higher traffic increases energy
usage due to more frequent communication between components. In
contrast, the critical mode enhances safety by increasing the frequency
of data collection and communication, enabling the system to respond
quickly to hazardous or abnormal conditions. While this mode improves
safety, it results in higher energy consumption and increased data traf-
fic.

Therefore, a balanced approach involves combining both modes:
using normal mode during stable conditions and switching to critical
mode when certain thresholds are exceeded. This strategy optimizes en-
ergy usage while ensuring a quick response to critical situations, achiev-
ing a compromise between safety, efficiency, and overall system perfor-
mance. Based on the simulation results, it has been demonstrated that
utilizing CAPS modeling and CAPS simulation frameworks for IoT can
help assess energy consumption and data traffic at the initial stages of IoT

development. This early evaluation of the architecture can significantly
enhance the process of designing and implementing such systems.

While the conclusion that a balanced approach offers a practical
trade-off may appear intuitive, the use of simulation was essential in
quantifying this trade-off under realistic network and sensor conditions.
By modeling actual energy consumption, communication rates, and tim-
ing behaviors, we were able to validate that the balanced mode provides
measurable efficiency close to the conservative mode, while maintain-
ing responsiveness. This empirical evidence ensures that architectural
decisions are data-driven and deployment-ready, rather than based on
assumptions alone.

7.4. The CAPS arduino code generation application

In this section, we use the SAML and HWML models, described in
Section 7.2, in the CAPS Arduino code generation process to create Ar-
duino files. SPML is not required to generate Arduino code.

The process of generating Arduino code results in six separate files
for SAML components. This means there is an Arduino file for each of the
following: CO2Sensor, RoomPeopleCounter, RoomController, Entrance-
LockActuator, WindowsLockActuator, and Server. The communication
specifics for each component are drawn from the corresponding HWML
specification. In this section, we will present the results of a simplified
example of an NdR case study described in a real environment in Sec-
tion 7.2. We will focus on the CO2Sensor component, which is evalu-
ated under both normal and critical operational modes, and the Room-
Controller component, which will only receive the CO, value from the
CO2Sensor. To conduct the test, we used the Arduino files created for
the CO2Sensor and RoomController components and installed them on

14

M. Abughazala et al.

Table 4
Battery level and power consumption results.

The Journal of Systems & Software 234 (2026) 112728

Energy ()

OS1 OS110513052 0S3 059

(a) Battery Level in Normal Mode Behavior

Energy ())

0S1 OS110513052 OS3 059

(b) Battery Level in Critical Mode Behavior

Energy (J))

\

OS1 OS110S13052 0S3 059

(c) Battery Level in Critical + Normal Mode Behavior

Energy (J)

>~ P —m—
\—/\
v/\/\/\M

0S1 OS110S513052 OS3 OS9

(a) Power Consumption in Normal Mode

Energy (J))

OS1 OS110S13052 0S3 OS9

(b) Power Consumption in Critical Mode

Energy ())

OS1 OS110513052 0S3 059

(C) Power Consumption in Normal + Critical Mode

two separate Arduino boards. We then connected a GAS sensor to the
Arduino board with the CO2Sensor file installed to monitor the CO,
levels. Additionally, we attached a USB Power Monitor to measure the
board’s energy consumption during operation. To indicate the operat-
ing mode, we connected lights to the board. The green light indicates
that the normal mode is running, while the red light indicates that the
critical mode is running. For the sake of simplicity, we will show the
energy consumption for the CO2Sensor Arduino board °.

Fig. 18 illustrates the Arduino code generated by CAPS for the
CO2Sensor component. It includes the library, defined variables, ini-
tializations, details for reading data from the CO2 sensor, transitions
between critical and normal modes, and the process of sending data to
another board, such as the RoomController Fig. 18.

We conducted a basic experiment to measure energy consumption in
a real-world setting. We placed Arduino boards with a candle inside a
transparent plastic box for 100 min. Throughout the 100 min, we opened
and closed the box multiple times. Additionally, we noted when the
green light was on (normal mode) and when the red light was on (critical
mode).

5 Youtube Arduino

7Y84gP6QsHo

application https://www.youtube.com/watch?v =

15

Throughout the experiment, we closely monitored the values of the
USB Power Monitor. Every (CO,) sensor reading drew 0.8713W (in-
stantaneous power). Additionally, the board’s idle power was 0.2725 W.
After completing the experiment, we determined that the red light had
been on for 13 min and 45 s while the green light had been on for 86
min and 15 s.

After conducting tests, we found that over 100 min (~1.67h) the en-
ergy consumption is 0.601 Wh when running critical + normal modes
together, 1.452 Wh when running the critical mode only, and 0.465 Wh
when running the normal mode only.

Referring to the results from running the CupCarbon projects in Sec-
tion 7.3, and focusing only on the energy attributable to the C02Sensor
(S3), we observe the following over 100 min (6000 s): running critical +
normal modes together consumes 0.853 Wh, running the critical mode
only consumes 1.291 Wh, and running the normal mode only consumes
0.318 Wh.

The observed ~ 42 % difference (0.854 Wh simulated vs. 0.601 Wh
measured over 100 min, combined mode) reflects expected pre calibration
modeling assumptions—fixed power radio with idealized propagation,
omission of MCU/sensor wake and warm up transients, and nominal reg-
ulator efficiency—rather than faults in the transformation. After a one
time calibration (per state current profiling for sleep/CPU/sense/RX/TX,
variable TX power with obstacle aware path loss, and replay of

https://www.youtube.com/watch?v=7Y84gP6QsHo
https://www.youtube.com/watch?v=7Y84gP6QsHo

M. Abughazala et al.

store reading data

= = e

dataPin_1,
alize
0z
ite(dataPin_1, LOW):
val_1):;
e(dataPin_1, HI

OUTPUT) ;

if (val_1 >= 1200)
delay (1000);

if(val_1<1200)

26 ' _delay(9oo0):L

"
-————

er Met

/ to speed up the readings if wval_1 >= 1200

29 writeData(int wvalue) { \
30 dataPin_1, LOW):; I
1 value); r__

r(value);
e (dataPin_1,

The Journal of Systems & Software 234 (2026) 112728

Including Libraries |

Define variables |

Initializing part |

Reading from Sensors |

. Mode transitions
1 (condition representation)

Sending Data to Another
Board using SPI

Fig. 18. Arduino generated by CAPS code generator for CO2Sensor component.

Table 5

Summary of architectural elements in case studies.
Use Case Software Components Hardware Components Physical Space Protocols
NdR Crowd monitoring, environmental sensing CO2 sensors, people counters, actuators Indoor & outdoor event spaces ZigBee, Wi-Fi
UFFIZI Visitor tracking, adaptive crowd management Beacons, motion sensors Museum with walls affecting signal ~ Bluetooth, Wi-Fi
VASARI Smart urban experience, outdoor sensing LoRa sensors, environmental trackers Open urban areas LoRa, Wi-Fi

measured duty cycles) and normalization to J/min and J/message, the
deviation drops to < 15% in our pilot while preserving the qualitative
ordering of modes. Accordingly, we use uncalibrated simulation for rel-
ative design space exploration and calibrated runs for absolute power
budgeting.

8. Evaluation

This section presents a structured evaluation of the CAPS framework
aimed at assessing its modeling capabilities, transformation fidelity, and
usability in real-world IoT case studies, specifically NdR, UFFIZI, and
VASARI. The evaluation addresses the following research questions:

* RQ1 (Modeling Expressiveness): To what extent can CAPS model
the essential architectural views required in IoT systems, specifically
software behavior, hardware configuration, and spatial deployment?

¢ RQ2 (Transformation Consistency): To what extent do CAPS trans-
formations preserve energy-relevant semantics (mode/timer/sens-
ing/Tx ordering and relative deltas) and functional behavior from
models into simulation artifacts and generated device code?

¢ RQ3 (Usability): How usable and efficient is CAPS for engineers and
students when modeling and deploying IoT applications compared
to conventional or partially automated workflows?

To address these questions, we employed a mixed-method approach
involving three representative case studies, comparative analysis be-
tween simulation and deployment, and user-based empirical studies.

8.1. Modeling expressiveness (RQ1)

CAPS adopts a multi-view modeling approach that integrates soft-
ware architecture (SAML), hardware specification (HWML), and spatial

16

deployment (SPML), in alignment with the ISO/IEC/IEEE 42,010 stan-
dard. To evaluate expressiveness, CAPS was applied to three case stud-
ies: the NdR smart event application, the UFFIZI crowd management
system, and the VASARI smart urban monitoring solution.

To define "modeling expressiveness," we refer to the framework’s
capability to support the formal specification of core architectural con-
cerns in IoT systems: (i) software components and their behavior over
time, (ii) hardware configurations including energy models and com-
munication modules, and (iii) spatial context such as physical device
deployment and environmental constraints.

These concerns are considered essential in many IoT engineering sce-
narios, particularly those where resource constraints, physical layout,
and interaction dynamics between hardware and software need to be
jointly analyzed.

CAPS was evaluated against these criteria using three case studies
that varied in domain, communication protocols, deployment environ-
ments, and system objectives. Success was defined by the ability to fully
specify and interconnect all necessary elements using the SAML, HWML,
and SPML languages, without external modeling extensions or tools.
Furthermore, CAPS was able to maintain model consistency across views
and support automated transformations for each case.

Compared to other frameworks like ThingML or UML4IoT, CAPS
demonstrated superior integration of physical deployment modeling and
alignment with standardized architectural viewpoints (IEEE 42010).

These case studies reflect diverse IoT requirements, including envi-
ronmental sensing, people tracking, heterogeneous communication pro-
tocols, and spatial constraints. As illustrated in Tables 5 and 6, CAPS
successfully modeled the necessary architectural elements in each sce-
nario, confirming its suitability for a wide range of IoT applications.

To support transparency and reproducibility, the complete CAPS
models, CupCarbon simulation artifacts for the UFFIZI and VASARI case

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

Table 6

Cases complexity.
Use Case NdR Uffizi Vasari
Scenarios 1 6 8
Components 6 10 12
IoT Devices 5 13 20
Communication Protocols ZigBee, Wi-Fi Bluetooth, Wi-Fi LoRa, Wi-Fi
Real-Time Constraints Medium High Very High
Data Points Collected 1,000/h 5,000/h 10,000/h

Environmental Constraints Indoor & Outdoor

Indoor (Walls as Obstacles)

Outdoor (Urban Obstacles)

studies, have been made publicly available at this repository.® This
repository includes the architectural models and simulation projects.

8.2. Transformation consistency (RQ2)

This section evaluates whether CAPS maintains semantic consistency
when transforming architectural models into (i) executable simula-
tion artifacts and (ii) deployable device code. We ask whether energy-
relevant behavior (modes, timers, sensing/Tx rates) and functional logic
are preserved across artifacts. Absolute watt-level calibration is out of
scope for RQ2; accuracy aspects and a practical calibration recipe are
discussed in Threats to Validity (Section 9).

8.2.1. Energy-behavior consistency (Semantic validation)

The objective of this section is to validate energy-behavior consis-
tency, CAPS should translate modeled modes, timers, and sensing/Tx
rates into simulations that reflect the correct ordering and relative dif-
ferences across modes. While this subsection focuses on semantic preser-
vation rather than calibrated energy metering, absolute watt-level accu-
racy is out of scope for RQ2 (see Section 9).

Hypothesis (H1: Rank Preservation) Let E(m) be the sim-
ulated energy (or cost proxy) over a fixed horizon for me
{Normal, Eco, ExtremeEco}. The ordering induced by the model intent is
preserved in simulation, i.e., ExtremeEco < Eco < Normal, and relative
reductions are monotone (no sign reversals).

Protocol From a fixed NdR case study design, we automatically gen-
erate three CupCarbon projects via the CAPS transformation pipeline.
All scenarios are simulated for 6000s with identical initial condi-
tions (battery, timers, traffic generators). We report normalized energy
E(m) = E(m)/ E(Normal) and effect sizes as percentage reductions. No
hardware calibration is applied in these simulations; the aim is to vali-
date transformation semantics rather than to benchmark absolute accu-
racy. Metrics & Pass Criterion We assess consistency using two checks
derived from simulation logs: (i) Rank-order check-the mode ordering
matches the model intent (ExtremeEco < Eco < Normal) across scenar-
ios; and (ii) Invariant ratios-duty-cycle and Tx-count ratios follow the
same trend induced by modeled timers/rates (monotone deltas; no re-
versals). RQ2 is considered satisfied if (i) and (ii) hold. Absolute cali-
bration is not claimed under RQ2.

Simulated Results Across the evaluated scenarios, the gener-
ated simulations preserve the intended ordering ExtremeEco < Eco <
Normal and exhibit the expected relative deltas induced by modeled
timers and sensing/Tx rates ((e.g., 0.464 Wh, 0.311 Wh, 0.189 Wh for
Normal/Eco/ExtremeEco, respectively) are consistent with the modeled
reductions). These findings support H1 and indicate that CAPS preserves
energy-relevant semantics across the transformation.

Interpretation: CAPS consistently preserves intended mode/timer
behavior in simulation. Uncalibrated runs are suitable for relative design-
space exploration; absolute power budgeting and deployment planning
are addressed outside RQ2 (see Section 9).

6 CAPS case studies: https://github.com/moamina/CAPS_Experiments_Cases

Table 7
Validation of functional behavior in generated code (Pass rate & observed val-
ues).
Validation Metric Modeled Observed Behavior Pass Rate (%)
Expectation
Sensor Reading 1s (Critical), 90s 1s (Critical), 90s 100
Frequency (Normal) (Normal)
Data Transmission No packet loss No packet loss 100
Integrity
Actuation Condition Trigger at CO, > Triggered at CO, > 100
1200 ppm 1200 ppm
Latency Constraint <100ms ~95ms 95

17

Note. Pass Rate = percentage of runs satisfying the requirement (e.g., latency
< 100 ms).

8.2.2. Functional validation of generated code

To evaluate the semantic fidelity of the transformation process, we
conducted a functional validation of the CAPS-generated Arduino code
deployed on real hardware (Arduino Uno). The purpose was to confirm
that the executable code not only runs correctly but also preserves the
behavioral specifications defined in the architectural model.

Each validation metric was chosen to reflect a specific functional
property from the source model, ranging from sensing frequency and
communication logic to actuator triggering and timing constraints. This
ensures a traceable connection between high-level design intent and
low-level code execution.

Three key validation scenarios were conducted:

Sensor-actuator logic correctness: The system monitored CO, lev-
els and activated the window-opening actuator when the concentra-
tion exceeded 1200 ppm. The trigger condition and resulting action
were observed to match the model-defined behavior exactly.
Communication behavior: Devices communicated via Serial Pe-
ripheral Interface (SPI), using code generated by CAPS. Logs cap-
tured over multiple cycles were analyzed to verify message struc-
ture, integrity, and expected frequency. No anomalies, packet loss,
or timing deviations were detected.

Responsiveness and timing constraints: The time between a CO,
threshold breach and actuator signal issuance was measured us-
ing timestamped serial output. Results consistently met the model-
defined latency limit of 100 ms, confirming timing accuracy in exe-
cution.

For binary requirements, we report Pass Rate: the percentage of runs
that satisfied the requirement. For the latency constraint (< 100 ms), the
numeric value (e.g., ~ 95 ms) is the median measured latency, and Pass
Rate is the percentage of runs with latency <100 ms.

These results confirm that the code generated by CAPS faithfully im-
plements the modeled sensing, communication, and actuation behav-
iors, including real-time constraints. Table 7 summarizes the observed
behaviors across all validation scenarios, confirming alignment with the
modeled functional specifications. The validation reinforces the trans-
formation pipeline’s ability to preserve both functional semantics and
timing fidelity, supporting the reliability of CAPS for generating deploy-
able, behaviorally accurate IoT applications.

https://github.com/moamina/CAPS_Experiments_Cases

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

Table 8

Time statistics for modeling and simulation tasks.
Task Mean (min) Median Min Max Std Dev
SAML Modeling 173 170 130 210 18.2
HWML Modeling 88 85 70 110 10.5
SPML Modeling 51 50 40 65 6.3
Simulation Generation 0.13 0.13 0.1 0.2 0.02

8.3. Ease of use - RQ3

The ease of use of CAPS is evaluated based on its efficiency, user-
friendliness, and practical applicability in real-world IoT system mod-
eling and deployment. A user-friendly IoT framework should minimize
complexity in modeling, simulation, and code generation to ensure ac-
cessibility for both experts and non-experts, reduce development time
and manual effort by automating repetitive tasks such as code gener-
ation and simulation setup, and ensure intuitive integration between
software, hardware, and deployment models, streamlining the IoT de-
sign workflow.

8.3.1. Modeling time

The objectives are to measure how quickly new users can install and
configure CAPS, evaluate the time required to model an IoT system and
generate a working simulation, and identify potential usability bottle-
necks and areas for improvement. To assess how easily users can adopt
CAPS, we conducted an experiment with 39 undergraduate students en-
rolled in software architecture and model-driven engineering courses.
To achieve this, we provided two hours of hands-on training on CAPS,
during which participants were tasked with modeling the NdR IoT sys-
tem, generating a CupCarbon simulation, and validating the results. The
time taken for each task was recorded.

Table 8 provides descriptive statistics for task completion times.
Each modeling activity was timed independently, and summary statis-
tics (mean, median, range, and standard deviation) are presented. These
results reveal a moderate range of completion times for each modeling
activity, with SPML showing the lowest variation and SAML the high-
est, reflecting the relative complexity of the views. The low variance in
simulation generation time demonstrates the high level of automation
achieved by CAPS.

This breakdown highlights CAPS’s suitability for educational and in-
dustrial environments by confirming that users with limited experience
can quickly and accurately create complete models using its graphical
and textual interfaces.

8.3.2. Efficiency of CAPS automation features

CAPS enhances efficiency and usability by automating key processes
in IoT system design, minimizing manual effort, and ensuring model
consistency. Its automation capabilities focus on:

1. Automated code generation by eliminating manual implementation
by producing error-free executable code.

2. Automated simulation setup by reducing configuration time to en-
sure rapid validation.

To evaluate CAPS’s automation efficiency, we conducted a controlled
comparison involving a subset of 10 participants. Each participant per-
formed development tasks manually and using CAPS. The observed task
durations (in minutes) are summarized in Table 9, which includes mean
times, standard deviations, and relative improvement percentages.

Manual baseline definition. The “Manual” workflow refers to a conven-
tional, model-free process. System models were drawn using general-
purpose tools (e.g., Visio, draw.io) and described in text, without au-
tomated consistency checks. Code was implemented manually in the
Arduino IDE using basic editing features (syntax highlighting and com-
pletion only), without model-based generation or templates. Thus, the

18

Table 9

Comparison of manual and CAPS task durations with time reduction.
Task Manual (min) CAPS (min) Time

Mean + SD Mean + SD Reduction (%)

System Modeling 405 + 35 195 + 22 51.9%
Simulation Configuration ~ 20.5 + 3.2 0.13 +0.01 99.4%
Code Implementation 155 +12 0.17 = 0.02 99.9%
Debugging & Validation 75+9.5 19+4.1 74.7%

time gap in Table 9 reflects CAPS’s automation and integration advan-
tages rather than unequal tool support.

These measurements confirm that CAPS substantially reduces de-
velopment effort across all stages of IoT system modeling and deploy-
ment. While manual times vary with user expertise and task complexity,
achieves consistent, repeatable results through model-driven automa-
tion.

8.4. Ethics and institutional review

The classroom activity informing RQ3 was reviewed by the Uni-
versity Ethics/IRB (Institutional Review Board) office and classified as
Not Human Subjects Research (NHSR), because the project analyzed
de-identified educational artifacts without interaction/intervention af-
fecting students’ education and with no identifiable private information.
Participation was voluntary, with information provided to participants
and the option to opt out without penalty. Only aggregate results are
reported.

9. Threats to validity

This section discusses potential threats to the validity of our evalu-
ation and explicitly reflects on the inherent difficulty of validating end-
to-end, model-driven frameworks that span architectural modeling, sim-
ulation, and code generation. Because CAPS couples multi-view mod-
eling with transformation to simulation artifacts and deployable code,
evidence accrues across heterogeneous instruments (time-on-task, simu-
lated energy/traffic, functional conformance on hardware). As a result,
some aspects of our current validation are necessarily limited in scope
and depth, particularly for construct and external validity, which we
acknowledge and plan to strengthen in future work.

9.1. Internal validity

Internal validity concerns whether the observed outcomes are caused
by CAPS rather than uncontrolled variables. Energy readings and simu-
lation outputs can be affected by hardware variation, sensor calibration
drift, ambient conditions, and wireless interference. We mitigated these
risks by standardizing hardware, repeating runs, and normalizing con-
figurations across trials. Still, two limitations remain: (i) simulated en-
ergy models are not calibrated to device-specific power profiles, and (ii)
hardware experiments used a limited set of boards and sensors. These
choices reduce confounds but do not eliminate them; hence, our inter-
nal claims focus on trend preservation and relative deltas across modes
rather than absolute watt/joule fidelity.

9.2. Construct validity

Construct validity asks whether our measures truly capture the un-
derlying concepts the study claims to assess. For CAPS, three con-
structs are central: modeling expressiveness, transformation fidelity, and
usability/efficiency. While our metrics (coverage across SAML/HWM-
L/SPML, preservation of mode/timing semantics from models to Cup-
Carbon/Arduino, and task time/error rates) are aligned with these con-
structs, they are imperfect proxies:

M. Abughazala et al.

¢ Expressiveness. We operationalized expressiveness as the ability to
model required concerns across three views and drive downstream
artifacts. This operationalization does not measure completeness
against an exhaustive IoT construct catalog (e.g., mobility, QoS la-
tency/jitter, safety properties). Thus, our “expressiveness” evidence
is sufficient for the studied cases but not comprehensive across the
IoT design space.
e Transformation fidelity. Our validation emphasizes preservation
of intended energy-relevant semantics (modes, timers, sensing/Tx
rates) and functional conformance (trigger conditions, message tim-
ing) rather than calibrated power accuracy. In other words, we sub-
stantiate that “it behaves as modeled” more than “it consumes the
exact calibrated energy,” which is a narrower interpretation of fi-
delity.
Usability/efficiency. Time-on-task with trained students and a
smaller expert subset captures learnability and automation benefits
but may not reflect team-scale industrial workflows, organizational
tooling, or long-term maintenance effort. Hence, the construct “ef-
ficiency” is partially observed through first-use productivity rather
than lifecycle cost.

Overall, we acknowledge that our constructs are operationalized in a
study-feasible but narrower way. Future work will broaden the construct
set (e.g., QoS-aware modeling, mobility, safety) and introduce validated
instruments for those properties.

9.3. External validity

External validity concerns the generalizability of findings beyond our
settings. We purposely selected diverse case studies (NdR event moni-
toring, UFFIZI museum, VASARI urban sensing) to vary communication
protocols, spatial constraints, and workload characteristics, which im-
proves coverage but does not guarantee generality to other domains
such as industrial automation, vehicular IoT, or high-mobility CPS.
Moreover:

¢ Our simulations rely on CupCarbon and static deployments; domains
with mobility, multi-hop dynamics under heavy contention, or strict
real-time guarantees may behave differently.

¢ Arduino was our target for code generation; heterogeneous platforms
(e.g., Raspberry Pi, RTOS-based MCUs, SBC clusters) may introduce
deployment and timing differences.

Therefore, our claims should be read as analytic generalization to
architecturally similar [oT classes, not statistical generalization to all IoT
systems. We explicitly recognize this as a shallow aspect in the current
validation and will address it via multi-site industrial replications and
additional platform backends. Operational limits and the composition
strategy are summarized in Section 10.3 (Practical scaling guidance).

9.4. Conclusion validity

Conclusion validity concerns whether the data analysis supports the
stated findings. To strengthen our conclusions, we reported descrip-
tive statistics (mean, median, standard deviation), ensured consistency
across observed behaviors, and conducted controlled comparisons be-
tween CAPS and manual development. However, the sample size for the
automation time comparison is modest and may not capture all usage
variability. Future work will involve larger-scale experimental valida-
tions to confirm observed trends. Operational limits and the composition
strategy are summarized in Section 10.3 (Practical scaling guidance).

10. Discussion
This section discusses the outcomes of the CAPS evaluation across

key quality dimensions: modeling effectiveness, efficiency, transforma-
tion fidelity, scalability, and current limitations. Each subsection corre-

19

The Journal of Systems & Software 234 (2026) 112728

sponds to one or more of the research questions defined in Section 8 and
reflects on CAPS’s capabilities and directions for future enhancement.

10.1. Effectiveness

CAPS effectively addresses the complexities of developing IoT appli-
cations through several innovative contributions:

e Multi-View Architecture Modeling: CAPS provides an integrated,
multi-view architecture for IoT systems, modeling software, hard-
ware, and physical spaces. This comprehensive approach ensures
detailed consideration of all aspects of system architecture, which
is often lacking in existing frameworks.

Detailed Performance Analysis: The framework excels at analyzing
crucial parameters like power consumption, battery level, and data
traffic through automated simulations. These insights are vital for
optimizing system performance before deployment, ensuring IoT sys-
tems are energy-efficient and efficient for data traffic.

Empirical Validation: Extensive case studies demonstrate the prac-
ticality and effectiveness of CAPS, a feature often lacking in similar
frameworks.

10.2. Efficiency

The efficiency of CAPS is highlighted by its integrated and stream-
lined approach to IoT system development:

e Comprehensive Integration: CAPS integrates architecture descrip-
tion, simulation, and automated code generation within a single
framework, enabling a seamless transition from design to deploy-
ment. This integration significantly enhances the development pro-
cess, reducing time and complexity compared to other frameworks
that may only focus on individual aspects.

Simulation-Driven Development: By simulating real-world environ-
ments, CAPS allows developers to predict and analyze system behav-
ior under various conditions, providing essential metrics on power
usage and network efficiency that are crucial for developing sustain-
able IoT solutions.

Automated Code Generation: CAPS automates the generation of ex-
ecutable code from architectural models, speeding up development
times and reducing the potential for human error. This feature sup-
ports a range of [oT platforms, enhancing the framework’s applica-
bility across different technologies.

Modeling Languages: Developed specifically for situational-aware
applications, CAPS’s modeling languages enable precise modeling of
software, hardware, and physical aspects, leading to improved sim-
ulation accuracy and high-quality code generation.

10.3. Scalability and generalizability

This study presented the CAPS framework, designed to support IoT
application lifecycles-from architectural design to deployment-ready
code generation. CAPS’s scalability and effectiveness were demonstrated
through its application to multiple case studies, including the European
Researchers’ Night (NdR, see Section 7.1), the Uffizi Galleries crowd
management system (Abughazala et al., 2021) ECSA CAPS (2021) , and
VASARI (Italian Smart Art Experience) Vasari Art Experience (2018)
Vasari Models (2021) . These case studies represent a diverse set of do-
mains with varying complexity, scale, and environmental conditions.
Table 6 provides an overview of the modeling and deployment com-
plexity across these scenarios, including metrics such as the number of
components, communication protocols, real-time constraints, and data
points collected per hour. The data confirms that CAPS can scale from
lightweight IoT setups to more complex, multi-device, real-time sys-
tems while maintaining consistency and traceability across its modeling
views. This supports the generalizability of CAPS to a wide range of IoT
use cases, both small and large scale.

M. Abughazala et al.

Transformation scaling We evaluate CAPS on scenarios of up to
20 devices per cell (e.g., a lab or corridor slice). This is a representative
unit, not the total deployment; real systems can comprise many such
cells (hundreds of devices overall via composition).

CAPS uses local, per-element mappings over HWML/SPML/SAML.
By design and observation, transformation time grows approximately
linearly with modeled entities and links (O(N+E)) where N is the num-
ber of modeled elements (e.g., devices/components), and E is the num-
ber of modeled relations between them (e.g., links, transitions), and
shows a small, constant setup overhead. We do not expect exponential
bottlenecks in CAPS’s transformation pipeline.

Simulation scaling and accuracy Post-generation runtime depends
mainly on density and traffic rates, not N alone; high contention can lead
to super-linear slowdowns. Within a cell (20 devices), simulated ener-
gy/traffic trends align qualitatively and often near-quantitatively with
measurements. With small-sample calibration and contention-aware set-
tings enabled, absolute error remains bounded at larger scales, while
directional (trend) accuracy is preserved.

Practical scaling guidance Our generators are single-pass
(O(N+E)). We target cell-level runs of < 50 devices and compose larger
deployments via parallel per-cell simulations, with inter-cell traffic
constrained at gateways (fan-out < k). This keeps contention local and
preserves per-node semantics; beyond these bounds, runtime growth is
dominated by traffic density rather than model size.

10.4. CAPS limitations

CAPS framework has several limitations: (i) CAPS simulation can
only support the CupCarbon simulator. Consequently, every component
in CAPS models must contain one node to transform correctly into the
CupCarbon simulator. (ii) CAPS can only produce Arduino code. (iii)
CAPS does not support mobility features (In other words, CAPS supports
static positioning of its components). (iv) CAPS does not support the idea
of type. To model our architecture using a type system so that the same
type can be instantiated many times.

CAPS is striving to address various challenges that arise in other IoT
systems. These challenges may include:

o Self-*: One of the key features of IoT systems is the ability to per-
form self-adaption / self-management / self-configuration. We are
currently working on adding the self-adaptation capabilities to the
CAPS framework. As a starting point, we have performed further
analysis, and these are reported in Abusair et al. (2017), Sharaf et al.
(2018b) and Muccini et al. (2018).

¢ QoS Concerns: While CAPS currently supports QoS analysis in terms
of energy consumption and data delivery rates, it does not yet incor-
porate timing-based QoS metrics such as latency, jitter, or end-to-end
delay. However, our human behavior-oriented design methodology
(as applied in Abughazala et al., 2021 and Abughazala and Muccini,
2026) demonstrates that the existing simulation framework is capa-
ble of supporting such extensions. Future work will enhance CAPS
with QoS-aware modeling constructs, allowing architects to define
and validate time-sensitive requirements. Planned improvements in-
clude integration with timing-aware simulation backends, specifica-
tion of latency thresholds at the model level, and support for real-
time network contention analysis. These features will allow CAPS to
serve a broader range of applications requiring strict performance
guarantees.

Absolute energy estimates depend on availability of device specific
power profiles; without calibration, results should be interpreted com-
paratively.

11. Related work

Several research efforts have been undertaken to tackle the chal-
lenges associated with IoT system architectures, particularly in design-

20

The Journal of Systems & Software 234 (2026) 112728

ing IoT systems. Numerous frameworks and methodologies have been
suggested, each with strengths and limitations.

ThingML (Harrand et al., 2016) is a model-driven engineering
toolchain targeting resource-constrained embedded and distributed sys-
tems. As reported in the project website”, ThingML is developed as a
domain-specific modeling language that describes software components
and communication protocols through architecture models, state ma-
chines, and an imperative action language. It uses a model-driven en-
gineering approach to describe IoT applications. It focuses on a com-
ponent and connector view and uses event-condition-action to describe
the component’s behavior.

MontiThings (Kirchhof et al., 2022) (Butting et al., 2022) (Kirchhof,
2024) is an integrated modeling language for IoT applications and their
deployment. MontiThings provides a model-driven toolchain that gen-
erates executable IoT containers, plans automated deployment, suggests
deployment changes based on feedback, and monitors the generated
container. This approach mainly targets the edge layer.

MDE4IoT (Ciccozzi and Spalazzese, 2016) is a platform that uses
multiple UML DSLs to support IoT systems’ development, design, and
management. It provides ways to model and self-adapt Emergent Con-
figurations (ECs) for connected systems. MDE4IoT generates platform-
specific code from state machines using model-to-model and model-to-
text transformations. Additionally, the platform supports run-time mon-
itoring and self-adaptations through re-allocations and re-generation
mechanisms based on the system’s runtime feedback.

SysML4IoT (Costa et al., 2016a) is a tool for Model-Based Systems
Engineering during the IoT application development design phase. It
uses views and viewpoints to cater to stakeholders and incorporates
systems engineering concepts using the [0T-A domain reference model
and ISO/IEC/IEEE standards. They introduced an extension called
SysML4IoT in Costa et al. (2016b) to create precise models of IoT appli-
cations while verifying their Quality of Service (QoS) properties using
a model-to-text translator that executes the model and QoS properties
specified on it with NuSMV (Cimatti et al., 2002).

UML4IoT (Thramboulidis and Christoulakis, 2016) is an MDE plat-
form for industrial automation systems that transforms mechatronic
components into Industrial Automation Things (IAT) using model-to-
model transformation. The OMA LWM2M application and CoAP com-
munication protocols expose the IoT interface as simple, smart objects.
The platform also allows high-level languages like Java to specify the
system’s behavior if a higher-level design specification like the UML one
is unavailable.

SimulateloT (Barriga et al., 2021) is a tool that lets users create com-
plex simulation environments for IoT without writing code. The tool
uses a metamodel and a graphical syntax generated by Eugenia to cre-
ate code for sensors, actuators, fog nodes, and cloud nodes. To ensure the
model is correct, users can set a series of constraints using Object Con-
straint Language (OCL) during the simulation phase. Once the code is
generated, the tool can deploy the artifacts as microservices and Docker
containers, which are connected through a publish-subscribe communi-
cation protocol.

DSL-4-IoT (Salihbegovic et al., 2015) is a visual programming
language-based tool that simplifies the complexity and heterogeneity of
IoT systems. With the editor, the user can configure the system structure
and select devices, sensors, and actuators from built-in library modules.
Once the design is complete, the user can export the data into a JSON
array configuration file that contains information about the position of
all items, relationships between items and groups and the value of all
configured fields associated with items and data types. The configura-
tion files can then be transferred manually to the respective OpenHAB
runtime directory or automatically downloaded using a simple web ser-
vice for execution.

7 http://thingml.org/

http://thingml.org/

M. Abughazala et al.

Table 10
Comparative table on supporting different IoT modeling features.

The Journal of Systems & Software 234 (2026) 112728

Supported View

Tool Graphical modeling ~ Textual modeling ~ Multi-view modeling

Software =~ Hardware Physical
ThingML (Harrand et al., 2016) No Yes No Yes No No
MontiThings (Kirchhof et al., 2022) Yes Yes No Yes Yes No
(Butting et al., 2022) (Kirchhof, 2024)
MDE4IoT (Ciccozzi and Spalazzese, 2016) Yes No Yes Yes Yes No
CHESSIoT (Thirwe et al., 2023) Yes Yes Yes Yes Yes No
UMLA4I0T (Thramboulidis and Yes No Yes Yes Yes No
Christoulakis, 2016)
Simulate-IoT (Barriga et al., 2021) Yes No No Yes Yes No
DSL-4-I0T (Salihbegovic et al., 2015) Yes No No Yes Yes No
IoTDraw (Costa et al., 2020, 2019, 2016a) Yes Yes Yes Yes Yes Yes
CAPS Yes Yes Yes Yes Yes Yes

CHESSIoT (Ihirwe et al., 2023) is an environment for model-driven
engineering that integrates high-level visual design languages, software
development, safety analysis, and deployment approaches for engineer-
ing multi-layered IoT systems. The users can perform various engineer-
ing tasks on system and software models under development, facilitating
earlier decision-making and allowing for proactive measures.

IoTDraw (Costa et al., 2020) is a modeling language for SOA-based
IoT systems called. It offers a compliant modeling language called
SoaML4IoT (Costa et al., 2019) that built on top of SysML4IoT (Costa
et al., 2016a), which can be implemented by any tool adhering to OMG
standards. This modeling language integrates SoaML with IoT-specific
requirements to enhance interoperability and reusability in the com-
plex ecosystem of IoT applications. It enables precise representation and
simulation of IoT systems to aid in making informed architectural de-
cisions. IoTDraw addresses challenges in the IoT domain by providing
a standardized language for modeling SOA-based IoT systems. It pro-
motes better integration, scalability, and efficiency across diverse IoT
ecosystems.

A comparison and detailed analysis of these tools in terms of their
graphical, textual modeling capabilities and their support for multi-view
modeling is presented in Section 11.1. An evaluation of their code gen-
eration features and system analysis capabilities, including power con-
sumption and data traffic, is presented in Section 11.2.

11.1. Supporting the modeling of IoT systems

This section presents a comparison of different approaches to mod-
eling application entities across three views: software, hardware, and
physical. (see Table 10). This section aims to identify tools that can
model all aspects of an IoT system, from software to hardware and phys-
ical views, while maintaining consistency throughout the process.

The findings from the assessment in Table 10 are compared to CAPS-
supported modeling features, which will be presented in detail in the
next section.

1. Table 10 lists the platforms we selected and shows that they all
have a modeling environment. Most offer graphical modeling tools,
but ThingML only has a textual modeling option. Textual-based ap-
proaches may be more scalable, but graphical interfaces are usu-
ally more user-friendly. Some platforms like MontiThing, IoTDraw,
CHESSIoT, and CAPS have integrated textual and graphical mod-
eling approaches.

2. Out of the eight tools considered, only MDE4IoT, IoTDraw, CHES-
SIoT, and CAPS provide support for multi-view modeling and
component-based design, which are crucial in dealing with the com-
plexities of IoT systems. Other platforms may implement alternative
approaches that complement multi-view modeling depending on the
modeling context.

3. Itis apparent from Table 10 that most existing approaches have lim-
ited capabilities when it comes to modeling sensors, actuators, and

21

computing boards. However, CAPS stands out as it allows for com-
prehensive modeling of all IoT components, both functionally and
behaviorally. This is made possible through several modeling per-
spectives, which enable a single model to be used for various engi-
neering purposes. Among the approaches mentioned, such as CAPS,
IoTDraw, CHESSIoT, DSL-4-I0T, and UMLA4IoT offer hardware views.
Only CAPS, and IoTDraw provide a physical view. CAPS provides a
comprehensive approach with three separate views and two aux-
iliary views that merge these three views. This ensures detailed con-
sideration of all system architecture aspects, which is often lacking
in existing frameworks.

11.2. Assessing IoT engineering frameworks and methodologies

The assessment results summarized in Table 11 provide valuable in-
sights into the capabilities of various frameworks for engineering IoT
systems. These findings highlight CAPS as a comprehensive framework,
offering unique advantages over other platforms.

1. Model-Driven Engineering and Code Generation MDE plays a crucial
role in automating the development process of IoT systems by bridg-
ing the gap between high-level design and executable implementa-
tions. A key advantage of MDE is its capability to generate system
code directly from models, significantly reducing development time
and minimizing manual errors. Tools like ThingML are particularly
effective in this area. They generate functional code in multiple pro-
gramming languages to ensure adaptability across various platforms.
Similarly, CHESSIoT builds upon ThingML'’s code generation infras-
tructure, enhancing its functionality for multi-layered IoT systems.
On the other hand, CAPS extends these capabilities by providing
a code generator that produces both Arduino-compatible code and
Senscript (CupCarbon Simulation Language). This dual functional-
ity allows CAPS to support seamless integration between simulation
and real-world deployment, providing developers with a streamlined
workflow from architectural modeling to executable system imple-
mentation.

2. Analyzing the Performance of IoT System Designs An essential aspect
of IoT system engineering is the ability to analyze key performance
metrics such as energy consumption, battery levels, and data traffic.
While existing frameworks excel in specific areas, CAPS stands out by
offering a holistic approach to system analysis. CHESSIoT is partic-
ularly effective for conducting risk analysis, allowing developers to
anticipate potential failures in IoT system architectures. In contrast,
IoTDraw emphasizes Quality of Service (QoS) analysis, ensuring that
IoT systems meet predefined performance standards.

CAPS goes beyond these focused capabilities by integrating a
comprehensive suite of analysis tools that cover energy consumption,
battery life, and data traffic. It utilizes both simulation (through Cup-
Carbon) and real-world testing (via Arduino code). This dual-layered
approach enables developers to make informed decisions during the

M. Abughazala et al.

The Journal of Systems & Software 234 (2026) 112728

Table 11
Comparative table on supporting different IoT engineering capabilities.

Tool Development (Code Generation) Analysis Empirical Assessment
Target Platform Language Power Consumption Battery Level ~ Data Trafic Other Approach

MontiThings (Kirchhof IoT Boards, Cloud C+ + & Prolog No No No Yes Proof of concept and a

et al., 2022) (Butting case study

et al., 2022) (Kirchhof,

2024)

ThingML (Harrand et al., IoT Boards, Cloud C/C+ +, Java, No No No No Proof of concept and a

2016) Javascript case study

MDE4I0T (Ciccozzi and 10T Boards Java, C+ + No No No No Case Study

Spalazzese, 2016)

CHESSIoT (Thirwe et al., IoT Boards, OS, Thingml No No No Safety analysis Proof of concept and a

2023) Cloud case study

UMLA4I0T (Thramboulidis ~ Contiki & Rasp.Pi C No No No No Proof of concept and a

and Christoulakis, 2016) case study

Simulate-IoT (Barriga Simulation, IoT Java, Python No No Yes Performance, Proof of concept and two

et al., 2021), Barriga Boards, Fog, Cloud Memory usage cases study

et al. (2023)

DSL-4-IoT (Salihbegovic IoT Board, Cloud OpenHAB No No No No Case Study

et al., 2015)

IoTDraw (Costa et al., Simulation, MOKA Java, fUML Yes Yes No System QoS Proof of concept and a

2020, 2019, 2016a) case study

CAPS Simulation, Senscript, C/C+ + Yes Yes Yes No Proof of concept &

Arduino Boards

three case studies

early stages of development, optimizing resource utilization and en-
suring system reliability.

Based on our analysis, we have identified and described the main
limitations below:

e Many modeling approaches focus on single-view modeling, which
is not always efficient. Only a few approaches, such as MontiThings,
IoTDraw, and MED4IoT, use multi-view modeling, which separates the
system component into dedicated, consistent views (Mazzini et al.,
2015). This practice has enormous benefits, as it allows for spe-
cialized projections of the system in specific dimensions of interest,
which enforces the separation of concerns.

o A few tools focus on analyzing IoT systems during development. Ana-
lyzing the responsiveness of IoT systems before deployment is still a
major challenge. This is due to the complexity of the problem, which
involves human interaction, environmental constraints, and the di-
versity of target platforms. Additionally, no other tool, except CAPS
and IoTDraw, can analyze power consumption, battery level, and
data traffic.

e We have observed a lack of standards to support the model-based
development of IoT systems. Each tool has its development method,
except loTDraw uses OMG (Object Management Group) Standard,
and CHESSTIoT uses MMQEF (Multiple Modeling Quality Evaluation
Framework).

As shown in Tables Table 10 and Table 11, existing frameworks typi-
cally address only isolated concerns within the IoT development process.
ThingML focuses on software modeling and partial code generation.
UMLA4IoT and CHESSIoT offer software architecture abstraction without
physical deployment integration. CupCarbon supports simulation but
lacks architecture modeling and implementation alignment. These tools
require manual handoffs between modeling, simulation, and deploy-
ment stages, which leads to fragmented workflows. In contrast, CAPS
provides a novel, end-to-end architecture-to-deployment pipeline that
unifies multi-view architectural modeling across software, hardware,
and physical space. It supports performance simulation through CupCar-
bon, 3D spatial layout modeling via SPML, and automated Arduino code
generation. This integrated approach enables traceability, early valida-
tion, and consistent execution, positioning CAPS as a uniquely compre-
hensive framework within the IoT development landscape.

22

12. Conclusion and future work

This paper introduced CAPS, a model-driven engineering framework
that supports the end-to-end development of IoT systems. CAPS en-
ables architectural modeling across three complementary views, soft-
ware, hardware, and physical deployment, while integrating energy
and communication traffic simulation and automating the generation of
Arduino-compatible code for real-world deployment. In contrast to the
existing tools that operate in isolation or support only a subset of these
concerns, CAPS provides a unified, architecture-centric workflow that
preserves traceability from high-level design to real-world deployment.

The framework was validated through three diverse case studies-
NdR, UFFIZI, and VASARI-demonstrating its expressiveness, automa-
tion efficiency, and transformation fidelity. CAPS reduced modeling and
implementation effort, maintained consistent behavior across simula-
tion and deployed systems, and scaled to increasingly complex architec-
tural configurations. These results affirm CAPS’s applicability to a broad
range of IoT domains.

While CAPS provides robust support for multi-view architectural
modeling, energy and traffic-aware simulation, and deployable code
generation, several limitations remain. The current framework does not
yet support explicit Quality of Service (QoS) constraints such as latency,
jitter, or packet loss, nor does it allow formal specification and verifi-
cation of timing or safety properties. Additionally, code generation is
currently limited to the Arduino platform, and runtime adaptability for
dynamic reconfiguration is not yet supported. Future work will address
these limitations by enriching CAPS with QoS-aware modeling prim-
itives, timing-accurate simulation integration, and support for multi-
platform deployment (e.g., Raspberry Pi), and runtime monitoring for
adaptive system behavior.

CRediT authorship contribution statement

Moamin Abughazala: Writing - review & editing, Writing - original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization; Mohammad Sharaf:
Writing - review & editing, Writing - original draft, Visualization, Val-
idation, Supervision, Software, Methodology, Conceptualization; Mai
Abusair: Conceptualization, Writing - review & editing, Visualization,
Validation; Henry Muccini: Writing - review & editing, Writing - orig-
inal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Conceptualization.

M. Abughazala et al.
Data availability

No data was used for the research described in the article.
Declaration of competing interest

No conflicts of interest or financial support associated with this pub-
lication

References

Abdmeziem, M.R., Tandjaoui, D., Romdhani, I., 2015. Architecting the internet of things:
state of the art. Robots Sensor Clouds , 36, 55-75.

Abughazala, M.B., Moghaddam, M.T., Muccini, H., Vaidhyanathan, K., 2021. Human
behavior-oriented architectural design. In: European Conference on Software Archi-
tecture. Springer, pp. 134-143.

Abusair, M., Sharaf, M., Muccini, H., Inverardi, P., 2017. Adaptation for situational-aware
cyber-physical systems driven by energy consumption and human safety. In: Proceed-
ings of the 11th European Conference on Software Architecture: Companion Proceed-
ings. ACM, pp. 78-84.

Barriga, J.A., Clemente, P.J., Sosa-Sanchez, E., Prieto, A.E., 2021. SimulateloT: domain
specific language to design, code generation and execute IoT simulation environments.
IEEE Access 9, 92531-92552.

Bounceur, A., 2016. CupCarbon: a new platform for designing and simulating smart-city
and IoT wireless sensor networks (SCI-WSN). In: Proceedings of the International Con-
ference on Internet of Things and Cloud Computing. ACM, p. 1.

Butting, A., Kirchhof, J.C., Kleiss, A., Michael, J., Orlov, R., Rumpe, B., 2022. Model-driven
IoT app stores: deploying customizable software products to heterogeneous devices.
In: Proceedings of the 21st ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, pp. 108-121.

Ciccozzi, F., Spalazzese, R., 2016. Mde4IoT: supporting the internet of things with model-
driven engineering. In: International Symposium on Intelligent and Distributed Com-
puting. Springer, pp. 67-76.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A., 2002. NUSMV 2: an opensource tool for symbolic model checking. In:
Computer Aided Verification: 14th International Conference, CAV 2002 Copenhagen,
Denmark, July 27-31, 2002 Proceedings 14. Springer, pp. 359-364.

Costa, B., Pires, P.F., Delicato, F.C., 2016a. Modeling IoT applications with sysml4iot. In:
2016 42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, pp. 157-164.

Costa, B., Pires, P.F., Delicato, F.C., 2019. Modeling SOA-based IoT applications with
soaML4iot. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE,
pp. 496-501.

Costa, B., Pires, P.F., Delicato, F.C., 2020. Towards the adoption of OMG standards in the
development of SOA-based IoT systems. J. Systems Software 169, 110720.

Costa, B., Pires, P.F., Delicato, F.C., Li, W., Zomaya, A.Y., 2016b. Design and analysis of IoT
applications: a model-driven approach. In: 2016 IEEE 14th Intl Conf on Dependable,
Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Com-
puting, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp. 392-399.

Crnkovic, I., Malavolta, 1., Muccini, H., Sharaf, M., 2016. On the use of component-based
principles and practices for architecting cyber-physical systems. In: 2016 19th Interna-
tional ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE).
IEEE, pp. 23-32.

Gronninger, H., Krahn, H., Rumpe, B., Schindler, M., Vélkel, S., 2014. Textbased modeling.
arXiv preprint arXiv:1409.6623 .

Harrand, N., Fleurey, F., Morin, B., Husa, K.E., 2016. ThingML: a language and code gen-
eration framework for heterogeneous targets. In: Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems, Saint-
Malo, France, October 2-7, 2016, pp. 125-135. http://dl.acm.org/citation.cfm?id =
2976812.

23

The Journal of Systems & Software 234 (2026) 112728

Thirwe, F., Di Ruscio, D., Gianfranceschi, S., Pierantonio, A., 2023. ChessloT: a model-
driven approach for engineering multi-layered iot systems. J. Comput. Lang. 78,
101254.

ISO/IEC/IEEE, 2022. Systems and software engineering - architecture description
(ISO/IEC/IEEE 42010:2022). http://www.iso-architecture.org/ieee-1471/cm/.

Jajodia, S., Liu, P., Swarup, V., Wang, C., 2010. Cyber Situational Awareness. Vol. 14.
Springer.

Kirchhof, J.C., 2024. From Design to Reality: An Overview of the MontiThings Ecosystem
for Model-Driven IoT Applications. Springer Nature Switzerland, Cham. pp. 45-71.
Kirchhof, J.C., Rumpe, B., Schmalzing, D., Wortmann, A., 2022. Montithings: model-
driven development and deployment of reliable iot applications. J. Syst. Software 183,

111087.

Malavolta, I., Muccini, H., Sharaf, M., 2015. A preliminary study on architecting cyber-
physical systems. In: Proceedings of the 2015 European Conference on Software Ar-
chitecture Workshops. ACM, p. 20.

Mazanec, M., Macek, O., 2012. On general-purpose textual modeling languages. In:
Dateso. Vol. 12. Citeseer, pp. 1-12.

Mazzini, S., Favaro, J., Baracchi, L., 2015. A model-based approach across the iot lifecy-
cle for scalable and distributed smart applications. In: 2015 IEEE 18th International
Conference on Intelligent Transportation Systems. IEEE, pp. 149-154.

McEwen, A., Cassimally, H., 2013. Designing the internet of things. John Wiley & Sons.

Muccini, H., Sharaf, M., 2017a. Caps: a tool for architecting situational-aware cyber-
physical systems. In: Software Architecture (ICSA), 2017 IEEE International Confer-
ence on. [EEE.

Muccini, H., Sharaf, M., 2017b. Caps: architecture description of situational aware cyber
physical systems. In: Software Architecture (ICSA), 2017 IEEE International Confer-
ence on. IEEE, pp. 211-220.

Muccini, H., Spalazzese, R., Moghaddam, M.T., Sharaf, M., 2018. Self-adaptive IoT ar-
chitectures: an emergency handling case study. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings. ACM, p. 19.

Salihbegovic, A., Eterovic, T., Kaljic, E., Ribic, S., 2015. Design of a domain specific lan-
guage and IDE for internet of things applications. In: 2015 38th International Conven-
tion on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE, pp. 996-1001.

Sharaf, M., Abughazala, M., Muccini, H., Abusair, M., 2017. Capsim: simulation and code
generation based on the caps. In: Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings, pp. 56-60.

Sharaf, M., Muccini, H., Abughazala, M., 2018a. ArIA: arduino code generation based on
the caps. In: Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, pp. 1-4.

Sharaf, M., Muccini, H., Sahay, A., 2018b. A comparative analysis of self-adaptive pat-
terns in cyber-physical systems. In: Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings. ACM, p. 46.

Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S., et al., 2010. Vision and challenges
for realising the internet of things. Cluster Eur. Res. Projects Internet Things, Eur.
Commision 3 (3), 34-36.

SWEETHOME-SWEET, H.. 3D (2015). Sweet Home 3D https://www.sweethome3d.com/.

Thramboulidis, K., Christoulakis, F., 2016. Uml4IoT-a UML-based approach to exploit IoT
in cyber-physical manufacturing systems. Comput. Ind. 82, 259-272.

Arduino, 2022. Arduino hardware. https://www.arduino.cc/en/hardware.

ECSA CAPS, 2021. ECSA 2021 CAPS. https://github.com/karthikv1392/PedCupSim.

Vasari Art Experience, 2018. Vasari art experience. https://www.vasariartexperience.it/.

Vasari Models, 2021. Vasari models. https://github.com/moamina/
CupcarbonSimulationProject/tree/master/VASARI.

Barriga, J.A., Clemente, P.J., Pérez-Toledano, M.A., Jurado-Mélaga, E., Herndndez, J.,
2023. Design, code generation and simulation of IoT environments with mobility de-
vices by using model-driven development: SimulateloT-Mobile. Pervasive and Mobile
Computing 89, 101751.

Abughazala, M., Muccini, H., 2026. A visionary architecture for adaptive data con-
tracts in behavior-driven IoT systems. In: Software Architecture. ECSA 2025 Tracks
and Workshops. Lecture Notes in Computer Science, 15982. Springer, Cham. 1-16.
https://doi.org/10.1007/978-3-032-04403-7_32.

Sharaf, M., Abughazala, M., Muccini, H., Abusair, M., 2017. Simulating architectures of
situational-aware cyber-physical space. In: Proceedings of the 11th European Confer-
ence on Software Architecture: Companion Proceedings. ACM, pp. 66-67.

http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0001
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0001
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0014
http://dl.acm.org/citation.cfm?id=2976812
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0014
http://dl.acm.org/citation.cfm?id=2976812
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0015
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0015
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0015
http://www.iso-architecture.org/ieee-1471/cm/
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0031
https://www.sweethome3d.com/
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0032
https://www.arduino.cc/en/hardware
https://github.com/karthikv1392/PedCupSim
https://www.vasariartexperience.it/
https://github.com/moamina/CupcarbonSimulationProject/tree/master/VASARI
https://github.com/moamina/CupcarbonSimulationProject/tree/master/VASARI
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0033
https://doi.org/10.1007/978-3-032-04403-7_32
https://doi.org/10.1007/978-3-032-04403-7_32
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00397-8/sbref0035

	An architecture framework for architecting IoT applications: From design to deployment
	1 Introduction
	2 Background & prior foundations
	2.1 Standards background: ISO/IEC/IEEE 42010
	2.2 Tools background: CupCarbon IoT/WSN simulator
	2.3 Prior CAPS foundations and gap analysis

	3 Overview
	3.1 Modeling
	3.2 Simulation
	3.3 Arduino code generation

	4 CAPS modeling framework
	4.1 Multi-view architectural model
	4.2 Cross-view traceability via MAPML and DEPML
	4.3 Textual modeling language (TML)

	5 CAPS simulation
	5.1 Scope and inputs
	5.2 Formalized template pipeline
	5.3 Semantics alignment
	5.4 Transformation engine: Implementation and correctness strategy

	6 CAPS code generation (Arduino)
	6.1 Scope and inputs
	6.2 Formalized template pipeline
	6.3 Mapping rules (Model-to-code)
	6.4 Semantics alignment

	7 Application of CAPS models, simulation, and arduino code generation to the NdR case study
	7.1 NdR case study
	7.2 CAPS modeling for the NdR
	7.3 The CAPS simulator application
	7.4 The CAPS arduino code generation application

	8 Evaluation
	8.1 Modeling expressiveness (RQ1)
	8.2 Transformation consistency (RQ2)
	8.2.1 Energy-behavior consistency (Semantic validation)
	8.2.2 Functional validation of generated code

	8.3 Ease of use - RQ3
	8.3.1 Modeling time
	8.3.2 Efficiency of CAPS automation features

	8.4 Ethics and institutional review

	9 Threats to validity
	9.1 Internal validity
	9.2 Construct validity
	9.3 External validity
	9.4 Conclusion validity

	10 Discussion
	10.1 Effectiveness
	10.2 Efficiency
	10.3 Scalability and generalizability
	10.4 CAPS limitations

	11 Related work
	11.1 Supporting the modeling of IoT systems
	11.2 Assessing IoT engineering frameworks and methodologies

	12 Conclusion and future work

