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Abstract
The ground-state energies of two interacting electrons, confined in a quantum dot (QD),
are calculated. We have used the shifted 1/N expansion method to solve the relative part
Hamiltonian of a QD presented in a uniform magnetic field. An energy expression for
QD states in a magnetic field of arbitrary strength is given. The transitions in the angular
momentum and spin of the QD ground state are also shown. Based on comparisons with the
eigenenergies produced by various computational methods like: exact, Hartree–Fock (HF),
local spin density approximation (LSDA), variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC) methods, the shifted expansion method gives very good results.

PACS numbers: 73.21.La, 03.65.Ge

Quantum dots (QDs), or artificial atom, have been the subject
of intense research studies over the last few years. The
growing interests are motivated by the physical effects and
potential device applications. In particular, the effects of
an applied magnetic field on the states of the interacting
electrons confined in QDs have been extensively studied.
Different methods [1–31] have been used to investigate
the energy spectrum and the correlation effects of the
interacting electrons confined in a QD in the presence of an
applied uniform magnetic field. Maksym and Chakraborty [6]
have considered the eigenstates of interacting electrons,
parabolically confined, in a QD in a magnetic field and
show the transitions in the angular momentum of the ground
states. They have used the heat capacity and magnetization
as sensitive probes to these ground state transitions. Wagner
et al [7] have also studied the same problem in addition
to the spin and predict oscillations between spin-singlet (S)
and spin-triplet (T) ground states. Taut [27] managed to
obtain exact analytical results for the energy spectrum of
two electrons interacting via coulomb force, confined in a
QD, for specific values of the magnetic field. El-Said [28]
have used the 1/N expansion technique to solve the QD-
Hamiltonian and calculate the spectra of two interacting
electrons for any arbitrary ratio of coulomb to confinement
energies and gave an explanation to the phenomena of level
crossings. Ciftja and Golam Faruk [29] and Kandemir [30]
introduced trial wavefunction for two-dimensional QD helium
and calculated variationally the energies of the ground state

for all values of the magnetic field. The exact analytical
solution of the two interacting electrons via coulomb force
under the influence of parabolic potential is not attainable and
thus the corresponding entire energy spectra is not possible.
This QD-Hamiltonian belongs to a quasi-exactly solvable
quantum mechanical type where only several eigenvalues and
associated eigenstates are possible to calculate analytically.
In a very recent study [31], Kandemir found the general
closed-form expression for the eigenstates of the problem and
its corresponding eigenenergies for particular values of the
magnetic field and spatial confinement length. One of the most
interesting features of electron correlation is the change of
the spin and angular momenta structure in the ground state
of the QD system in the presence of the magnetic field. The
QD, in this case, has the potential to serve as a qubit of a
quantum computer since the magnetic field can be used to tune
the transition in the spin of the ground state of the QD from
singlet(S= 0) to triplet (S= 1) state, [29, 32]. The accuracy
of the 1/N method obtained in our previous work [28] and its
ability to explain the level ordering spectra in the QD greatly
motivated us to use the shifted 1/N expansion method in
order to solve the relative Hamiltonian part of two interacting
electron QD-helium under the effect of an applied magnetic
field. We shall compare our results against the corresponding
ones produced by various computational methods like:
exact, Hartree–Fock (HF), local spin density approximation
(LSDA), variational Monte Carlo (VMC) and diffusion Monte
Carlo (DMC), given very recently by Kandemir in [30].
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The ground-state electronic properties of a quantum dot

The effective-mass Hamiltonian for two interacting
electrons confined in a QD-helium by a parabolic potential in
a uniform magnetic field of strengthB, applied alongz-axis,
is given as
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whereω0 is the confining frequency andκ is the dielectric
constant for the GaAs medium.Er2 and Er1 describe the
positions of the first and second electron in thexy-plane.
ωc = eB/m∗c is the cyclotron frequency and the symmetric
gaugeEAi =

1
2
EB × Er i is used in equation (1). Upon introducing

the centre-of-mass (cm)ER = (Er1 + Er2)/2 and the relative
coordinatesEr = Er1 − Er2, the Hamiltonian in equation (1) can
be decoupled to a centre-of-massHR and relativeH r parts.
The cm-part is a harmonic oscillator type with well-known
eigenenergies
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wherencm = 0, 1, 2, . . . andmcm = 0± 1, ±2, . . . .
The main task in this study is to solve the relative

Hamiltonian part
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by using the shifted 1/N expansion method. The energy states
of the Hamiltonian are labelled by the CM and the relative
quantum numbers|ncm mcm; nr m〉. The steps to produce the
eigenenergies by the shifted method are given in [33–35] and
will not be repeated here. Only the necessary expressions
to compute the energies will be presented. The energy
eigenvalues in powers of 1/k̄ (up to third order) read as
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α1 and α2 are parameters expressed in terms ofQ, $ and
quantum numbersnr andm, given in [28]. k̄=N + 2|m|−a,
where N is the spatial dimension, shift parametera =

2− (2nr + 1)$ and $ =
[
3 +

(
V ′′ (r0) /V ′ (r0)

)]1/2
. The

roots r0 (where the effective potential has a minimum) are
determined for particular quantum state|n r m〉, ω0 and ωc,
through the relation,[

2r 3
0 V ′ (r0)

]1/2
= Q1/2

= k̄ = (2 + 2|m| − a) . (6)

After obtaining the rootsr0, the eigenenergies can be
computed using equation (4). nr is the radial quantum number
related to the principle(n) one by the standard relation:
nr = n − |m| − 1.

Our computed results for 2e QD are presented in
tables1–3. In table1, we have listed the ground state energies,
in units of h̄ω0 = 11.857 meV for GaAs, for various values

Table 1.The ground state energies (in units of ¯hω0 = 11.857 meV)
for four different methods: perturbationEp

0 , analyticalEA
0 ,

numericalEN
0 and shiftedE1/N

0 methods. The confining energy
h̄ω0 = 3.32 meV [30].

B(T) Ep
0 EA

0 EN
0 E1/N

0

0.0 1.22319 1.03223 1.02214 1.0354
0.5 1.23071 1.03930 1.02928 1.0417
1.0 1.25281 1.06012 1.05029 1.0605
1.5 1.28831 1.03961 1.08408 1.0909
2.0 1.33551 1.13821 1.12909 1.1310
2.5 1.39252 1.19223 1.18360 1.1791
3.0 1.45753 1.25396 1.24589 1.2341
3.5 1.52890 1.32193 1.31446 1.2937
4.0 1.60526 1.39485 1.38800 1.3576
4.5 1.68551 1.47168 1.46547 1.4245
5.0 1.76876 1.55158 1.54601 1.4934

Table 2.The ground state energy (in units of Hartree,
H ∗

= h̄ω0 = 11.857 meV) calculated by different methods taken
from [30]: HF, LSDA, VMC, DMC, analytical variational method,
numerical solution method and shifted 1/N method.

EHF ELSDA EVMC EDMC EA
0 EN

0 E1/N
0

1.1420 1.04684 1.02165 1.02164 1.03223 1.02214 1.0354

Table 3.The ground state energies (in units of confining energy
h̄ω0) : E(exact),E(var.), andE(1/N) of the 2D QD-helium as a
function of magnetic field strengthγ = 0, 1, . . . , 5 and ratio
parameterλ = 1 and 5, calculated by exact numerical
diagonalization method, variational and shifted 1/N methods. The
exact and two-parameters type variational wavefunction results are
taken from tables1 and2 of [29], respectively.mz is the angular
momentum quantum number of the ground state.

γ

λ 0 1 2 3 4 5

1 mZ 0 0 1 1 1 2
E(exact) 3.00097 3.30508 3.95732 4.71894 5.61430 6.53067
E(var.) 3.00174 3.30578 3.95737 4.71899 5.61435 6.53068
E(1/N) 2.9562 3.2566 3.9549 4.7162 5.6112 6.55303

5 mZ 0 1 2 3 4 6
E(exact) 5.33224 5.58995 6.21499 7.01716 7.90109 6.82281
E(var.) 5.34141 5.59088 6.21518 7.01722 7.90111 8.82282
E(1/N) 5.3016 5.5821 6.2132 7.0167 7.9010 8.8228

of magnetic field from zero to 5 T. The confining energy
h̄ω0 = 3.32 meV value has been used. Our energies produced
by the shifted method are given against perturbation, variation
and numerical methods. The comparison clearly shows very
good agreement between the methods. In table2, we have
also compared the results of the ground state energy produced
by various methods: HF, LSDA, VMC, DMC, variation,
numerical and 1/N. In addition to these comparisons we
have tested, in table3, our shifted method against exact
and variational ones, published very recently by Ciftja and
Golam Faruk [29], by computing the ground state energies for
various values of field strengthγ = ωc/ω0 and ratio parameter
λ = e2α/h̄ω0, where α =

√
mω0/h̄ has the dimension of

inverse length. Varying the parametersγ andλ, the angular
momentum changes frommz = 0 to higher values indicating
a spin singlet–triplet transition in the QD. For fixed value
of ratio parameter,λ = 5, the angular momentum of the
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ground state(mz) changes in discrete manner, frommz = 0 →

1 → 2 → 3 → 4 → 6 as we vary the magnetic field strength
γ from 0 to 5. These results are in very good agreement
with [29].

In conclusion, we have studied the ground state properties
of the 2e QD in the presence of an applied uniform magnetic
field. The ground state energies of the QD are calculated for
various values of field strength and ratio parameter. We have
also shown the spin-single-triplet transition in the ground state
of the QD. Based on comparisons with exact and variational
methods, the shifted method gives very good results for all
ranges of magnetic field strength and ratio parameter of the
QD system.

References

[1] Drexler Het al1994Phys. Rev. Lett.732252
[2] Sikorski C and Merks U 1989Phys. Rev. Lett.622164
[3] Demel T, Hietmann D, Grambow P and Ploog K 1990Phys.

Rev. Lett.64788
[4] Lorke A, Kothaus J P and Ploog K 1990Phys. Rev. Lett.64

2259
[5] Ashoori R Cet al1993Phys. Rev. Lett.71613
[6] Maksym P A and Chakraborty T T 1990Phys. Rev. Lett.

65108
[7] Wagner M, Merkt U and Chapllik A V 1992Phys. Rev.B 45

1951
[8] Pfannkuche D and Gerhardts R R 1993PhysicaB 1896
[9] De Groote J J S, Hornos J E M and Chaplik A V 1992Phys.

Rev.B 4612773
[10] Merkt U, Huser J and Wagner M 1991Phys. Rev.B 437320
[11] Pfannkuche D and Gerhardts R R 1991Phys. Rev.B 44

13132
[12] Zhu K D and Gu S W 1993Phys. Rev. Lett.A 172296

[13] Jhonson N F and Payne M C 1991Phys. Rev. Lett.671157
[14] Klama S and Mishchenko E G 1998J. Phys. Condens. Matter

10601
[15] Zhu J Let al1997Phys. Rev.B 5515819
[16] Dineykhan M and Nazmitdinov R G 1997Phys. Rev.B 55

133707
[17] Bryant G 1987Phys. Rev. Lett.591140
[18] Zhu J L, Kawazoe Y and Yao T 1999J. Phys.: Condens.

Matter11299
[19] Anisimovas E and Matulis A 1998J. Phys.: Condens. Matter

10601
[20] Matulis A and Peeters P M 1994J. Phys.: Condens. Matter6

775
[21] Blanter Y M, Kaputkina N E and Lozovik Y E 1996Phys.

Scri.54539
[22] Peeters F M and Schweigert V A 1996Phys. Rev.B 531468
[23] Oh J H, Huang K J, Ihm G and Lee S J 1996Phys. Rev.B 53

13264
[24] El-Said M 1995Semicond. Sci. Technol.101310
[25] Nazmitdinov R G, Simonovic N S and Rost J M 2002Phys.

Rev.B 65155307
[26] Drouvelis P S, Schmelcher P and Diakonos F K 2004Phys.

Rev.B 69155312
[27] Taut M 1994J. Math. Phys. A: Math. Gen.271045

Taut MJ. Math. Phys. A: Math. Gen.274723
[28] El-Said M 2000Phys. Rev.B 6113021
[29] Ciftja O and Golam Faruk M 2005Phys. Rev.B 72205334
[30] Kandemir B S 2005Phys. Rev.B 72165350
[31] Kandemir B S 2005J. Math. Phys.46032110
[32] Burkard G, Loss D and Faruk M G 2005Phys. Rev.B 72

205334
[33] Imbo T, Pagnamento A and Sukhatme 1984Phys. Rev.D 29

8763
[34] Imbo T and Sukhatme U 1983Phys. Rev.D 28418

Imbo T and Sukhatme UPhys. Rev.D 312655
[35] Dutt R, Mukherji U and Varshni Y P 1986J. Phys. B: At. Mol.

Phys.193411

438

http://dx.doi.org/10.1103/PhysRevLett.73.2252
http://dx.doi.org/10.1103/PhysRevLett.62.2164
http://dx.doi.org/10.1103/PhysRevLett.64.788
http://dx.doi.org/10.1103/PhysRevLett.64.2559
http://dx.doi.org/10.1103/PhysRevLett.64.2559
http://dx.doi.org/10.1103/PhysRevLett.71.613
http://dx.doi.org/10.1103/PhysRevLett.65.108
http://dx.doi.org/10.1103/PhysRevB.45.1951
http://dx.doi.org/10.1103/PhysRevB.45.1951
http://dx.doi.org/10.1016/0921-4526(93)90141-R
http://dx.doi.org/10.1103/PhysRevB.46.12773
http://dx.doi.org/10.1103/PhysRevB.43.7320
http://dx.doi.org/10.1103/PhysRevB.44.13132
http://dx.doi.org/10.1103/PhysRevB.44.13132
http://dx.doi.org/10.1103/PhysRevLett.67.1157
http://dx.doi.org/10.1088/0953-8984/10/15/016
http://dx.doi.org/10.1103/PhysRevB.55.15819
http://dx.doi.org/10.1103/PhysRevB.55.13707
http://dx.doi.org/10.1103/PhysRevB.55.13707
http://dx.doi.org/10.1103/PhysRevLett.59.1140
http://dx.doi.org/10.1088/0953-8984/11/1/024
http://dx.doi.org/10.1088/0953-8984/10/3/013
http://dx.doi.org/10.1088/0953-8984/6/38/013
http://dx.doi.org/10.1088/0953-8984/6/38/013
http://dx.doi.org/10.1088/0031-8949/54/5/016
http://dx.doi.org/10.1103/PhysRevB.53.1468
http://dx.doi.org/10.1103/PhysRevB.53.R13264
http://dx.doi.org/10.1103/PhysRevB.53.R13264
http://dx.doi.org/10.1088/0268-1242/10/10/003
http://dx.doi.org/10.1103/PhysRevB.65.155307
http://dx.doi.org/10.1103/PhysRevB.69.155312
http://dx.doi.org/10.1088/0305-4470/27/3/040
http://dx.doi.org/10.1103/PhysRevB.61.13026
http://dx.doi.org/10.1103/PhysRevB.72.205334
http://dx.doi.org/10.1103/PhysRevB.72.165350
http://dx.doi.org/10.1063/1.1850996
http://dx.doi.org/10.1103/PhysRevB.72.054528
http://dx.doi.org/10.1103/PhysRevB.72.054528
http://dx.doi.org/10.1103/PhysRevD.29.1669
http://dx.doi.org/10.1103/PhysRevD.29.1669
http://dx.doi.org/10.1103/PhysRevD.28.418
http://dx.doi.org/10.1103/PhysRevD.31.2655
http://dx.doi.org/10.1088/0022-3700/19/21/009

