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 a b s t r a c t

Context - The Internet of Things (IoT) refers to a distributed network of smart, connected devices that collabora-
tively sense, process, and act upon real-world environments. Designing such systems requires managing complex 
architectural concerns spanning software logic, hardware configuration, and spatial deployment, as well as vali-
dating non-functional properties like energy consumption and communication efficiency. Objective - To provide 
a unified, architecture-centric framework that supports the description, simulation, and automated code gener-
ation of IoT applications across software, hardware, and physical space dimensions. Method - We use Model 
Driven Engineering(MDE) approaches to develop CAPS, a framework that uniquely integrates multi-view archi-
tectural modeling, energy- and traffic-aware simulation via CupCarbon, and seamless generation of deployable 
Arduino code from high-level design models. Result - CAPS enables a traceable and cohesive development pro-
cess from architectural design to physical deployment. Case studies from diverse domains demonstrate its ability 
to improve modeling expressiveness, maintain transformation fidelity, and reduce development time through 
automation. Conclusion - CAPS unifies architectural modeling, simulation, and code generation into a novel, 
end-to-end toolchain, addressing fragmentation in the IoT development lifecycle and enhancing early validation 
and traceability.

1.  Introduction

The Internet of Things (IoT) is a rapidly growing field with the poten-
tial to change how we engage with our surroundings (Sundmaeker et al., 
2010). It transforms everyday objects into a connected, intelligent net-
work of devices that can exchange data and automate processes across a 
vast array of environments. From smart cities that monitor and optimize 
traffic flow to precision agriculture that provides real-time data on crop 
health, IoT systems are increasingly becoming the backbone of digital 
infrastructure (Malavolta et al., 2015).

Designing IoT systems, however, is challenging due to the inher-
ent complexity of integrating diverse cyber-physical components and 
ensuring seamless interaction between software, hardware, and phys-
ical spaces. IoT developers must coordinate software behavior, hard-
ware limitations, network interactions, and environmental conditions 
that influence performance, energy efficiency, and usability. Additional 
difficulties arise from maintaining consistency across design artifacts, 
evaluating non-functional properties early in the lifecycle, and ensuring 
traceability from architectural models to executable implementations 

∗ Corresponding author.
 E-mail addresses: moamin.abughazala1@univaq.it, m.abughazaleh@najah.edu (M. Abughazala), sharaf@najah.edu (M. Sharaf), mabuseir@najah.edu (M. 
Abusair), henry.muccini@univaq.it (H. Muccini).

(McEwen and Cassimally, 2013; Abdmeziem et al., 2015; Jajodia et al., 
2010).

Existing tools and frameworks typically address only subsets of 
these concerns. For example, ThingML supports model-driven devel-
opment of embedded software components and partial code genera-
tion (Harrand et al., 2016); UML4IoT (Thramboulidis and Christoulakis, 
2016) and CHESSIoT (Ihirwe et al., 2023) provide modeling con-
structs for software architecture abstraction in the IoT domain; and 
CupCarbon (Bounceur, 2016) enables the simulation of wireless sen-
sor networks with spatial deployment and energy analysis. Yet these 
tools are often used in isolation and rarely offer unified, end-to-end 
support spanning architectural modeling, simulation, hardware spec-
ification, spatial deployment, and automated code generation. The 
resulting fragmentation yields disjointed workflows, repeated man-
ual specification, and limited validation of system-wide behavior in 
early stages. A unified, architecture-centric framework that integrates 
software, hardware, and physical domains-while ensuring semantic 
consistency and traceability across the development lifecycle-remains
lacking.
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To address this gap, we introduce CAPS (Cyber-physical Architec-
tural Platform for IoT). This unified, model-driven engineering frame-
work integrates architectural modeling, simulation, and deployment 
within a single, architecture-centric workflow. CAPS adopts a multi-
view approach aligned with domain-specific concerns: software logic, 
hardware topology, and spatial deployment. It provides traceable transfor-
mations between these views, supports simulation of energy consump-
tion and communication traffic via CupCarbon, and generates Arduino-
compatible deployment code directly from the model, enabling early 
validation and streamlined transition to implementation.

Beyond integrating our earlier CAPS results, this journal article uses 
Mapping View Modeling Languag MAPML/ Deployment View Model-
ing Language DEPML for end-to-end cross-view traceability, formalized
model-to-simulation and model-to-code transformation pipelines based 
on versioned, semantics-aware templates, and a Textual Modeling Lan-
guage (TML) with IDE-backed static checks. It further broadens the em-
pirical evaluation (three case studies and transformation conformance 
checks) and adds a systematic comparison to the state of the art. We sign-
post reused background versus extended/new material in Sections 3–6 
and report quantitative evidence in Sections 8–11.

Novel contributions of this journal extension include:.

• Multi-view architectural modeling: CAPS integrates software 
(SAML), hardware (HWML), and physical space (SPML) in line with 
ISO/IEC/IEEE 42010 (ISO/IEC/IEEE, 2022).

• Cross-view traceability: Two auxiliary languages-MAPML (model-
artifact provenance) and DEPML (dependency and deployment 
flow)-capture structural and semantic links across views and gen-
erated artifacts, supporting consistency checks and traceable trans-
formations.

• Formalized transformation pipelines: We define and operational-
ize metamodel-driven, template-based transformations from models 
to CupCarbon simulation artifacts and to deployable C++/Arduino 
code, preserving behavioral semantics such as timing behavior, sens-
ing/tx frequency, and energy modes.

• Executable simulation for early validation: CAPS automatically 
generates simulation artifacts for CupCarbon, enabling design-time 
exploration of network traffic, radio propagation, energy consump-
tion, and deployment feasibility.

• Textual Modeling Language (TML): We introduce a textual DSL 
and accompanying editor that complements graphical modeling with 
features such as autocompletion, static checks, model previews, and 
scalability to large system designs.

• Comprehensive evaluation across real-world case studies: We 
evaluate CAPS on three real CPS deployments (NdR, UFFIZI, 
VASARI), demonstrating model-to-code correctness, simulation/de-
ployment consistency, and energy-behavior trend preservation.

• Systematic comparative analysis: We position CAPS relative to ex-
isting MDE frameworks (ThingML, UML4IoT, etc.), highlighting its 
broader scope, deeper integration of physical aspects, and bidirec-
tional traceability (see Tables 10-11).

This journal version unifies previously separate prototypes into a 
single, traceable toolchain; uses MAPML/DEPML for cross-view inte-
gration; elevates TML; formalizes the model-to-simulation and model-
to-code pipelines; and expands both empirical evaluation and compara-
tive analysis to meet journal-level novelty and rigor. These capabilities 
ensure consistency across views, support design-space exploration, and 
simplify the transition from model to deployment. CAPS further distin-
guishes itself by supporting physical-space modeling with attenuation-
aware deployment-an aspect absent from most existing IoT modeling 
frameworks. This enables informed architectural decisions based on sim-
ulation feedback while reducing manual development overhead.

Finally, we present the design and implementation of CAPS and eval-
uate its capabilities through three real-world case studies: NdR (a smart 

event), UFFIZI (museum crowd management), and VASARI (urban mon-
itoring). These case studies demonstrate flexibility, usability, and effec-
tiveness from early design to physical deployment. 

The rest of the paper is organized as follows: Section 2 provides back-
ground information on the IEEE/ISO/IEC 42,010 architecture descrip-
tion standard, the CupCarbon Simulator, and Prior Foundations. Sec-
tion 3 presents an overview of the. Section 4 presents the modeling lan-
guages. Section 5 details the simulation approach, its process, and the 
transformational approach. Section 6 presents the Arduino code gener-
ation process and tool. Section 7 applies the modeling, simulation, and 
Arduino code generation approach to the UnivAq Street Science appli-
cation. Section 8 shows the evaluation, while Section 10 discusses some 
results. Section 11 presents related work. Finally, Section 12 concludes 
the paper.

2.  Background & prior foundations

This section summarizes the standards and tools relevant to our work 
(Sections 2.1 and 2.2) and clarifies how earlier CAPS artifacts relate 
to this journal version, including the gaps it addresses (Section 2.3). 
We explicitly distinguish material recapped for completeness from the 
elements that are extended or newly introduced later (Sections 4–6) and 
evaluated comparatively and empirically (Sections 11–8).

2.1.  Standards background: ISO/IEC/IEEE 42010

CAPS builds upon ISO/IEC/IEEE 42010:2022, Systems and software 
engineering-Architecture description (ISO/IEC/IEEE, 2022), which struc-
tures architecture descriptions in terms of stakeholders, concerns, view-
points, views, and correspondence rules. Fig. 1 illustrates the content 
model prescribed by the standard, which we operationalize via multi-
ple architectural views and explicit correspondence across them. The 
core metamodels (SAML/HWML/SPML) summarized later follow this 
scheme and are included here for context; the journal-specific additions 
(traceability models and formalized pipelines) are introduced in Sec-
tions 4 and 6.

2.2.  Tools background: CupCarbon IoT/WSN simulator

CupCarbon (Bounceur, 2016) is an open-source platform for model-
ing and simulating IoT/WSN deployments (e.g., smart-city scenarios). It 
supports multiple wireless standards (e.g., Wi-Fi, ZigBee, LoRa) and en-
ables early assessment of energy consumption, data traffic, and spatial lay-
outs prior to physical deployment. These capabilities make it a suitable 
target for our model-to-simulation transformations used to reason about 
non-functional properties early in the design process (see Section 5).

2.3.  Prior CAPS foundations and gap analysis

Earlier publications presented (i) CAPS multi-view modeling con-
cepts and editors (software, hardware, and spatial views), (ii) a proto-
type transformation to CupCarbon for simulation, and (iii) a prototype 
Arduino code generator (Muccini and Sharaf, 2017b; Sharaf et al., 2017, 
2018a) Sharaf et al. (2017). These artifacts established the feasibility of 
an architecture-centric approach across parts of the IoT lifecycle and are 
recapped here for completeness.

Despite these foundations, important limitations remained:
• Absence of a unified toolchain with explicit cross-view correspon-
dence to maintain consistency across software, hardware, and spatial 
deployment.

• Transformations not formalized as metamodel-driven, template-based 
pipelines with semantics notes or invariants for modes, ports, and 
links.

• Lack of a first-class textual workflow to complement graphical editing 
for modeling at scale.
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Fig. 1. Content model of an architecture description (following ISO/IEC/IEEE 42010:2022).

• No systematic comparative positioning against prominent IoT MDE 
frameworks.

• Limited quantitative evaluation beyond single-case demonstrations.

This journal article addresses the above by:
• Utilizing auxiliary mapping languages MAPML (model-artifact prove-
nance across software-to-hardware) and DEPML (dependency/flow 
across hardware-to-space) to enable end-to-end cross-view traceability
within a single framework (Section 4).

• Formalizing metamodel-driven, template-based model-to-
simulation and model-to-code transformation pipelines with 
semantics-aware constraints (timing, port multiplicity, energy 
modes, spatial attenuation) (Sections 5 and 6).

• Presenting a Textual Modeling Language (TML) with IDE support 
(autocomplete, static checks, auto-validation) as a scalable counter-
part to graphical editors (Section 4.3).

• Providing a broadened evaluation (three real-world case stud-
ies), a user study on modeling productivity, and transformation-
conformance checks aligning simulation with deployed behavior 
(Section 8).

• conducting a systematic comparative analysis that positions CAPS 
relative to established IoT MDE frameworks, with quantitative cov-
erage and traceability metrics (Section 11).

For clarity, Table 1 maps prior artifacts to their identified gaps and to 
the elements contributed by this journal version.

3.  Overview

This research presents (Cyber-physical Architectural Platform for 
IoT) as a unified, model-driven toolchain that spans multi-view architec-

tural modeling, cross-view traceability, simulation, and deployable code 
generation within a single framework. Unlike approaches that treat soft-
ware, hardware, or deployment in isolation, CAPS integrates software 
behavior, hardware topology, and spatial deployment into a cohesive 
multi-view architecture. Fig. 2 provides an overview of the CAPS frame-
work, showing the flow from architectural modeling through traceabil-
ity, simulation, and code generation.

Modeling IoT systems must address diverse stakeholder concerns 
(e.g., software engineers, integrators, IoT specialists, and spatial mod-
elers) and non-functional goals such as energy efficiency, communica-
tion reliability, and environmental coverage (Fig. 3). IoT designs are 
strongly influenced by time and space, bringing challenges like data ex-
change frequency, coverage constraints, topology selection, and power 
consumption. addresses these concerns by defining and integrating three 
viewpoints derived from ISO/IEC/IEEE 42010 (ISO/IEC/IEEE, 2022) 
and insights from prior work on adaptive and component-based IoT sys-
tems (Malavolta et al., 2015; Crnkovic et al., 2016):

• SAML (Software Architecture Modeling Language): component in-
teractions, communication patterns, and behavioral modes;

• HWML (Hardware Architecture Modeling Language): device capa-
bilities, energy sources/usage, sensors/actuators, and connectivity;

• SPML (Spatial Deployment Modeling Language): physical arrange-
ment of nodes, range, and attenuation in the target environment.

3.1.  Modeling

The CAPS framework introduces a multi-view architectural modeling 
approach structured around three primary viewpoints. It utilizes the aux-
iliary mapping languages MAPML (software ↔ hardware) and DEPML 
(hardware ↔ space) to maintain cross-view traceability and present 
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Table 1 
From prototypes to the journal article: prior CAPS artifacts, identified gaps, and the additions provided here.
Prior item Gap This journal article adds
Multi-view modeling Weak traceability between views MAPML/DEPML MAPML/DEPML for explicit cross-view 

mapping (Section 4)
Model-to-simulation Ad-hoc scripts; missing semantics Formalized transformation pipeline (Section 5)
Model-to-code (Arduino) Default mappings unclear Semantics-aware, traceable model-to-code pipeline

(Section 6)
Graphical editing only Limited scalability for large models Textual Modeling Language (TML) with IDE support 

(Sections 4, 6)
Limited empirical evaluation Only single-case demonstrations; lacked 

comparative evidence
Three case studies, simulation-deployment comparisons, 
and energy-behavior consistency validation (Section 8)

No systematic comparative positioning Fragmented relation to existing MDE 
frameworks

Comparative analysis Quantitative comparison against 
ThingML, UML4IoT, CHESSIoT, showing broader scope 
and integration (Section 11)

Fig. 2. Overview of the CAPS framework.

a Textual Modeling Language with IDE support (autocomplete, static 
checks, auto-validation) as a first-class, scalable counterpart to graphi-
cal editors.
The three viewpoints (SAML, HWML, SPML), originally introduced in 
prior work (Muccini and Sharaf, 2017b), are systematically integrated 
here into a unified, executable framework. This integration allows stake-
holders to explore designs holistically and to keep software, hardware, 
and spatial decisions consistent through explicit correspondence rules 
and mappings. Section 4 details the modeling stack, including the role 
of MAPML/DEPML and TML in high-throughput editing and reuse.

3.2.  Simulation

We formalize a metamodel-driven, template-based model-to-
simulation pipeline with the aim of preserving behavioral semantics 
for modes, ports, and links, improving repeatability and fidelity over 
earlier generators.
integrates CupCarbon to evaluate candidate architectures under realistic 
deployment conditions, enabling early assessment of energy consumption

and data traffic and supporting design-space exploration before physical 
rollout. Section 5 details the simulation process and the transformation 
pipeline.

3.3.  Arduino code generation

We systematize the model → code pipeline (Arduino) with explicit 
protocol defaults and traceable mappings from architectural constructs 
to executable behavior.
transforms architectural models into deployable Arduino-compatible 
code, aligning implementation with design decisions and reducing de-
velopment effort through automation and reuse. Section 6 describes the 
code generation process and its role in ensuring implementation consis-
tency with the modeled architecture. 

4.  CAPS modeling framework

The CAPS modeling framework enables a structured, multi-layered ar-
chitectural description of IoT systems. It separates concerns into three 
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Fig. 3. Overview of the CAPS elicitation process.

Fig. 4. IoT views and stakeholders.

coordinated primary views-software (SAML), hardware (HWML), and 
spatial deployment (SPML)-aligned with the ISO/IEC/IEEE 42,010 stan-
dard for architectural modeling. To ensure consistency and traceabil-
ity between views, CAPS introduces two auxiliary mapping languages 
(MAPML and DEPML) , as shown in Fig. 4. A Textual Modeling Language 
(TML) further complements graphical modeling by supporting scalable, 
scriptable modeling workflows.

4.1.  Multi-view architectural model

CAPS defines three coordinated architectural viewpoints, each cap-
turing a specific dimension of IoT systems:

• SAML (Software Architecture Modeling Language)1 specifies the 
logical structure and behavior of the software layer. It defines com-
ponents, behavioral modes, message ports (input/output), and com-
munication links (unicast, multicast, broadcast). Each component 
may operate in one or more modes, with distinct actions triggered 
by events or conditions.
– Structural metamodel: Components and their interactions are 
modeled using typed ports and links (see Fig. 5).

– Behavioral metamodel: Modes represent operational states; tran-
sitions model condition-based changes, such as entering an 
energy-saving mode (see Fig. 6).

SAML captures the control logic and communication behavior of IoT 
applications, enabling precise modeling of dynamic behavior, energy 
states, and interactions among software components.

• HWML (Hardware Architecture Modeling Language)2 describes 
the hardware setup, including microcontroller units (MCUs), radios, 
power sources, sensors, actuators, and communication parameters. 
Each hardware configuration includes properties like:
– Energy sources and consumption models

1 The original SAML metamodel was introduced in Muccini and Sharaf 
(2017b) and is summarized here for completeness.
2 The HWML metamodel originates from Muccini and Sharaf (2017b); a sum-

mary is included below to maintain context.

– Communication interfaces (ZigBee, Wi-Fi, LoRa, etc.)
– Protocol parameters: data rate, transmission power, range, la-
tency

Fig. 7 illustrates the HWML metamodel that represents the struc-
ture of IoT devices, including radios, sensors, and energy attributes. 
HWML enables accurate hardware specification, supporting simula-
tion assumptions, code generation, and compatibility checks with 
the software and spatial views.

• SPML (Spatial Deployment Modeling Language) 3 captures the 
physical environment where devices are deployed: rooms/areas with 
coordinates, obstacles (e.g., walls) with material attenuation, eleva-
tion, and geometric constraints for coverage/connectivity. The root
CyberPhysicalSpaces class represents the deployable 3D/2D envi-
ronment; elements are defined by names, coordinates, dimensions, 
elevation, mobility, doors/windows, angles, and material attenua-
tion coefficients (0-1). To avoid reimplementing 3D editing,4 inte-
grates Sweet Home 3D (SWEETHOME-SWEET) for spatial visualiza-
tion and editing (see Fig. 8).

4.2.  Cross-view traceability via MAPML and DEPML

The auxiliary mapping views ensure consistency among software, 
hardware, and spatial perspectives:

• MAPML links SAML elements (components, ports, modes) to HWML 
entities (nodes, interfaces, hardware modes), enabling checks that 
logical interactions are realizable on the selected hardware. A
Mapping aggregates HW mappings (component→HW) and refined 
links such as SensingMapping, ActuatingMapping, CommunicationDe-
viceMapping, and ModeMapping.

• DEPML relates HWML hardware configurations to SPML spatial lo-
cations via DeploymentLinks. Each link specifies where a hardware 
configuration is instantiated, supporting multiplicity for repeated 
deployments and enabling spatial feasibility checks (range, atten-
uation, obstacles).

These mappings provide explicit correspondence rules used for (i) au-
tomated conformance checks, (ii) traceable model-to-simulation gener-
ation, and (iii) traceable model-to-code generation.

4.3.  Textual modeling language (TML)

The Textual Modeling Language (TML) is a scripting-based alterna-
tive to graphical models like SAML, HWML, and SPML. It allows for 
flexible and scalable modifications to models programmatically, making 
it efficient for those familiar with programming. TML facilitates rapid 

3 The SPML metamodel was previously presented in Muccini and Sharaf 
(2017b); it is recapped here for continuity.
4 Detailed information on spatial tooling integration (via Sweet Home 3D) is 

available in Muccini and Sharaf (2017a).
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Fig. 5. SAML metamodel: structural concepts (external metaclasses in green). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 6. SAML metamodel: behavioral concepts (actions in orange, events in red). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 7. HWML metamodel.
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Fig. 8. SPML metamodel.

Fig. 9. Part of CAPS grammar file.

modifications and batch changes to models, which is particularly ben-
eficial in complex projects or when integrating with other automation 
tools. Within TML, the CAPS platform includes a textual editor with au-
tocomplete and autosuggestion features for predefined classes like com-
ponents and connections. Additionally, it offers auto-validation based on 
the grammar file, ensuring accuracy and consistency in model creation 
and modification.

Fig. 9 illustrates a portion of the grammar file that underpins the 
Textual Modeling Language (TML) used in CAPS. This grammar defines 
the syntactic structure for elements such as components, connections, 
ports, and actions, enabling CAPS to parse and validate textual models 
with high accuracy. It serves as the foundation for features like auto-
complete, static checking, and automated transformation from textual 
definitions to graphical representations or simulation inputs.

Textual modeling language is a precise and accessible way to de-
scribe complex systems and data structures using human-readable text. 

It provides a comprehensive and expressive approach for documenting 
complex systems, making it possible to capture the nuances of various 
domains with unmatched precision and versatility (Mazanec and Macek, 
2012). In software engineering, textual modeling languages present nu-
merous benefits (Grönninger et al., 2014): Readability, Integration, Tool 
development, and Collaboration. With Textual Modeling Language, we 
can define a component with an average of 30 lines of code. Most 
of these lines are auto-suggested, while the rest require the user to 
provide names to be filled between the double quotation marks, see
Fig. 10.

While the modeling framework in CAPS involves three domain-
specific languages and multiple mappings, this structure is necessary 
to capture the multi-view nature of IoT systems, including behavior, 
hardware topology, and spatial deployment. To balance this complex-
ity, CAPS offers both graphical (via Eugine) and textual (via Xtext-based 
DSLs) modeling environments. While graphical modeling aids intuitive 
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Fig. 10. Graphical and textual modeling languages.

visualization, the textual interface significantly enhances productivity 
for larger or repetitive architectures by supporting batch editing, reuse, 
and rapid iteration. This dual modeling strategy allows designers to 
choose the most appropriate interface based on system complexity and 
personal expertise, ultimately improving usability without sacrificing 
modeling precision. 

5.  CAPS simulation

Simulation, in CAPS, requires transforming CAPS models into the 
equivalent CupCarbon project. The CAPS code generation framework 
for CupCarbon comprises the parsing, analysis, script generation, and 
project generation activities to produce files used to build the CupCar-
bon project.

We formalize a metamodel-driven, template-based (model-to-
simulation) pipeline targeting CupCarbon and propagate trace links
from SAML, HWML, and SPML via MAPML and DEPML into all gener-
ated artifacts. The pipeline is designed to preserve behavioral semantics 
(modes, ports, links), radio and energy parameters, and spatial attenua-
tion, thereby improving repeatability and explainability beyond earlier 
prototypes.

Fig. 11 illustrates the framework and its code generator. By executing 
the CupCarbon project on the CupCarbon simulator, the performance of 
the CAPS architecture in terms of energy consumption, battery level, 
and data traffic can be evaluated.

5.1.  Scope and inputs

Given a validated design (Section 4), the generator consumes:

• SAML (software): components, ports, links, modes, timers;
• HWML (hardware): radio parameters, energy sources, driver de-
faults;

• SPML (space): coordinates, obstacles, material attenuation coeffi-
cients;

• MAPML/DEPML (mappings): component to device and device to lo-
cation bindings;

5.2.  Formalized template pipeline

The pipeline is specified as a sequence of metamodel-to-template 
steps (templates are reusable and versioned), each step emitting Cup-
Carbon artifacts and recording traceability:

S1 - Topology synthesis (SPML and DEPML): Instantiate nodes at SPML 
coordinates according to DEPML deployment links; export obstacles and 
material coefficients to the map layer.

S2 - Device and radio configuration (HWML): Parameterize node ra-
dios (power, frequency, and bitrate, RX and TX current, duty cycle) and 
energy sources (initial charge) from HWML.

S3 - Application behavior mapping (SAML and MAPML): Translate 
components, modes, and ports into event/state handlers and traffic in-
tents; MAPML bindings select the executing device and bind logical ports 
to physical interfaces.

S4 - Sensing and traffic schedules (SAML and HWML): Derive periodic 
and aperiodic transmissions from SAML events and timers and HWML 
timers; generate sampling and actuation tasks with jitter and offsets as 
specified.

S5 - Packaging: Generate an executable CupCarbon simulation project 
with topology, node configurations, and behavior scripts that link Cup-
Carbon entities back to SAML, HWML, SPML, MAPML, and DEPML ele-
ment IDs for debugging and explainability.

5.3.  Semantics alignment

We align key semantic aspects so simulation outcomes reflect mod-
eled intent:

• Communication: SAML links to CupCarbon routes; port direction and 
multiplicity (uni, multi, and broadcast) preserved. Backoff and retry 
policies come from HWML.

• Temporal behavior: SAML events/timers and HWML timers to task 
schedules; mode changes generate enable and disable hooks so only 
the active mode executes.

• Energy model: Energy is computed from HWML parameters and Cup-
Carbon per-event costs.

• Spatial attenuation: SPML obstacles (material, thickness) contribute 
to path loss on links crossing their polygons; range checks use SPML 
coefficients with CupCarbon’s propagation model.
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Fig. 11. CAPS automatic code generation framework.

Table 2 
Mapping rules & invariants (Components, modes, links, hardware, physical).
 Construct Mapping Simulation Invariant & Check
 Components Node/module per component. module/class with

init/loop.
1:1 correspondence. Metamodel conformance or fail with 
the source pointer.

 Modes Control flow is expressed as a mode-driven state machine; 
a state variable selects the guarded block to execute, and 
predicates trigger transitions between modes.

“No handler in inactive mode.” Transitions occur only 
when guard holds (e.g., set mod 1/0). Unguarded 
handlers warned/blocked.

 Links (ports) Simulation uses channels; code binds to typed messaging 
interfaces with structured payloads (e.g., send $p 3).

Direction, multiplicity, and payload schema preserved; 
incompatible links rejected with diagnostic.

 Hardware params CupCarbon radio/device params (e.g., radio_standard: 
ZIGBEE, radio_data_rate: 250000)

Required interfaces present; Respecting resource 
constraints.

 Physical params spatial config in sim (e.g., device_longitude,
device_latitude, device_elevation);

Spatial attribution preserved in simulation; missing SPML 
emits warning and defaults are explicit.

5.4.  Transformation engine: Implementation and correctness strategy

The CAPS transformation engine is metamodel-driven, rule-based, 
and template-based. It realizes the S1-S5 pipeline (topology synthesis; 
device/radio configuration; behavior mapping; scheduling; packaging) 
and records trace links from architectural views (SAML/HWML/SPML) 
through mapping views (MAPML/DEPML) into generated simulation ar-
tifacts (CupCarbon).

Mapping Rules and Invariants This section walks through a single 
component end-to-end to illustrate how the transformation engine ma-
terializes the architectural views into executable artifacts. The engine 
applies metamodel-to-artifact mappings guarded by explicit invariants 
and generator checks (see Table 2).

Fig. 15 shows how hardware parameters declared in HWML (e.g., ra-
dio standard, data rate, interfaces, and energy model) are mapped to the 
corresponding CupCarbon device configuration. Fig. 16 complements 
this by mapping the component’s physical parameters from SPML (coordi-
nates, elevation, and attenuation/obstacles) into the simulation’s spatial 
configuration for the same device. Finally, Fig. 17 presents the generated 
Senscript that captures the component’s software behavior: the file repre-
sents the entire component, including the control logic as a mode-driven 
controller. Within this script, mode guards select the active region, and 
transitions are effected only when their guard predicates hold, ensuring 
exclusive execution of handlers under the current mode.

Correctness Assurance We assure correctness at three levels. Syn-
tactic checks validate models and templates against their grammars. 
Structural checks enforce metamodel conformance and cross-view cor-
respondence (so what is wired in the architecture is what is generated). 
Semantic checks preserve behavior-communication, timing/scheduling, 
energy assumptions, and spatial effects-via guarded dispatch, protocol/-
type validation, and simulator/code-level invariants.

Construct Coverage We summarize which modeling constructs the 
engine translates into simulation/code artifacts and to what extent they 
are supported.

SAML components; provided/required ports; links (uni-/multi-
/broadcast); modes and guarded behavior; timers (period/offset); sim-
ple data payloads (typed fields). Checks/Invariants: directionality/multi-

plicity preserved; exclusive-mode execution; timer periods/offsets vali-
dated. Current constraints: payloads are structural (no user-defined seri-
alization logic); hierarchical components flattened at generation time.

HWML device type; MCU (Microcontroller Unit) class; radio stan-
dard and data rate; sensor/actuator bindings; energy model parame-
ters; interface bindings; memory footprints (RAM/flash). Checks/Invari-
ants: required interfaces present; RAM/flash/pin capacity not exceeded; 
device-protocol compatibility enforced; drivers selected by binding. Cur-
rent constraints: one sensing unit per simulated node (CupCarbon ex-
port); when protocol is unspecified, code generation applies a safe de-
fault (e.g., SPI) that can be overridden in HWML.

SPML device coordinates (Latitude / Longitude), elevation; obsta-
cles/attenuation parameters; deployment topology. Checks/Invariants:
spatial attribution preserved in simulation; missing values trigger ex-
plicit defaults with warnings. Current constraints: physical effects are re-
alized in simulation only (not enforced in firmware), though constants 
may be emitted for calibration.
Bindings (MAPML/DEPML) component↔device bindings and 
port↔ interface/protocol bindings; deployment associations. Check-
s/Invariants: bound elements must exist and be type-compatible; every 
generated artifact carries a trace link to its source model element.
In summary, the current engine covers the core SAML/HWML/SPML 
constructs used in our case studies, with two documented constraints 
(one sensor per simulated node; default protocol selection in code gen-
eration) and simulator-only realization of physical effects. These con-
straints are engineering choices and are straightforward to relax by ex-
tending the templates.

Validation Protocol Beyond unit checks in the generator, we ver-
ify semantic preservation by (1) comparing simulated energy/behavior 
against modeled modes and (2) cross-referencing outcomes with hard-
ware results reported in Section 8. This provides an end-to-end oracle 
for faithfulness.

Calibration Option CAPS supports an optional, one time calibration of 
the energy model: (i) profile per state currents on the target board (sleep, 
CPU active, sensor warm up/sampling, RX, TX at each power level); (ii) 
import measured duty cycles (timers, message intervals/retries) from 
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Fig. 12. Arduino automatic code generation framework.

deployment logs; (iii) set regulator efficiency and cable/connector loss; 
and (iv) enable variable TX power and obstacle aware path loss in SPML. 
When enabled, the simulator reports energy normalized as J/min and 
J/message and computes deviation vs. measurements (MAPE).

6.  CAPS code generation (Arduino)

The CAPS Arduino code generation Sharaf et al. (2018a) is a frame-
work that converts CAPS models into Arduino code that can be installed 
on Arduino boards Arduino (2022) . Arduino boards are versatile mi-
crocontrollers known for their ability to interact with sensors, actuators, 
and other devices via digital and analog I/O pins. Running the converted 
codes on Arduino boards allows us to evaluate the CAPS architecture 
in real environments. The CAPS models participate in three activities: 
parsing, analyzing, and generating Arduino code. Fig. 12 illustrates the 
entire code generation process.

We systematize a metamodel-driven, template-based model-to-code
pipeline that carries trace links from SAML, HWML, and SPML via 
MAPML and DEPML into generated Arduino artifacts. The pipeline 
makes protocol defaults explicit, preserves communication and mode 
semantics, and is reproducible and configurable, which improves re-
peatability and explainability over earlier prototypes.

6.1.  Scope and inputs

Given a validated design, the generator consumes:

• SAML (software): components, ports, links, modes, timers;
• HWML (hardware): board and MCU, radios, sensors and actuators, 
power modes;

• MAPML (bindings): component-to-device, port-to-interface, mode-
to-hw-mode;

• DEPML and SPML (optional): deployment profiles that become 
compile-time constants (e.g., node IDs, region tags);

6.2.  Formalized template pipeline

We specify the generator as staged, metamodel-to-template steps; 
each stage emits code or configuration and records traceability.

S1 - Target resolution (HWML and MAPML): Select the Arduino board-
/core and libraries per HWML device; resolve component-to-board via 
MAPML.

S2 - Interface binding (MAPML): Bind SAML ports to device interfaces 
and pins. Emit a typed bindings.h with pin maps and driver handles.

S3 - Behavioral scaffolding (SAML): Generate per-component modules 
implementing event/handler skeletons, mode gates, and timer hooks; 
create a main loop that dispatches active handlers per current mode.

S4 - Protocol configuration (HWML): Emit driver init with explicit 
defaults (bitrate, TX power, retries/backoff).

S5 - Packaging and trace links: Assemble a buildable sketch and library 
with linking code entities to SAML, HWML, and MAPML (and DEPML 
and SPML if used).

6.3.  Mapping rules (Model-to-code)

We make the main mappings explicit to avoid ambiguity:

• SAML component-to-module: one C/C++ module per compo-
nent; constructor wires interfaces from bindings.h; state includes
currentMode and application data.

• SAML ports and links-to-handlers & send/recv wrappers: IN 
ports generate callbacks; OUT ports generate send APIs; link mul-
tiplicity (uni/multi/broadcast) maps to driver-level addressing utili-
ties.

• SAML modes-to-mode gates: compile and run-time guards ensure 
only handlers for the active mode are executed; mode transitions 
produce enter and exit hooks.

• Timers (SAML/HWML)-to-schedulers: periodic and aperiodic tasks 
emitted as timer callbacks; jitter and offset become scheduler param-
eters.

• MAPML comm and device bindings-to-pin and driver selection: 
each bound port selects the device interface and driver instance; 
compatibility is checked before emission.

• DEPML and SPML-to-deployment constants (optional): node IDs, 
region tags, or channel plans emitted to deployment.h for multi-
binary deployments.

6.4.  Semantics alignment

• Communication preservation: port direction and link multiplicity 
are preserved in generated send/recv paths; QoS parameters default 
from HWML or BuildConfig.

• Temporal behavior: timers and mode gating mirror the SAML 
schedule; disabled modes cannot dispatch handlers.

• Resource conformance: HWML constraints (RAM and flash, inter-
face availability) are checked; violations stop generation with precise 
traces.

7.  Application of CAPS models, simulation, and arduino code 
generation to the NdR case study

CAPS has been evaluated through three case studies: NdR, UFFIZI, 
and VASARI. Due to space limitations, this section will concentrate on 
the NdR case study to showcase the framework’s capabilities. The case 
study explores CAPS’ comprehensive modeling, simulation capabilities, 
and automated code generation features. CAPS models are used for two 
purposes:
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Fig. 13. The software architecture of the scenario in NdR case study.

• The primary objective is to demonstrate that the CAPS simulator can 
experiment with the IoT system architecture in a simulated environ-
ment. To achieve this, we will utilize CAPS models in the CAPS sim-
ulation, and the results obtained from it will be used to generate 
Senscript and configuration files required to operate the CupCarbon 
simulator. Afterward, the CupCarbon project will be assessed based 
on the proposed scenario’s energy consumption and data traffic gen-
erated.

• The second objective is to demonstrate that the CAPS models used 
in the IoT system architecture description can be implemented in 
a real-world setting using Arduino code generation. We will utilize 
CAPS models to generate Arduino code, which will be uploaded onto 
real Arduino boards. The energy consumption of the suggested sce-
nario will be analyzed by examining the actual application of the 
generated Arduino codes.

In Section 7.1 we describe the NdR case study to be used. Then, we 
describe the CAPS models application, simulation and code generation 
in Sections 7.2–7.4, respectively.

7.1.  NdR case study

The "UnivAq Street Science" is an event organized by the University 
of L’Aquila as part of the European Researchers’ Night (NdR). It aims to 
bring together the research community and the general public to share 
information and entertainment. The event is an all-day event held in the 
city center of L’Aquila, and it includes performances, lectures, demon-
strations, and workshops in various locations such as squares, main 
streets, and buildings. We have gathered valuable evidence based on 
our experience organizing the event in L’Aquila. Firstly, approximately 
20,000 visitors attend the NdR every year. Secondly, the late hours of 

the event tend to be more crowded than the early hours. Thirdly, the 
weather influences visitors’ preferences regarding what to see and where 
to stay. Lastly, visitors often struggle to locate specific activities quickly, 
so they may miss out on some of them.

Our research group has been invited to enhance the visiting expe-
rience at a certain location. We have developed an IoT application to 
achieve this goal, which serves as the initial step in enhancing the visi-
tor experience. The application utilizes physical environmental sensors 
deployed in the area and a mobile app available to visitors on their 
smartphones. The following services are provided:

1. Access control to rooms, laboratories, and parking lots.
2. Monitoring of open and closed spaces.
3. Balancing people crowds among different events and spaces by using 
the mobile app to inform visitors about the degree of the crowd in a 
place.

4. Creating a planner that generates a tour while minimizing waiting 
time and crowd in an area.

5. Ensuring urban security, specifically in the case of earthquakes, fires, 
and overcrowding.

7.2.  CAPS modeling for the NdR

To discuss how the NdR case study can be modeled using CAPS, we 
will run an example. We will present a scenario that involves monitor-
ing a room’s people and CO2 levels. This will help to understand how 
CAPS can be used in real-world situations to improve indoor air qual-
ity and ensure the safety and well-being of the occupants of IoT. The 
scenario will be represented using CAPS models (SAML, HWML, SPML). 
Fig. 13 shows the SAML model of the CAPS tool that will be used later 
for simulation (Section 7.3) and Arduino code generation (Section 7.4).
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Fig. 14. CAPS: Textual modeling language.

The model comprises five main components: CO2Sensor, RoomPeo-
pleCounter, RoomController, EntranceLockActuator, WindowsLockAc-
tuator, and Server. These components work together to effectively mon-
itor the 𝐶𝑂2 level and people in the room. It is important to note that 
the CAPS model is a screenshot of our CAPS tool, which was designed 
to handle such scenarios.

The CO2Sensor component is designed to monitor the concentration 
of 𝐶𝑂2 in a room. It has two modes of operation:

1. Normal mode: In this mode, the 𝐶𝑂2 sensor measures the concen-
tration of 𝐶𝑂2 in a room every 90 s. The 𝐶𝑂2 value is then sent as a 
message from the output message port of the CO2Sensor component 
to the in-port of the RoomController component. If the 𝐶𝑂2 reading 
equals or exceeds 1200ppm, the room has entered the critical mode.

2. Critical mode: In this mode, the CO2 sensor reads the concentration 
of CO2 in a room every second. The 𝐶𝑂2 value is sent from the out-
put message port of the CO2Sensor component to the in-port of the 
RoomController component. If the reading of 𝐶𝑂2 is less than 1200, 
it indicates that the system has returned to normal mode.

The RoomPeopleCounter component tracks the number of people in 
a room and updates the RoomController with the count every 5 s. It 
sends this data from its out port to the RoomController’s in port. Fig. 14 
shows CAPS Textual Modeling Language for RoomPeopleCounter. The 
RoomController is essential for receiving sensor data and making de-
cisions about opening and closing windows and doors by sending con-
trol messages to actuators. It transmits CO2, pCounter, and roomID val-
ues to the Server through its out port. The WindowsLockActuator opens 
and closes windows, while the EntranceLockActuator does the same for 
doors. The Server processes incoming data and updates NdR mobile app 
users, indicating whether rooms are full based on roomID and pCount 
from RoomControllers.

According to the HWML model, we will demonstrate the CO2Sensor 
component as an example for CAPS simulation and Arduino code gener-
ation in Sections 7.3 and 7.4, respectively. In Fig. 15(b), the CO2Sensor 
measures carbon dioxide levels in a room using the 802.15.4 radio stan-
dard with a 20-meter radius. It communicates via a Texas Instruments 

ChipCon 2420 RF transceiver and operates on two AA batteries, pro-
viding up to 19,159 Joules of energy. As part of the SPML model, the 
CO2Sensor is a component of the physical environment in the NdR sce-
nario and will be used for CAPS simulation in Section 7.3. Fig. 16(b) 
illustrates the physical deployment location of the CO2Sensor. It is im-
portant to note that the elements of the SPML model can be adjusted 
using the Sweet Home 3D tool, also known as SH3D (SWEETHOME-
SWEET). SH3D provides a 3D representation of the real world and is 
linked to our CAPS tool (Muccini and Sharaf, 2017b).

7.3.  The CAPS simulator application

In this section, we use the SAML, HWML, and SPML models as de-
scribed in Section 7.2 in the CAPS simulation to generate the CupCarbon 
project.

The CupCarbon project comprises a set of files resulting from model 
interpretations. To explain, let’s take the example of the CO2Sensor com-
ponent’s representation in SAML, HWML, and SPML models. Fig. 17 
displays the SenScript code generated by the CAPS simulation generator 
for the CO2Sensor component, primarily derived from the SAML model. 
Line 3 and Line 19 represent the normal and critical modes, respectively. 
Lines 13 and 25 represent the timers in the normal and critical modes, 
respectively. Lines 4, 9, and 21 contain the instructions for reading the 
current CO2 level from the CO2 sensor.

The text describes a screenshot of a radio module information for a 
CO2 Sensor that has been extracted from HWML. This information has 
been used to fill in a CupCarbon configuration file. The simulator then 
uses this file, which contains communication information, to execute 
the simulation. The screenshot can be seen in Fig. 15(a).

The CupCarbon configuration file specifies the CO2Sensor’s location 
parameters in the SPML model (Fig. 16(a)). We used Sweet Home 3D to 
create the space model and developed an adapter to convert it into SPML 
for the simulator. In our NdR case study, we tested three CO2Sensor 
behaviors: normal mode, critical mode, and both modes together. Using 
our CAPS framework, we generated SAML, HWML, and SPML models, 
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Fig. 15. An example of HWML model and its representation in CupCarbon.

Fig. 16. An example of SPML model and its representation in CupCarbon.

created separate CupCarbon projects for each behavior, and analyzed 
data traffic, energy consumption, and battery levels of the IoT nodes.

We have standardized the simulation time to be 6000 s for all exper-
imentation and set the maximum energy for all nodes to 19,159 Joules. 
To generate natural events for CO2Sensor, we have selected a random 
range between 0–2200. Similarly, for people counter natural events, we 
have set a random range between 15–45.

The CO2Sensor and RoomPeopleCounter components always send 
messages and do not receive any, while the WindowsLockActuator, En-
tranceLockActuator, and server components always receive messages 
but do not send any. The RoomController component, on the other hand, 
sends and receives messages. This two-way data traffic explains why 
some values in Table 3 are zero. The table displays the exchanged mes-
sages between components via the IN and OUT ports when running the 
three behaviors in CupCarbon, including the data traffic in kilobytes for 
each component.

Based on the data presented in Table 3, we can conclude that the 
CO2Sensor, RoomController, and Server nodes experience the highest 

amount of data traffic when we run the critical mode behavior. This 
is due to the many messages exchanged between these nodes during 
this mode. On the other hand, the normal mode receives a low amount 
of traffic but is not capable of detecting the 𝐶𝑂2 level in a room with 
sufficient accuracy. It is worth noting that using both critical and nor-
mal modes results in a lower range of data traffic compared to us-
ing only the critical mode. However, using both modes together is 
still considered to be a safe behavior. This highlights how even small 
changes in the system architecture can have a significant impact on its
efficiency.

Table 3 shows the battery level and energy consumption for the simu-
lator running under three scenarios. The left side of the Table 4 displays 
the battery level, while the right side shows the energy consumption. 
When focusing on the CO2Sensor (S1 in blue) and RoomController (S3 
in red) nodes, we observe that S3 experiences the highest battery level 
drain because it receives the highest data traffic. However, there is a 
minor improvement on RoomController when running the two modes 
together. For CO2Sensor, we notice that it experiences the lowest bat-
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Fig. 17. SenScript generated by CAPS code generator for CO2Sensor component.

Table 3 
Messages exchanged in components during simulation.

tery level drain when running only in normal mode. The highest drain 
for CO2Sensor is when it runs in critical mode. Running the two modes 
together provides better battery level improvements than running only 
the critical mode. When observing the energy consumption charts for 
the same nodes, we can see that running critical and normal modes to-
gether shows significant improvements compared to running only crit-
ical modes. Furthermore, the energy consumption in normal mode is 
close to that in normal and critical modes.

Balancing safety, energy efficiency, and data traffic is essential in 
IoT systems, particularly for achieving optimized system performance. 
In normal mode, the system prioritizes energy efficiency by significantly 
reducing data traffic, as it sends and processes fewer messages. This mode 
is ideal for situations where environmental conditions are stable and im-
mediate responses are not critical. However, energy consumption in IoT 
systems is closely linked to data traffic; higher traffic increases energy 
usage due to more frequent communication between components. In 
contrast, the critical mode enhances safety by increasing the frequency 
of data collection and communication, enabling the system to respond 
quickly to hazardous or abnormal conditions. While this mode improves 
safety, it results in higher energy consumption and increased data traf-
fic.

Therefore, a balanced approach involves combining both modes: 
using normal mode during stable conditions and switching to critical 
mode when certain thresholds are exceeded. This strategy optimizes en-
ergy usage while ensuring a quick response to critical situations, achiev-
ing a compromise between safety, efficiency, and overall system perfor-
mance. Based on the simulation results, it has been demonstrated that 
utilizing CAPS modeling and CAPS simulation frameworks for IoT can 
help assess energy consumption and data traffic at the initial stages of IoT 

development. This early evaluation of the architecture can significantly 
enhance the process of designing and implementing such systems.

While the conclusion that a balanced approach offers a practical 
trade-off may appear intuitive, the use of simulation was essential in 
quantifying this trade-off under realistic network and sensor conditions. 
By modeling actual energy consumption, communication rates, and tim-
ing behaviors, we were able to validate that the balanced mode provides 
measurable efficiency close to the conservative mode, while maintain-
ing responsiveness. This empirical evidence ensures that architectural 
decisions are data-driven and deployment-ready, rather than based on 
assumptions alone.

7.4.  The CAPS arduino code generation application

In this section, we use the SAML and HWML models, described in 
Section 7.2, in the CAPS Arduino code generation process to create Ar-
duino files. SPML is not required to generate Arduino code.

The process of generating Arduino code results in six separate files 
for SAML components. This means there is an Arduino file for each of the 
following: CO2Sensor, RoomPeopleCounter, RoomController, Entrance-
LockActuator, WindowsLockActuator, and Server. The communication 
specifics for each component are drawn from the corresponding HWML 
specification. In this section, we will present the results of a simplified 
example of an NdR case study described in a real environment in Sec-
tion 7.2. We will focus on the CO2Sensor component, which is evalu-
ated under both normal and critical operational modes, and the Room-
Controller component, which will only receive the 𝐶𝑂2 value from the 
CO2Sensor. To conduct the test, we used the Arduino files created for 
the CO2Sensor and RoomController components and installed them on 
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Table 4 
Battery level and power consumption results.

two separate Arduino boards. We then connected a GAS sensor to the 
Arduino board with the CO2Sensor file installed to monitor the 𝐶𝑂2
levels. Additionally, we attached a USB Power Monitor to measure the 
board’s energy consumption during operation. To indicate the operat-
ing mode, we connected lights to the board. The green light indicates 
that the normal mode is running, while the red light indicates that the 
critical mode is running. For the sake of simplicity, we will show the 
energy consumption for the CO2Sensor Arduino board 5.

Fig. 18 illustrates the Arduino code generated by CAPS for the 
CO2Sensor component. It includes the library, defined variables, ini-
tializations, details for reading data from the CO2 sensor, transitions 
between critical and normal modes, and the process of sending data to 
another board, such as the RoomController Fig. 18.

We conducted a basic experiment to measure energy consumption in 
a real-world setting. We placed Arduino boards with a candle inside a 
transparent plastic box for 100 min. Throughout the 100 min, we opened 
and closed the box multiple times. Additionally, we noted when the 
green light was on (normal mode) and when the red light was on (critical 
mode).

5 Youtube Arduino application https://www.youtube.com/watch?v=
7Y84gP6QsHo

Throughout the experiment, we closely monitored the values of the 
USB Power Monitor. Every (𝐶𝑂2) sensor reading drew 0.8713W (in-
stantaneous power). Additionally, the board’s idle power was 0.2725W. 
After completing the experiment, we determined that the red light had 
been on for 13 min and 45 s while the green light had been on for 86 
min and 15 s.

After conducting tests, we found that over 100min (≈1.67 h) the en-
ergy consumption is 0.601Wh when running critical + normal modes 
together, 1.452Wh when running the critical mode only, and 0.465Wh
when running the normal mode only.

Referring to the results from running the CupCarbon projects in Sec-
tion 7.3, and focusing only on the energy attributable to the CO2Sensor
(S3), we observe the following over 100 min (6000 s): running critical + 
normal modes together consumes 0.853Wh, running the critical mode 
only consumes 1.291Wh, and running the normal mode only consumes
0.318Wh.

The observed ∼ 42% difference (0.854Wh simulated vs. 0.601Wh
measured over 100 min, combined mode) reflects expected pre calibration 
modeling assumptions—fixed power radio with idealized propagation, 
omission of MCU/sensor wake and warm up transients, and nominal reg-
ulator efficiency—rather than faults in the transformation. After a one 
time calibration (per state current profiling for sleep/CPU/sense/RX/TX, 
variable TX power with obstacle aware path loss, and replay of
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Fig. 18. Arduino generated by CAPS code generator for CO2Sensor component.

Table 5 
Summary of architectural elements in case studies.
 Use Case  Software Components  Hardware Components  Physical Space  Protocols
 NdR  Crowd monitoring, environmental sensing  CO2 sensors, people counters, actuators  Indoor & outdoor event spaces  ZigBee, Wi-Fi
 UFFIZI  Visitor tracking, adaptive crowd management  Beacons, motion sensors  Museum with walls affecting signal  Bluetooth, Wi-Fi
 VASARI  Smart urban experience, outdoor sensing  LoRa sensors, environmental trackers  Open urban areas  LoRa, Wi-Fi

measured duty cycles) and normalization to J/min and J/message, the 
deviation drops to ≤ 15% in our pilot while preserving the qualitative 
ordering of modes. Accordingly, we use uncalibrated simulation for rel-
ative design space exploration and calibrated runs for absolute power
budgeting.

8.  Evaluation

This section presents a structured evaluation of the CAPS framework 
aimed at assessing its modeling capabilities, transformation fidelity, and 
usability in real-world IoT case studies, specifically NdR, UFFIZI, and 
VASARI. The evaluation addresses the following research questions:

• RQ1 (Modeling Expressiveness): To what extent can CAPS model 
the essential architectural views required in IoT systems, specifically 
software behavior, hardware configuration, and spatial deployment?

• RQ2 (Transformation Consistency): To what extent do CAPS trans-
formations preserve energy-relevant semantics (mode/timer/sens-
ing/Tx ordering and relative deltas) and functional behavior from 
models into simulation artifacts and generated device code?

• RQ3 (Usability): How usable and efficient is CAPS for engineers and 
students when modeling and deploying IoT applications compared 
to conventional or partially automated workflows?

To address these questions, we employed a mixed-method approach 
involving three representative case studies, comparative analysis be-
tween simulation and deployment, and user-based empirical studies.

8.1.  Modeling expressiveness (RQ1)

CAPS adopts a multi-view modeling approach that integrates soft-
ware architecture (SAML), hardware specification (HWML), and spatial 

deployment (SPML), in alignment with the ISO/IEC/IEEE 42,010 stan-
dard. To evaluate expressiveness, CAPS was applied to three case stud-
ies: the NdR smart event application, the UFFIZI crowd management 
system, and the VASARI smart urban monitoring solution.

To define "modeling expressiveness," we refer to the framework’s 
capability to support the formal specification of core architectural con-
cerns in IoT systems: (i) software components and their behavior over 
time, (ii) hardware configurations including energy models and com-
munication modules, and (iii) spatial context such as physical device 
deployment and environmental constraints.

These concerns are considered essential in many IoT engineering sce-
narios, particularly those where resource constraints, physical layout, 
and interaction dynamics between hardware and software need to be 
jointly analyzed.

CAPS was evaluated against these criteria using three case studies 
that varied in domain, communication protocols, deployment environ-
ments, and system objectives. Success was defined by the ability to fully 
specify and interconnect all necessary elements using the SAML, HWML, 
and SPML languages, without external modeling extensions or tools. 
Furthermore, CAPS was able to maintain model consistency across views 
and support automated transformations for each case.

Compared to other frameworks like ThingML or UML4IoT, CAPS 
demonstrated superior integration of physical deployment modeling and 
alignment with standardized architectural viewpoints (IEEE 42010).

These case studies reflect diverse IoT requirements, including envi-
ronmental sensing, people tracking, heterogeneous communication pro-
tocols, and spatial constraints. As illustrated in Tables 5 and 6, CAPS 
successfully modeled the necessary architectural elements in each sce-
nario, confirming its suitability for a wide range of IoT applications.

To support transparency and reproducibility, the complete CAPS 
models, CupCarbon simulation artifacts for the UFFIZI and VASARI case 
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Table 6 
Cases complexity.
 Use Case  NdR  Uffizi  Vasari
 Scenarios  1  6  8
 Components  6  10  12
 IoT Devices  5  13  20
 Communication Protocols  ZigBee, Wi-Fi  Bluetooth, Wi-Fi  LoRa, Wi-Fi
 Real-Time Constraints  Medium  High  Very High
 Data Points Collected  1,000/h  5,000/h  10,000/h
 Environmental Constraints  Indoor & Outdoor  Indoor (Walls as Obstacles)  Outdoor (Urban Obstacles)

studies, have been made publicly available at this repository.6 This 
repository includes the architectural models and simulation projects.

8.2.  Transformation consistency (RQ2)

This section evaluates whether CAPS maintains semantic consistency
when transforming architectural models into (i) executable simula-
tion artifacts and (ii) deployable device code. We ask whether energy-
relevant behavior (modes, timers, sensing/Tx rates) and functional logic 
are preserved across artifacts. Absolute watt-level calibration is out of 
scope for RQ2; accuracy aspects and a practical calibration recipe are 
discussed in Threats to Validity (Section 9).

8.2.1.  Energy-behavior consistency (Semantic validation)
The objective of this section is to validate energy-behavior consis-

tency, CAPS should translate modeled modes, timers, and sensing/Tx 
rates into simulations that reflect the correct ordering and relative dif-
ferences across modes. While this subsection focuses on semantic preser-
vation rather than calibrated energy metering, absolute watt-level accu-
racy is out of scope for RQ2 (see Section 9).

Hypothesis (H1: Rank Preservation) Let 𝐸(𝑚) be the sim-
ulated energy (or cost proxy) over a fixed horizon for 𝑚 ∈
{Normal, Eco, ExtremeEco}. The ordering induced by the model intent is 
preserved in simulation, i.e., ExtremeEco < Eco < Normal, and relative 
reductions are monotone (no sign reversals).

Protocol From a fixed NdR case study design, we automatically gen-
erate three CupCarbon projects via the CAPS transformation pipeline. 
All scenarios are simulated for 6000s with identical initial condi-
tions (battery, timers, traffic generators). We report normalized energy 
𝐸̂(𝑚) = 𝐸(𝑚)∕𝐸(Normal) and effect sizes as percentage reductions. No 
hardware calibration is applied in these simulations; the aim is to vali-
date transformation semantics rather than to benchmark absolute accu-
racy. Metrics & Pass Criterion We assess consistency using two checks 
derived from simulation logs: (i) Rank-order check-the mode ordering 
matches the model intent (ExtremeEco < Eco < Normal) across scenar-
ios; and (ii) Invariant ratios-duty-cycle and Tx-count ratios follow the 
same trend induced by modeled timers/rates (monotone deltas; no re-
versals). RQ2 is considered satisfied if (i) and (ii) hold. Absolute cali-
bration is not claimed under RQ2.

Simulated Results Across the evaluated scenarios, the gener-
ated simulations preserve the intended ordering ExtremeEco < Eco <
Normal and exhibit the expected relative deltas induced by modeled 
timers and sensing/Tx rates ((e.g., 0.464Wh, 0.311Wh, 0.189Wh for
Normal/Eco/ExtremeEco, respectively) are consistent with the modeled 
reductions). These findings support H1 and indicate that CAPS preserves 
energy-relevant semantics across the transformation.

Interpretation: CAPS consistently preserves intended mode/timer 
behavior in simulation. Uncalibrated runs are suitable for relative design-
space exploration; absolute power budgeting and deployment planning 
are addressed outside RQ2 (see Section 9).

6 CAPS case studies: https://github.com/moamina/CAPS_Experiments_Cases

Table 7 
Validation of functional behavior in generated code (Pass rate & observed val-
ues).

Validation Metric Modeled 
Expectation

Observed Behavior  Pass Rate (%)

Sensor Reading 
Frequency

1 s (Critical), 90 s 
(Normal)

1 s (Critical), 90 s 
(Normal)

100

Data Transmission 
Integrity

No packet loss No packet loss 100

Actuation Condition Trigger at CO2 >
1200ppm

Triggered at CO2 >
1200ppm

100

Latency Constraint <100ms ∼95ms 95

Note. Pass Rate = percentage of runs satisfying the requirement (e.g., latency 
< 100ms).

8.2.2.  Functional validation of generated code
To evaluate the semantic fidelity of the transformation process, we 

conducted a functional validation of the CAPS-generated Arduino code 
deployed on real hardware (Arduino Uno). The purpose was to confirm 
that the executable code not only runs correctly but also preserves the 
behavioral specifications defined in the architectural model.

Each validation metric was chosen to reflect a specific functional 
property from the source model, ranging from sensing frequency and 
communication logic to actuator triggering and timing constraints. This 
ensures a traceable connection between high-level design intent and 
low-level code execution.

Three key validation scenarios were conducted:

• Sensor-actuator logic correctness: The system monitored CO2 lev-
els and activated the window-opening actuator when the concentra-
tion exceeded 1200ppm. The trigger condition and resulting action 
were observed to match the model-defined behavior exactly.

• Communication behavior: Devices communicated via Serial Pe-
ripheral Interface (SPI), using code generated by CAPS. Logs cap-
tured over multiple cycles were analyzed to verify message struc-
ture, integrity, and expected frequency. No anomalies, packet loss, 
or timing deviations were detected.

• Responsiveness and timing constraints: The time between a CO2
threshold breach and actuator signal issuance was measured us-
ing timestamped serial output. Results consistently met the model-
defined latency limit of 100 ms, confirming timing accuracy in exe-
cution.

For binary requirements, we report Pass Rate: the percentage of runs 
that satisfied the requirement. For the latency constraint (<100 ms), the 
numeric value (e.g., ∼ 95 ms) is the median measured latency, and Pass 
Rate is the percentage of runs with latency <100 ms.

These results confirm that the code generated by CAPS faithfully im-
plements the modeled sensing, communication, and actuation behav-
iors, including real-time constraints. Table 7 summarizes the observed 
behaviors across all validation scenarios, confirming alignment with the 
modeled functional specifications. The validation reinforces the trans-
formation pipeline’s ability to preserve both functional semantics and 
timing fidelity, supporting the reliability of CAPS for generating deploy-
able, behaviorally accurate IoT applications.
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Table 8 
Time statistics for modeling and simulation tasks.
 Task  Mean (min)  Median  Min  Max  Std Dev
 SAML Modeling  173  170  130  210  18.2
 HWML Modeling  88  85  70  110  10.5
 SPML Modeling  51  50  40  65  6.3
 Simulation Generation  0.13  0.13  0.1  0.2  0.02

8.3.  Ease of use - RQ3

The ease of use of CAPS is evaluated based on its efficiency, user-
friendliness, and practical applicability in real-world IoT system mod-
eling and deployment. A user-friendly IoT framework should minimize 
complexity in modeling, simulation, and code generation to ensure ac-
cessibility for both experts and non-experts, reduce development time 
and manual effort by automating repetitive tasks such as code gener-
ation and simulation setup, and ensure intuitive integration between 
software, hardware, and deployment models, streamlining the IoT de-
sign workflow.

8.3.1.  Modeling time
The objectives are to measure how quickly new users can install and 

configure CAPS, evaluate the time required to model an IoT system and 
generate a working simulation, and identify potential usability bottle-
necks and areas for improvement. To assess how easily users can adopt 
CAPS, we conducted an experiment with 39 undergraduate students en-
rolled in software architecture and model-driven engineering courses. 
To achieve this, we provided two hours of hands-on training on CAPS, 
during which participants were tasked with modeling the NdR IoT sys-
tem, generating a CupCarbon simulation, and validating the results. The 
time taken for each task was recorded.

Table 8 provides descriptive statistics for task completion times. 
Each modeling activity was timed independently, and summary statis-
tics (mean, median, range, and standard deviation) are presented. These 
results reveal a moderate range of completion times for each modeling 
activity, with SPML showing the lowest variation and SAML the high-
est, reflecting the relative complexity of the views. The low variance in 
simulation generation time demonstrates the high level of automation 
achieved by CAPS.

This breakdown highlights CAPS’s suitability for educational and in-
dustrial environments by confirming that users with limited experience 
can quickly and accurately create complete models using its graphical 
and textual interfaces.

8.3.2.  Efficiency of CAPS automation features
CAPS enhances efficiency and usability by automating key processes 

in IoT system design, minimizing manual effort, and ensuring model 
consistency. Its automation capabilities focus on:

1. Automated code generation by eliminating manual implementation 
by producing error-free executable code.

2. Automated simulation setup by reducing configuration time to en-
sure rapid validation.

To evaluate CAPS’s automation efficiency, we conducted a controlled 
comparison involving a subset of 10 participants. Each participant per-
formed development tasks manually and using CAPS. The observed task 
durations (in minutes) are summarized in Table 9, which includes mean 
times, standard deviations, and relative improvement percentages.

Manual baseline definition. The “Manual” workflow refers to a conven-
tional, model-free process. System models were drawn using general-
purpose tools (e.g., Visio, draw.io) and described in text, without au-
tomated consistency checks. Code was implemented manually in the 
Arduino IDE using basic editing features (syntax highlighting and com-
pletion only), without model-based generation or templates. Thus, the 

Table 9 
Comparison of manual and CAPS task durations with time reduction.
 Task Manual (min) 

Mean ± SD
CAPS (min) 
Mean ± SD

Time 
Reduction (%)

 System Modeling 405 ± 35 195 ± 22 51.9%
 Simulation Configuration 20.5 ± 3.2 0.13 ± 0.01 99.4%
 Code Implementation 155 ± 12 0.17 ± 0.02 99.9%
 Debugging & Validation 75 ± 9.5 19 ± 4.1 74.7%

time gap in Table 9 reflects CAPS’s automation and integration advan-
tages rather than unequal tool support.

These measurements confirm that CAPS substantially reduces de-
velopment effort across all stages of IoT system modeling and deploy-
ment. While manual times vary with user expertise and task complexity, 
achieves consistent, repeatable results through model-driven automa-
tion.

8.4.  Ethics and institutional review

The classroom activity informing RQ3 was reviewed by the Uni-
versity Ethics/IRB (Institutional Review Board) office and classified as 
Not Human Subjects Research (NHSR), because the project analyzed 
de-identified educational artifacts without interaction/intervention af-
fecting students’ education and with no identifiable private information. 
Participation was voluntary, with information provided to participants 
and the option to opt out without penalty. Only aggregate results are 
reported.

9.  Threats to validity

This section discusses potential threats to the validity of our evalu-
ation and explicitly reflects on the inherent difficulty of validating end-
to-end, model-driven frameworks that span architectural modeling, sim-
ulation, and code generation. Because CAPS couples multi-view mod-
eling with transformation to simulation artifacts and deployable code, 
evidence accrues across heterogeneous instruments (time-on-task, simu-
lated energy/traffic, functional conformance on hardware). As a result, 
some aspects of our current validation are necessarily limited in scope 
and depth, particularly for construct and external validity, which we 
acknowledge and plan to strengthen in future work.

9.1.  Internal validity

Internal validity concerns whether the observed outcomes are caused 
by CAPS rather than uncontrolled variables. Energy readings and simu-
lation outputs can be affected by hardware variation, sensor calibration 
drift, ambient conditions, and wireless interference. We mitigated these 
risks by standardizing hardware, repeating runs, and normalizing con-
figurations across trials. Still, two limitations remain: (i) simulated en-
ergy models are not calibrated to device-specific power profiles, and (ii) 
hardware experiments used a limited set of boards and sensors. These 
choices reduce confounds but do not eliminate them; hence, our inter-
nal claims focus on trend preservation and relative deltas across modes 
rather than absolute watt/joule fidelity.

9.2.  Construct validity

Construct validity asks whether our measures truly capture the un-
derlying concepts the study claims to assess. For CAPS, three con-
structs are central: modeling expressiveness, transformation fidelity, and 
usability/efficiency. While our metrics (coverage across SAML/HWM-
L/SPML, preservation of mode/timing semantics from models to Cup-
Carbon/Arduino, and task time/error rates) are aligned with these con-
structs, they are imperfect proxies:
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• Expressiveness. We operationalized expressiveness as the ability to 
model required concerns across three views and drive downstream 
artifacts. This operationalization does not measure completeness 
against an exhaustive IoT construct catalog (e.g., mobility, QoS la-
tency/jitter, safety properties). Thus, our “expressiveness” evidence 
is sufficient for the studied cases but not comprehensive across the 
IoT design space.

• Transformation fidelity. Our validation emphasizes preservation 
of intended energy-relevant semantics (modes, timers, sensing/Tx 
rates) and functional conformance (trigger conditions, message tim-
ing) rather than calibrated power accuracy. In other words, we sub-
stantiate that “it behaves as modeled” more than “it consumes the 
exact calibrated energy,” which is a narrower interpretation of fi-
delity.

• Usability/efficiency. Time-on-task with trained students and a 
smaller expert subset captures learnability and automation benefits 
but may not reflect team-scale industrial workflows, organizational 
tooling, or long-term maintenance effort. Hence, the construct “ef-
ficiency” is partially observed through first-use productivity rather 
than lifecycle cost.

Overall, we acknowledge that our constructs are operationalized in a 
study-feasible but narrower way. Future work will broaden the construct 
set (e.g., QoS-aware modeling, mobility, safety) and introduce validated 
instruments for those properties.

9.3.  External validity

External validity concerns the generalizability of findings beyond our 
settings. We purposely selected diverse case studies (NdR event moni-
toring, UFFIZI museum, VASARI urban sensing) to vary communication 
protocols, spatial constraints, and workload characteristics, which im-
proves coverage but does not guarantee generality to other domains 
such as industrial automation, vehicular IoT, or high-mobility CPS. 
Moreover:

• Our simulations rely on CupCarbon and static deployments; domains 
with mobility, multi-hop dynamics under heavy contention, or strict 
real-time guarantees may behave differently.

• Arduino was our target for code generation; heterogeneous platforms 
(e.g., Raspberry Pi, RTOS-based MCUs, SBC clusters) may introduce 
deployment and timing differences.

Therefore, our claims should be read as analytic generalization to 
architecturally similar IoT classes, not statistical generalization to all IoT 
systems. We explicitly recognize this as a shallow aspect in the current 
validation and will address it via multi-site industrial replications and 
additional platform backends. Operational limits and the composition 
strategy are summarized in Section 10.3 (Practical scaling guidance).

9.4.  Conclusion validity

Conclusion validity concerns whether the data analysis supports the 
stated findings. To strengthen our conclusions, we reported descrip-
tive statistics (mean, median, standard deviation), ensured consistency 
across observed behaviors, and conducted controlled comparisons be-
tween CAPS and manual development. However, the sample size for the 
automation time comparison is modest and may not capture all usage 
variability. Future work will involve larger-scale experimental valida-
tions to confirm observed trends. Operational limits and the composition 
strategy are summarized in Section 10.3 (Practical scaling guidance).

10.  Discussion

This section discusses the outcomes of the CAPS evaluation across 
key quality dimensions: modeling effectiveness, efficiency, transforma-
tion fidelity, scalability, and current limitations. Each subsection corre-

sponds to one or more of the research questions defined in Section 8 and 
reflects on CAPS’s capabilities and directions for future enhancement.

10.1.  Effectiveness

CAPS effectively addresses the complexities of developing IoT appli-
cations through several innovative contributions:

• Multi-View Architecture Modeling: CAPS provides an integrated, 
multi-view architecture for IoT systems, modeling software, hard-
ware, and physical spaces. This comprehensive approach ensures 
detailed consideration of all aspects of system architecture, which 
is often lacking in existing frameworks.

• Detailed Performance Analysis: The framework excels at analyzing 
crucial parameters like power consumption, battery level, and data 
traffic through automated simulations. These insights are vital for 
optimizing system performance before deployment, ensuring IoT sys-
tems are energy-efficient and efficient for data traffic.

• Empirical Validation: Extensive case studies demonstrate the prac-
ticality and effectiveness of CAPS, a feature often lacking in similar 
frameworks.

10.2.  Efficiency

The efficiency of CAPS is highlighted by its integrated and stream-
lined approach to IoT system development:

• Comprehensive Integration: CAPS integrates architecture descrip-
tion, simulation, and automated code generation within a single 
framework, enabling a seamless transition from design to deploy-
ment. This integration significantly enhances the development pro-
cess, reducing time and complexity compared to other frameworks 
that may only focus on individual aspects.

• Simulation-Driven Development: By simulating real-world environ-
ments, CAPS allows developers to predict and analyze system behav-
ior under various conditions, providing essential metrics on power 
usage and network efficiency that are crucial for developing sustain-
able IoT solutions.

• Automated Code Generation: CAPS automates the generation of ex-
ecutable code from architectural models, speeding up development 
times and reducing the potential for human error. This feature sup-
ports a range of IoT platforms, enhancing the framework’s applica-
bility across different technologies.

• Modeling Languages: Developed specifically for situational-aware 
applications, CAPS’s modeling languages enable precise modeling of 
software, hardware, and physical aspects, leading to improved sim-
ulation accuracy and high-quality code generation.

10.3.  Scalability and generalizability

This study presented the CAPS framework, designed to support IoT 
application lifecycles-from architectural design to deployment-ready 
code generation. CAPS’s scalability and effectiveness were demonstrated 
through its application to multiple case studies, including the European 
Researchers’ Night (NdR, see Section 7.1), the Uffizi Galleries crowd 
management system (Abughazala et al., 2021) ECSA CAPS (2021) , and 
VASARI (Italian Smart Art Experience) Vasari Art Experience (2018) 
Vasari Models (2021) . These case studies represent a diverse set of do-
mains with varying complexity, scale, and environmental conditions. 
Table 6 provides an overview of the modeling and deployment com-
plexity across these scenarios, including metrics such as the number of 
components, communication protocols, real-time constraints, and data 
points collected per hour. The data confirms that CAPS can scale from 
lightweight IoT setups to more complex, multi-device, real-time sys-
tems while maintaining consistency and traceability across its modeling 
views. This supports the generalizability of CAPS to a wide range of IoT 
use cases, both small and large scale.

The Journal of Systems & Software 234 (2026) 112728 

19 



M. Abughazala et al.

Transformation scaling We evaluate CAPS on scenarios of up to 
20 devices per cell (e.g., a lab or corridor slice). This is a representative 
unit, not the total deployment; real systems can comprise many such 
cells (hundreds of devices overall via composition).

CAPS uses local, per-element mappings over HWML/SPML/SAML. 
By design and observation, transformation time grows approximately 
linearly with modeled entities and links (𝑂(𝑁+𝐸)) where N is the num-
ber of modeled elements (e.g., devices/components), and E is the num-
ber of modeled relations between them (e.g., links, transitions), and 
shows a small, constant setup overhead. We do not expect exponential 
bottlenecks in CAPS’s transformation pipeline.

Simulation scaling and accuracy Post-generation runtime depends 
mainly on density and traffic rates, not 𝑁 alone; high contention can lead 
to super-linear slowdowns. Within a cell (20 devices), simulated ener-
gy/traffic trends align qualitatively and often near-quantitatively with 
measurements. With small-sample calibration and contention-aware set-
tings enabled, absolute error remains bounded at larger scales, while 
directional (trend) accuracy is preserved.

Practical scaling guidance Our generators are single-pass 
(𝑂(𝑁+𝐸)). We target cell-level runs of ≤ 50 devices and compose larger 
deployments via parallel per-cell simulations, with inter-cell traffic 
constrained at gateways (fan-out ≤ 𝑘). This keeps contention local and 
preserves per-node semantics; beyond these bounds, runtime growth is 
dominated by traffic density rather than model size.

10.4.  CAPS limitations

CAPS framework has several limitations: (i) CAPS simulation can 
only support the CupCarbon simulator. Consequently, every component 
in CAPS models must contain one node to transform correctly into the 
CupCarbon simulator. (ii ) CAPS can only produce Arduino code. (iii) 
CAPS does not support mobility features ( In other words, CAPS supports 
static positioning of its components). (iv) CAPS does not support the idea 
of type. To model our architecture using a type system so that the same 
type can be instantiated many times.

CAPS is striving to address various challenges that arise in other IoT 
systems. These challenges may include:

• Self-*: One of the key features of IoT systems is the ability to per-
form self-adaption / self-management / self-configuration. We are 
currently working on adding the self-adaptation capabilities to the 
CAPS framework. As a starting point, we have performed further 
analysis, and these are reported in Abusair et al. (2017), Sharaf et al. 
(2018b) and Muccini et al. (2018).

• QoS Concerns:  While CAPS currently supports QoS analysis in terms 
of energy consumption and data delivery rates, it does not yet incor-
porate timing-based QoS metrics such as latency, jitter, or end-to-end 
delay. However, our human behavior-oriented design methodology 
(as applied in Abughazala et al., 2021 and Abughazala and Muccini, 
2026) demonstrates that the existing simulation framework is capa-
ble of supporting such extensions. Future work will enhance CAPS 
with QoS-aware modeling constructs, allowing architects to define 
and validate time-sensitive requirements. Planned improvements in-
clude integration with timing-aware simulation backends, specifica-
tion of latency thresholds at the model level, and support for real-
time network contention analysis. These features will allow CAPS to 
serve a broader range of applications requiring strict performance 
guarantees.

Absolute energy estimates depend on availability of device specific 
power profiles; without calibration, results should be interpreted com-
paratively.

11.  Related work

Several research efforts have been undertaken to tackle the chal-
lenges associated with IoT system architectures, particularly in design-

ing IoT systems. Numerous frameworks and methodologies have been 
suggested, each with strengths and limitations.

ThingML (Harrand et al., 2016) is a model-driven engineering 
toolchain targeting resource-constrained embedded and distributed sys-
tems. As reported in the project website7, ThingML is developed as a 
domain-specific modeling language that describes software components 
and communication protocols through architecture models, state ma-
chines, and an imperative action language. It uses a model-driven en-
gineering approach to describe IoT applications. It focuses on a com-
ponent and connector view and uses event-condition-action to describe 
the component’s behavior.

MontiThings (Kirchhof et al., 2022) (Butting et al., 2022) (Kirchhof, 
2024) is an integrated modeling language for IoT applications and their 
deployment. MontiThings provides a model-driven toolchain that gen-
erates executable IoT containers, plans automated deployment, suggests 
deployment changes based on feedback, and monitors the generated 
container. This approach mainly targets the edge layer.

MDE4IoT (Ciccozzi and Spalazzese, 2016) is a platform that uses 
multiple UML DSLs to support IoT systems’ development, design, and 
management. It provides ways to model and self-adapt Emergent Con-
figurations (ECs) for connected systems. MDE4IoT generates platform-
specific code from state machines using model-to-model and model-to-
text transformations. Additionally, the platform supports run-time mon-
itoring and self-adaptations through re-allocations and re-generation 
mechanisms based on the system’s runtime feedback.

SysML4IoT (Costa et al., 2016a) is a tool for Model-Based Systems 
Engineering during the IoT application development design phase. It 
uses views and viewpoints to cater to stakeholders and incorporates 
systems engineering concepts using the IoT-A domain reference model 
and ISO/IEC/IEEE standards. They introduced an extension called 
SysML4IoT in Costa et al. (2016b) to create precise models of IoT appli-
cations while verifying their Quality of Service (QoS) properties using 
a model-to-text translator that executes the model and QoS properties 
specified on it with NuSMV (Cimatti et al., 2002).

UML4IoT (Thramboulidis and Christoulakis, 2016) is an MDE plat-
form for industrial automation systems that transforms mechatronic 
components into Industrial Automation Things (IAT) using model-to-
model transformation. The OMA LWM2M application and CoAP com-
munication protocols expose the IoT interface as simple, smart objects. 
The platform also allows high-level languages like Java to specify the 
system’s behavior if a higher-level design specification like the UML one 
is unavailable.

SimulateIoT (Barriga et al., 2021) is a tool that lets users create com-
plex simulation environments for IoT without writing code. The tool 
uses a metamodel and a graphical syntax generated by Eugenia to cre-
ate code for sensors, actuators, fog nodes, and cloud nodes. To ensure the 
model is correct, users can set a series of constraints using Object Con-
straint Language (OCL) during the simulation phase. Once the code is 
generated, the tool can deploy the artifacts as microservices and Docker 
containers, which are connected through a publish-subscribe communi-
cation protocol.

DSL-4-IoT (Salihbegovic et al., 2015) is a visual programming 
language-based tool that simplifies the complexity and heterogeneity of 
IoT systems. With the editor, the user can configure the system structure 
and select devices, sensors, and actuators from built-in library modules. 
Once the design is complete, the user can export the data into a JSON 
array configuration file that contains information about the position of 
all items, relationships between items and groups and the value of all 
configured fields associated with items and data types. The configura-
tion files can then be transferred manually to the respective OpenHAB 
runtime directory or automatically downloaded using a simple web ser-
vice for execution.

7 http://thingml.org/
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Table 10 
Comparative table on supporting different IoT modeling features.

Tool Graphical modeling Textual modeling Multi-view modeling  Supported View
 Software  Hardware  Physical

ThingML (Harrand et al., 2016)  No  Yes  No  Yes  No  No
MontiThings (Kirchhof et al., 2022) 
(Butting et al., 2022) (Kirchhof, 2024)

 Yes  Yes  No  Yes  Yes  No

MDE4IoT (Ciccozzi and Spalazzese, 2016)  Yes  No  Yes  Yes  Yes  No
CHESSIoT (Ihirwe et al., 2023)  Yes  Yes  Yes  Yes  Yes  No
UML4IoT (Thramboulidis and 
Christoulakis, 2016)

 Yes  No  Yes  Yes  Yes  No

Simulate-IoT (Barriga et al., 2021)  Yes  No  No  Yes  Yes  No
DSL-4-IoT (Salihbegovic et al., 2015)  Yes  No  No  Yes  Yes  No
IoTDraw (Costa et al., 2020, 2019, 2016a)  Yes  Yes  Yes  Yes  Yes  Yes
CAPS  Yes  Yes  Yes  Yes  Yes  Yes

CHESSIoT (Ihirwe et al., 2023) is an environment for model-driven 
engineering that integrates high-level visual design languages, software 
development, safety analysis, and deployment approaches for engineer-
ing multi-layered IoT systems. The users can perform various engineer-
ing tasks on system and software models under development, facilitating 
earlier decision-making and allowing for proactive measures.

IoTDraw (Costa et al., 2020) is a modeling language for SOA-based 
IoT systems called. It offers a compliant modeling language called 
SoaML4IoT (Costa et al., 2019) that built on top of SysML4IoT (Costa 
et al., 2016a), which can be implemented by any tool adhering to OMG 
standards. This modeling language integrates SoaML with IoT-specific 
requirements to enhance interoperability and reusability in the com-
plex ecosystem of IoT applications. It enables precise representation and 
simulation of IoT systems to aid in making informed architectural de-
cisions. IoTDraw addresses challenges in the IoT domain by providing 
a standardized language for modeling SOA-based IoT systems. It pro-
motes better integration, scalability, and efficiency across diverse IoT 
ecosystems.

A comparison and detailed analysis of these tools in terms of their 
graphical, textual modeling capabilities and their support for multi-view 
modeling is presented in Section 11.1. An evaluation of their code gen-
eration features and system analysis capabilities, including power con-
sumption and data traffic, is presented in Section 11.2.

11.1.  Supporting the modeling of IoT systems

This section presents a comparison of different approaches to mod-
eling application entities across three views: software, hardware, and 
physical. (see Table 10). This section aims to identify tools that can 
model all aspects of an IoT system, from software to hardware and phys-
ical views, while maintaining consistency throughout the process.

The findings from the assessment in Table 10 are compared to CAPS-
supported modeling features, which will be presented in detail in the 
next section.

1. Table 10 lists the platforms we selected and shows that they all 
have a modeling environment. Most offer graphical modeling tools, 
but ThingML only has a textual modeling option. Textual-based ap-
proaches may be more scalable, but graphical interfaces are usu-
ally more user-friendly. Some platforms like MontiThing, IoTDraw, 
CHESSIoT, and CAPS have integrated textual and graphical mod-
eling approaches.

2. Out of the eight tools considered, only MDE4IoT, IoTDraw, CHES-
SIoT, and CAPS provide support for multi-view modeling and 
component-based design, which are crucial in dealing with the com-
plexities of IoT systems. Other platforms may implement alternative 
approaches that complement multi-view modeling depending on the 
modeling context.

3. It is apparent from Table 10 that most existing approaches have lim-
ited capabilities when it comes to modeling sensors, actuators, and 

computing boards. However, CAPS stands out as it allows for com-
prehensive modeling of all IoT components, both functionally and 
behaviorally. This is made possible through several modeling per-
spectives, which enable a single model to be used for various engi-
neering purposes. Among the approaches mentioned, such as CAPS, 
IoTDraw, CHESSIoT, DSL-4-IoT, and UML4IoT offer hardware views. 
Only CAPS, and IoTDraw provide a physical view. CAPS provides a 
comprehensive approach with three separate views and two aux-
iliary views that merge these three views. This ensures detailed con-
sideration of all system architecture aspects, which is often lacking 
in existing frameworks.

11.2.  Assessing IoT engineering frameworks and methodologies

The assessment results summarized in Table 11 provide valuable in-
sights into the capabilities of various frameworks for engineering IoT 
systems. These findings highlight CAPS as a comprehensive framework, 
offering unique advantages over other platforms.

1. Model-Driven Engineering and Code Generation MDE plays a crucial 
role in automating the development process of IoT systems by bridg-
ing the gap between high-level design and executable implementa-
tions. A key advantage of MDE is its capability to generate system 
code directly from models, significantly reducing development time 
and minimizing manual errors. Tools like ThingML are particularly 
effective in this area. They generate functional code in multiple pro-
gramming languages to ensure adaptability across various platforms. 
Similarly, CHESSIoT builds upon ThingML’s code generation infras-
tructure, enhancing its functionality for multi-layered IoT systems. 
On the other hand, CAPS extends these capabilities by providing 
a code generator that produces both Arduino-compatible code and 
Senscript (CupCarbon Simulation Language). This dual functional-
ity allows CAPS to support seamless integration between simulation 
and real-world deployment, providing developers with a streamlined 
workflow from architectural modeling to executable system imple-
mentation.

2. Analyzing the Performance of IoT System Designs An essential aspect 
of IoT system engineering is the ability to analyze key performance 
metrics such as energy consumption, battery levels, and data traffic. 
While existing frameworks excel in specific areas, CAPS stands out by 
offering a holistic approach to system analysis. CHESSIoT is partic-
ularly effective for conducting risk analysis, allowing developers to 
anticipate potential failures in IoT system architectures. In contrast, 
IoTDraw emphasizes Quality of Service (QoS) analysis, ensuring that 
IoT systems meet predefined performance standards.

CAPS goes beyond these focused capabilities by integrating a 
comprehensive suite of analysis tools that cover energy consumption, 
battery life, and data traffic. It utilizes both simulation (through Cup-
Carbon) and real-world testing (via Arduino code). This dual-layered 
approach enables developers to make informed decisions during the 
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Table 11 
Comparative table on supporting different IoT engineering capabilities.

Tool
 Development (Code Generation)  Analysis  Empirical Assessment
 Target Platform  Language  Power Consumption  Battery Level  Data Trafic  Other  Approach

MontiThings (Kirchhof 
et al., 2022) (Butting 
et al., 2022) (Kirchhof, 
2024)

IoT Boards, Cloud C++ & Prolog  No  No  No Yes Proof of concept and a 
case study

ThingML (Harrand et al., 
2016)

IoT Boards, Cloud C/C++, Java, 
Javascript

 No  No  No No Proof of concept and a 
case study

MDE4IoT (Ciccozzi and 
Spalazzese, 2016)

IoT Boards Java, C++  No  No  No No Case Study

CHESSIoT (Ihirwe et al., 
2023)

IoT Boards, OS, 
Cloud

Thingml  No  No  No Safety analysis Proof of concept and a 
case study

UML4IoT (Thramboulidis 
and Christoulakis, 2016)

Contiki & Rasp.Pi C  No  No  No No Proof of concept and a 
case study

Simulate-IoT (Barriga 
et al., 2021), Barriga 
et al. (2023)

Simulation, IoT 
Boards, Fog, Cloud

Java, Python  No  No  Yes Performance, 
Memory usage

Proof of concept and two 
cases study

DSL-4-IoT (Salihbegovic 
et al., 2015)

IoT Board, Cloud OpenHAB  No  No  No No Case Study

IoTDraw (Costa et al., 
2020, 2019, 2016a)

Simulation, MOkA Java, fUML  Yes  Yes  No System QoS Proof of concept and a 
case study

CAPS Simulation, 
Arduino Boards

Senscript, C/C++  Yes  Yes  Yes No Proof of concept & 
three case studies

early stages of development, optimizing resource utilization and en-
suring system reliability.

Based on our analysis, we have identified and described the main 
limitations below:

• Many modeling approaches focus on single-view modeling, which 
is not always efficient. Only a few approaches, such as MontiThings, 
IoTDraw, and MED4IoT, use multi-view modeling, which separates the 
system component into dedicated, consistent views (Mazzini et al., 
2015). This practice has enormous benefits, as it allows for spe-
cialized projections of the system in specific dimensions of interest, 
which enforces the separation of concerns.

• A few tools focus on analyzing IoT systems during development. Ana-
lyzing the responsiveness of IoT systems before deployment is still a 
major challenge. This is due to the complexity of the problem, which 
involves human interaction, environmental constraints, and the di-
versity of target platforms. Additionally, no other tool, except CAPS 
and IoTDraw, can analyze power consumption, battery level, and 
data traffic.

• We have observed a lack of standards to support the model-based 
development of IoT systems. Each tool has its development method, 
except IoTDraw uses OMG ( Object Management Group) Standard, 
and CHESSTIoT uses MMQEF (Multiple Modeling Quality Evaluation 
Framework).

As shown in Tables Table 10 and Table 11, existing frameworks typi-
cally address only isolated concerns within the IoT development process. 
ThingML focuses on software modeling and partial code generation. 
UML4IoT and CHESSIoT offer software architecture abstraction without 
physical deployment integration. CupCarbon supports simulation but 
lacks architecture modeling and implementation alignment. These tools 
require manual handoffs between modeling, simulation, and deploy-
ment stages, which leads to fragmented workflows. In contrast, CAPS 
provides a novel, end-to-end architecture-to-deployment pipeline that 
unifies multi-view architectural modeling across software, hardware, 
and physical space. It supports performance simulation through CupCar-
bon, 3D spatial layout modeling via SPML, and automated Arduino code 
generation. This integrated approach enables traceability, early valida-
tion, and consistent execution, positioning CAPS as a uniquely compre-
hensive framework within the IoT development landscape.

12.  Conclusion and future work

This paper introduced CAPS, a model-driven engineering framework 
that supports the end-to-end development of IoT systems. CAPS en-
ables architectural modeling across three complementary views, soft-
ware, hardware, and physical deployment, while integrating energy 
and communication traffic simulation and automating the generation of 
Arduino-compatible code for real-world deployment. In contrast to the 
existing tools that operate in isolation or support only a subset of these 
concerns, CAPS provides a unified, architecture-centric workflow that 
preserves traceability from high-level design to real-world deployment.

The framework was validated through three diverse case studies-
NdR, UFFIZI, and VASARI-demonstrating its expressiveness, automa-
tion efficiency, and transformation fidelity. CAPS reduced modeling and 
implementation effort, maintained consistent behavior across simula-
tion and deployed systems, and scaled to increasingly complex architec-
tural configurations. These results affirm CAPS’s applicability to a broad 
range of IoT domains.

While CAPS provides robust support for multi-view architectural 
modeling, energy and traffic-aware simulation, and deployable code 
generation, several limitations remain. The current framework does not 
yet support explicit Quality of Service (QoS) constraints such as latency, 
jitter, or packet loss, nor does it allow formal specification and verifi-
cation of timing or safety properties. Additionally, code generation is 
currently limited to the Arduino platform, and runtime adaptability for 
dynamic reconfiguration is not yet supported. Future work will address 
these limitations by enriching CAPS with QoS-aware modeling prim-
itives, timing-accurate simulation integration, and support for multi-
platform deployment (e.g., Raspberry Pi), and runtime monitoring for 
adaptive system behavior.
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