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By using an improved approximation scheme to deal with the centrifugal (pseudo-
centrifugal) term, we solve the Dirac equation for the generalized Morse potential
with arbitrary spin-orbit quantum number κ. In the presence of spin and pseudospin
symmetry, the analytic bound state energy eigenvalues and the associated upper-
and lower-spinor components of two Dirac particles are found by using the basic
concepts of the Nikiforov-Uvarov method. We study the special cases when κ = ±1
(l = l̃ = 0, s-wave), the non-relativistic limit and the limit when α becomes zero
(Kratzer potential model). The present solutions are compared with those obtained
by other methods. C© 2011 American Institute of Physics. [doi:10.1063/1.3583553]

I. INTRODUCTION

The simplest modified Morse potential model suggested by Deng and Fan1 and related to the
Manning-Rosen potential2 (also called Eckart potential by some authors3) is anharmonic potential
defined by

V (r ) = D

(
1 − b

eαr − 1

)2

, b = eαre − 1, (1)

where r ∈ (0,∞), and the three positive parameters D, re, and α denote the dissociation energy,
the equilibrium inter-nuclear distance, and the range of the potential well, respectively. The above
potential is used to describe diatomic molecular energy spectra and electromagnetic transitions and
is the true internuclear potential in diatomic molecules with the same behaviour for r → 0.4 The
above potential was called a generalized Morse potential (GMP) model and illustrated in Fig. 1 for
various values of potential parameters. As stated in Ref. 4, the Morse potential and the GMP are
very close to each other for large values of re (α = 1) in the regions r ∼ re and r > re but are very
different at r ∼ 0. Further, if the two potentials are deep (D � 1), they could be well approximated
by a harmonic oscillator in the region r ∼ re (see Fig. 1 in Ref. 4). To describe the vibrational
spectra of diatomic molecules the potential curve V (r ) is approximated by a sum of three Morse
functions.5 The approach has the advantage of being more flexible than the simple Morse potential
while preserving the correct asymptotical V (∞) = const .5 The potential model (1) is a special case
of the five-parameter exponential-type potential model.6, 7 The exact solvability of the s-wave (l = 0
case) bound state energy eigenvalues and eigenfunctions of the GMP is due to the fact that it belongs
to the class of the Eckart potential, a member of the hypergeometric Natanzon potentials which can
be solved algebraically by means of SO(2, 2) symmetry algebra4 and SO(2, 1) algebra.8 The X-H
stretching motion in small molecules has been treated by the potential model (1).9 Moreover, the
approximated l-wave bound state solutions10 of the Schrödinger equation has been solved using the
conventional approximation scheme suggested by Greene and Aldrich11 to deal with the centrifugal
barrier term l(l + 1)/r2, singularity at r = 0. The exact analytic expressions for matrix elements
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FIG. 1. (Color online) The GMP model with D = 15 fm−1 for (a) various potential ranges α = 0.05, 0.15, 0.30 fm−1 along
with re = 0.40 fm, and (b) various equilibrium inter-nuclear distances re = 0.40, 0.80, 1.20 fm along with α = 0.40 fm−1.

of positive integral powers of the coordinate12 and the quasi-one-dimensional system of DNA
(Ref. 13) have also been studied.

To study the relativistic effects and corrections of the molecular Morse potential,4 the Dirac
equation has been solved for attractive scalar S(r ) and repulsive vector V (r ) Morse potentials un-
der pseudospin symmetry in the nuclear theory using the Pekeris approximation.14 Recently, the
approximate bound state solutions of the pseudospin and spin symmetric Dirac equation with the
GMP has been calculated using an improved approximation scheme to deal with the centrifugal
(pseudo-centrifugal) term and by employing the basic concept of the supersymmetric shape invari-
ance formalism (cf. Ref. 15 and the references therein).

Many authors have investigated approximately the solution of the Dirac equation with a
few potential models such as the Hulthén potential,16 the Hulthen potential including Coulomb-
like tensor potential,17 the generalized Woods-Saxon potential,18, 19 the Eckart potential,20 the
Morse potential,14, 21 the Pöschl-Teller potential,22 the Manning-Rosen potential,2, 23 the hyperbolic
potential,24 the Rosen-Morse potential,25 the pseudoharmonic potential,26 and the Kratzer potential
connected with an angle-dependent potential,27 etc. within the framework of various methods.

For a diatomic molecular model (DMM) instead of the nuclear model (NM), the reduced
mass definition can be considered. If the nuclei have masses m1 and m2, the reduced mass is defined
μ = m1m2/(m1 + m2) and hence the DMM can be included to the spin symmetry and the pseudospin
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symmetry concepts.28 Ginocchio29–31 showed that the spin symmetry occurs when the difference
potential between the vector potential V (r ) and scalar potential S(r ) is a constant (i.e., �(r ) = V (r )
− S(r ) = Cs = constant) and the pseudospin symmetry occurs when the sum potential of the vector
potential V (r ) and scalar potential S(r ) is a constant (i.e., �(r ) = V (r ) − S(r ) = C ps = constant).
The spin symmetry concept32 is particularly relevant for mesons.33 The pseudospin symmetry
concept34, 35 in nuclear physics refers to the quasi-degeneracy of single-nucleon doublets and can
be characterized with the non-relativistic quantum numbers (n, l, j = l + 1/2) and (n − 1, l + 2,

j = l + 3/2), where n, l, and j are the single-nucleon radial, orbital, and total angular momentum
quantum numbers, respectively. Alhaidari et al.36 investigated in detail the physical interpretation
on the three-dimensional Dirac equation in the cases of spin symmetry limitation �(r ) = 0 and
pseudospin symmetry limitation �(r ) = 0. In real nuclei, �(r ) �= constant and pseudospin symmetry
is only an approximation. The quality of the pseudospin symmetry approximation depends on the
competition between the pseudo-centrifugal potential and the pseudospin orbital potential.37

Recently, in the framework of the spin symmetry S(r ) ∼ V (r ) and pseudospin symmetry S(r )
∼ −V (r ), the bound state energy eigenvalues and associated upper- and lower-spinor wave func-
tions are investigated by means of the Nikiforov-Uvarov (NU) method.38 We have approximately
solved the Dirac equation for the Rosen-Morse potential25 with spin and pseudospin symmetry for
any κ state and found the eigenvalue equation and corresponding two-component spinors within
the framework of an approximation to the term proportional to 1/r2. We have also solved the
(3 + 1) dimensional Dirac equation for a particle trapped in the spherically symmetric generalized
WS potential under the conditions of exact spin and pseudospin symmetry combined with approx-
imation for the spin-orbit centrifugal (pseudo-centrifugal) term, and calculated the two-component
spinor wave functions and the energy eigenvalues for any arbitrary spin-orbit κ bound states.18

In principle, the solution of the Schrödinger equation for the GMP model can be used to describe
the motion of the nucleons in the mean field produced by the interactions between nuclei. However,
the Dirac equation successfully merges quantum mechanics with special relativity and is considered
to be the natural transition to quantum field theory. It provides a natural description of the electron
spin, predicts the existence of antimatter, and is able to reproduce accurately the spectrum of the
hydrogen atom. It also predicts some peculiar phenomena such as Klein’s paradox and unexpected
quivering motion of free relativistic quantum particle which are key examples for understanding
relativistic quantum effects, but are difficult to observe in real particles. In order to to understand
the origin of spin and pseudospin symmetry, we need to take into consideration the motion of
the nucleons in a relativistic mean field and consider the Dirac equation.31 We attempt to study the
approximate solution of the Dirac equation for the GMP with non-zero spin-orbit quantum numbers κ

by employing an improved approximation scheme (see, e.g., Refs. 17, 39, and 40] and the references
therein) to deal with the spin-orbit centrifugal, κ(κ + 1)/r2 (pseudo-centrifugal, κ(κ − 1)/r2) barrier
term. The inter-relation between the GMP with the Oscillator and Morse potentials investigated in
Ref. 4 and the recent relativistic treatments of the Morse and Oscillator potentials in Refs. 14 and
26 are some motivations for the present study. The simple transformation of the Dirac equation into
the Schrö dinger-like equation and the success in studying the approximated bound state solutions
of the Dirac equation with various potential models 14, 17, 18, 25, 26 also make the solution possible.

We tend to show that the new scheme of parametric generalization of the NU method 41 given
in Appendix A is a powerful tool for solving a second order differential equation by turning it into a
hypergeometric type equation.38 The advantage of employing the NU method, in the present work,
is that it can be used to find the bound state energy spectra and the corresponding spinor wave
functions under the condition of spin symmetry and pseudospin symmetry concept for any κ state
in a very simple way.

This paper is organized as follows. In Sec. II, we investigate the bound state energy equation and
the corresponding two-component spinor wave functions under the condition of spin symmetry and
pseudospin symmetry concept for the GMP model by employing a parametric generalization of the
NU method. In Sec. III, we study some special cases like the s (̃s) -wave cases κ = ±1 (l = l̃ = 0),
the non-relativistic limit and the α → 0 (Kratzer potential). In Sec. IV, we present some numerical
results to the non-relativistic and relativistic numerical energy levels for GMP and Kratzer models.
The relevant conclusions are given in Sec. V.
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II. DIRAC BOUND STATE SOLUTIONS

The Dirac equation for fermionic massive spin-1/2 particles moving in an attractive scalar
potential S(r ) and a repulsive vector potential V (r ) is given by42[

cα · p + β
(
Mc2 + S(r )

)+ V (r ) − E
]
ψnκ (r) = 0, ψnκ (r) = ψ(r, θ, φ), (2)

where E is the relativistic energy of the system, m is the mass of a particle, p = −i�∇ is the
momentum operator, and α and β are 4 × 4 Dirac matrices, i.e.,

α =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
, σ1=

(
0 1
1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0
0 −1

)
, (3)

where I denotes the 2 × 2 identity matrix and σi are the three-vector Pauli spin matrices. For a
spherical symmetrical nuclei, the total angular momentum operator of the nuclei J and spin-orbit
matrix operator K = −β (σ · L + I) commute with the Dirac Hamiltonian, where L is the orbital
angular momentum operator. The spinor wave functions can be classified according to the radial
quantum number n and the spin-orbit quantum number κ and can be written using the Pauli-Dirac
representation in the following forms:

ψnκ (r) =
(

fnκ (r)

gnκ (r)

)
= 1

r

(
Fnκ (r )Y l

jmκ ( r̂ )

iGnκ (r )Y l̃
jm(−κ)( r̂ )

)
, (4)

where the upper- and lower-spinor components Fnκ (r ) and Gnκ (r ) are the real square-integral
radial wave functions, Y l

jmκ ( r̂ ) and Y l̃
jm(−κ)( r̂ ) are the spin spherical harmonic functions coupled

to the total angular momentum j and its projection m on the z axis and κ (κ + 1) = l(l + 1) and
κ (κ − 1) = l̃( l̃ + 1). The quantum number κ is related to the quantum numbers for spin symmetry
l and pseudospin symmetry l̃ as

κ =
{− (l + 1) = − ( j + 1

2

)
, (s1/2, p3/2, etc.), j = l + 1

2 , aligned spin (κ < 0) ,

+l = + ( j + 1
2

)
, (p1/2, d3/2, etc.), j = l − 1

2 , unaligned spin (κ > 0) ,
(5)

and the quasi-degenerate doublet structure can be expressed in terms of a pseudospin angular
momentum s̃ = 1/2 and pseudo-orbital angular momentum l̃ which is defined as

κ =
{ −̃l = − ( j + 1

2

)
, (s1/2, p3/2, etc.), j = l̃ − 1/2, aligned spin (κ < 0) ,

+ ( l̃ + 1
) = + ( j + 1

2

)
, (d3/2, f5/2, etc.), j = l̃ + 1/2, unaligned spin (κ > 0) ,

(6)

where κ = ±1,±2, . . . . For example, (1s1/2, 0d3/2) and (2p3/2, 1 f5/2) can be considered as pseu-
dospin doublets.

Upon direct substitution of Eq. (4) into Eq. (7b), we can obtain two radial coupled Dirac
equations for the two spinor components as follows:(

d

dr
+ κ

r

)
Fnκ (r ) = [Mc2 + Enκ − �(r )

]
Gnκ (r ), (7a)(

d

dr
− κ

r

)
Gnκ (r ) = [Mc2 − Enκ + �(r )

]
Fnκ (r ), (7b)

where �(r ) = V (r ) − S(r ) and �(r ) = V (r ) + S(r ) are the difference and sum potentials,
respectively.

Under the spin symmetry (i.e., �(r ) = Cs = constant), one can eliminate Gnκ (r ) in Eq. (7a)),
with the aid of Eq. (7b), to obtain a second-order differential equation for the upper-spinor component
as follows: [

− d2

dr2
+ κ (κ + 1)

r2
+ 1

�2c2

(
Mc2 + Enκ − Cs

)
�(r )

]
Fnκ (r )

= 1

�2c2

(
E2

nκ − M2c4 + Cs
(
Mc2 − Enκ

))
Fnκ (r ), (8)
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and the lower-spinor component is obtained from Eq. (7a) as

Gnκ (r ) = 1

Mc2 + Enκ − Cs

(
d

dr
+ κ

r

)
Fnκ (r ), (9)

where Enκ �= −Mc2, only real positive energy states exist when Cs = 0 (exact spin symmetry). On
the other hand, under the pseudospin symmetry (i.e., �(r ) = C ps = constant), one can eliminate
Fnκ (r ) in Eq. (7b), with the aid of Eq. (7a), to obtain a second-order differential equation for the
lower-spinor component as follows:[

− d2

dr2
+ κ (κ − 1)

r2
− 1

�2c2

(
Mc2 − Enκ + C ps

)
�(r )

]
Gnκ (r )

= 1

�2c2

(
E2

nκ − M2c4 − C ps
(
Mc2 + Enκ

))
Gnκ (r ), (10)

and the upper-spinor component Fnκ (r ) is obtained from Eq. (7b) as

Fnκ (r ) = 1

Mc2 − Enκ + C ps

(
d

dr
− κ

r

)
Gnκ (r ), (11)

where Enκ �= Mc2, only real negative energy states exist when C ps = 0 (exact pseudospin
symmetry).16 It is worthy to note that the reality and finiteness of our solutions demand that the upper
and lower radial components should satisfy the essential boundary conditions: Fnκ (0) = Gnκ (0) = 0
and Fnκ (∞) = Gnκ (∞) = 0.

A. Spin symmetry solutions of the GMP model

At first, we investigate the spin symmetry by taking the �(r ) = 2V (r ) → VG M P (r ) as mentioned
in Refs. 17,36, and 43. This choice enables us to reduce the resulting relativistic solutions into their
non-relativistic limit under appropriate transformations. From Eq. (8), we can see that the energy
eigenvalues, Enκ , depend only on n and l, i.e., Enκ = E(n, l(l + 1)). For l �= 0, the states with
j = l ± 1/2 are degenerate. This is a SU (2) spin symmetry. Following Refs. 22–25, we impose the
GMP (Refs. 1 and 4) as the �(r ), i.e.,

�(r ) = D

(
1 − b

eαr − 1

)2

, (12)

leads us to obtain a Schrödinger-like equation in the form:[
d2

dr2
− κ (κ + 1)

r2
− α2ν2

1

(
1 − be−αr

1 − e−αr

)2

+ α2ω2
1

]
Fnκ (r ) = 0 (13)

ν2
1 = 1

α2�2c2

(
Mc2 + Enκ − Cs

)
D, ω2

1 = 1

α2�2c2

[
E2

nκ − M2c4 + Cs
(
Mc2 − Enκ

)]
, (14)

where κ (κ + 1) = l (l + 1) , κ = l for κ < 0, and κ = − (l + 1) for κ > 0. The exact solution
of the above equation is possible only for the s-wave case (κ = −1) due to the centrifugal term
κ (κ + 1) /r2. However, if κ is not too large, the case of the vibrations of small amplitude about
the minimum, we attempt to use the following improved new approximation scheme to deal
with the centrifugal (pseudo-centrifugal) term, near the minimum point r = re (i.e., x = 0), (cf.
Refs. 17, 23, 40, and 44–48):

1

r2
≈ α2

[
d0 + e−αr

(1 − e−αr )2

]
= α2

[
d0 + 1

(αr )2 − 1

12
+ (αr )2

240
− (αr )4

6048
+ (αr )6

172800
+ O

(
(αr )8

)]
.

(15)

When αr 
 1, the value of the dimensionless constant d0 = 1/12 has simply determined by the
above series expansion and α takes the unit of reciprocal of r . The present approximation was shown
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to be more powerful than the usual approximation.40 Obviously, the above approximation to the
centrifugal (pseudo-centrifugal) term turns to 1/r2 when the parameter α goes to zero as

lim
α→0

[
α2

(
d0 + 1

eαr − 1
+ 1

(eαr − 1)2

)]
= 1

r2
, (16)

which shows that the usual approximation is the limit of our approximation (cf. e.g.,17, 40 and the
references therein).

We introduce the following new dimensionless parameter, z(r ) = e−αr ∈ [0, 1], which maintains
the finiteness of the transformed wave functions on the boundary conditions. Thus, substituting
Eq. (15) into Eq. (13), we obtain the following Schrödinger-like equation satisfying Fnκ (r ),(

d2

dz2
+ (1 − z)

z(1 − z)

d

dz

)
Fnκ (z)

+ 1

z2(1 − z)2

{− [(2 + b) bν2
1 + ε2

nκ

]
z2 + [2 (bν2

1 + ε2
nκ

)− κ (κ + 1)
]

z − ε2
nκ

}
Fnκ (z) = 0, (17)

where

ε2
nκ = ν2

1 − ω2
1 + κ (κ + 1) d0, (18)

and Fnκ (r ) = Fnκ (z). In order to clarify the parametric generalization of the NU method,25 let us
take the following general form of a Schrödinger-like equation written for any potential,

d2ψn(z)

dz2
+ τ̃ (z)

σ (z)

dψn(z)

dz
+ σ̃ (z)

σ 2(z)
ψn(z) = 0, (19)

satisfying the wave functions

ψn(z) = φ(z)yn(z), (20)

where

τ̃ (z) = c1 − c2z, (21)

and

σ (z) = z (1 − c3z) and σ̃ (z) = −Az2 + Bz − C (22)

are two polynomials at most of first- and second-degree, respectively. Furthermore, when Eq. (17)
is compared with its counterpart Eq. (19), we can obtain the specific values for the constants ci

(i = 1,2, 3) along with A, B, and C. Now, following the NU method38 and making the substitution
of Eqs. (21) and (22), we can obtain general forms for the polynomials π (z) and τ (z), the root
of the parameter k, the eigenvalues equation and the wave functions φ(z) and yn(z) expressed in
terms of the constants ci (i = 4, 5, . . . , 13) as shown in Appendix A (cf. Refs. 18, 21, 25, and 40).
Therefore, the task of computing the energy eigenvalues and the corresponding wave functions of
Eq. (17) within the framework of the parametric generalization of the NU method is relatively easy
and straightforward. It is explained in the following steps. Firstly, we need to find the specific values
for the parametric constants ci (i = 4, 5, . . . , 13) by means of the relation A1 of Appendix A. The
values of all these constants ci (i = 1, 2, . . . , 13) together with A, B, and C are therefore displayed
in Table I for the GMP model. Secondly, using the relations (A2–A5), the analytic forms of the
essential polynomials π (z) and τ (z) along with the root k, required by the method,41 can also be
found as

π (z) = − z

2
− 1

2

[(√
(1 + 2κ)2 + 4b2ν2

1 + 2εnκ

)
z − 2εnκ

]
, (23)

k = 2bν2
1 − κ (κ + 1) − εnκ

√
(1 + 2κ)2 + 4b2ν2

1 , (24)

τ (z) = 1 + 2εnκ − 2

(
1 + εnκ + 1

2

√
(1 + 2κ)2 + 4b2ν2

1

)
z, (25)
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TABLE I. Specific values of the constants in the solution of the GMP under
spin symmetry.

Constant Constant

c1 = 1 c2 = 1
c3 = 1 c4 = 0

c5 = − 1
2 c6 = 1

4

[
1 + 4

(
(2 + b) ξ1 − Ẽnκ

)]
c7 =2

(
Ẽnκ − ξ1

)+ κ (κ + 1) c8 = −Ẽnκ

c9 = 1
4

[
(1 + 2κ)2 + 4bξ1

]
c10 = 2η1 = 2i

√
Ẽnκ

c11 =
√

(1 + 2κ)2 + 4bξ1 c12 = η1

c13 = 1
2

(
1 +

√
(1 + 2κ)2 + 4bξ1

)
A = (2 + b) ξ1 − Ẽnκ

B = −2
(
Ẽnκ − ξ1

)− κ (κ + 1) C = −Ẽnκ

where τ ′(z) < 0 must be satisfied in order to obtain a physical solution according to the NU method.38

Thirdly, we need to calculate the energy eigenvalues by means of the eigenvalue equation, relation
A6, and obtain

εnκ = (2 + b) bν2
1

2n + 1 +
√

(1 + 2κ)2 + 4b2ν2
1

−
2n + 1 +

√
(1 + 2κ)2 + 4b2ν2

1

4
. (26)

Finally, with the aid of Eqs. (14) and (18), Eq. (26) can be also reduced to the energy equation for the
GMP with the spin symmetry concept for any spin-orbit quantum number κ = ±1,±2, . . . values
in the Dirac theory,(

Mc2 + Enκ − Cs
) (

Mc2 + D − Enκ

)+ �
2c2α2κ (κ + 1) d0

= �
2c2α2

(
(2 + b) bν2

1

2 (n + δ1)
− (n + δ1)

2

)2

, n = 0, 1, 2, . . . , (27)

where

δ1 = 1

2

(
1 +

√
(1 + 2κ)2 + 4b2ν2

1

)
≥ 1. (28)

In what follows, in order to establish the wave functions Fnκ (r ) of Eq. (8), the relations (A7–A10)
are used. Firstly, we find the first part of the wave functions yields

φ(z) = zεnκ (1 − z)δ1 , εnκ > 0, δ1 > 0. (29)

Secondly, we calculate the weight function as

ρ(z) = z2εnκ (1 − z)2δ1−1 (30)

and this, in turn, generates the second part of the wave functions,

yn(z) ∼ z−2εnκ (1 − z)−(2δ1−1) dn

dzn

[
zn+2εnκ (1 − z)n+2δ1−1] ≈ P (2εnκ ,2δ1−1)

n (1 − 2z), (31)

where P (a,b)
n (1 − 2z) is the orthogonal Jacobi polynomials.49, 50 Finally, the upper spinor component

Fnκ (z) for arbitrary κ can be obtained by means of Eq. (20) as

Fnκ (r ) = Nnκe−εnκαr (1 − e−αr )δ1 P (2εnκ ,2δ1−1)
n (1 − 2e−αr )

= Nnκ

�(n + 2εnκ + 1)

�(2εnκ + 1)n!
e−εnκαr (1 − e−αr )δ1

2 F1
(−n, n + 2εnκ + 2δ1; 1 + 2εnκ ; e−αr

)
, (32)
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where the normalization constants Nnκ are calculated in Appendix C.
Let us recall the derivative relation of the hypergeometric function,

d

dz

[
2 F1 (a; b; c; z)

] =
(

ab

c

)
2 F1 (a + 1; b + 1; c + 1; z) ,

that is used to calculate the corresponding lower-component Gnκ (r ) in Eq. (9) as

Gnκ (r ) = Nnκ

Mc2 + Enκ − Cs

(
αδ1e−αr

1 − e−αr
− αεnκ + κ

r

)
Fnκ (r )

+Nnκ

nα (n + 2εnκ + 2δ1)(
Mc2 + Enκ − Cs

)
(1 + 2εnκ )

(1 − e−αr )δ1
(
e−αr

)εnκ+1

× 2 F1
(
1 − n; n + 2 (εnκ + δ1) + 1; 2 (1 + εnκ ) ; e−αr

)
. (33)

Noting that the hypergeometric series c2 F1
(
1 − n; n + 2 (εnκ + δ1) + 1; 2 (1 + εnκ ) ; e−αr

)
termi-

nates for n = 0 and thus does not diverge for all values of real parameters εnκ and δ1.

In the presence of exact spin symmetry (Cs = 0), Enκ �= −Mc2 (only positive energy states
do exist). In the exact spin symmetry (Cs = 0) with (κ = 1, κ = −2), the upper- and lower-spinor
wave functions for the ground (0p1/2, 0p3/2) and first excited (1p1/2, 1p3/2) degenerate eigenstates
are being illustrated in Figs. 2(a) and 2(b), respectively. A glance at Fig. 2 reveals that there is only
one curve (dashed line) for the radial wavefunctions of the upper components for both states in
the doublet. However, there are two curves (solid lines) for the radial wavefunctions of the lower
components. The following values of the parameters M = 1.0 f m−1, D = 15 f m−1, α = 0.1 f m−1

and re = 0.4 f m, E0,κ=1 = E0,κ=−2 = 5.5791076 f m−1 and E1,κ=1 = E1,κ=−2 = 8.1823677 f m−1

have been used.
Let us now study the special case when the parameter α → 0 in Eq. (7a). The GMP potential

can be easily reduced to the well-known Kratzer molecular potential,

lim
α→0

V (r ) = D

(
r − re

r

)2

, (34)

which has been studied extensively by using different methods as the function analysis,51 the NU,52, 53

and the exact quantization rule (EQR).54 To avoid the repetition, following Appendix A, we write
down the essential polynomials:

π (r ) = 1

2
[1 + γ − 2εnκr ] , (35)

k = 2re

�2c2

(
Mc2 + Enκ − Cs

)
D − γ εnκ , (36)

τ (r ) = 1 + γ − 2εnκr, (37)

where

γ =
√

(1 + 2κ)2 + 4r2
e

�2c2

(
Mc2 + Enκ − Cs

)
D, (38)

εnκ = 1

�c

√(
Mc2 − Enκ + D

) (
Mc2 + Enκ − Cs

)
. (39)

We further obtain the following two expressions which are relevant in the construction of the energy
equation (relation A6)38

λn = 2nεnκ and λ = 2re

�2c2

(
Mc2 + Enκ − Cs

)
D − (1 + γ )εnκ , (40)
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F1,1(r)=F1,−2(r)

G1,1(r)

G1,−2(r)

FIG. 2. (Color online) The upper and lower spinor wave functions, in the exact spin symmetry, for (a) n = 0 (0p1/2, 0p3/2)
spin doublet eigenstates with k = 1 and k = −2 and (b) n = 1 (1p1/2, 1p3/2) spin doublet eigenstates with k = 1 and k = −2.

and substituting λn = λ, we can obtain the following spin symmetric energy equation,(
Mc2 − Enκ + D

) = q D2
(
Mc2 + Enκ − Cs

)(
Nn +

√
N 2

κ + q D
(
Mc2 + Enκ − Cs

))2 , (41a)

where Nn = 2n + 1, Nκ = 2κ + 1, and q = (2re/�c)2 . The above equation for energies looks like
a quartic equation of the form:

a4 E4
nκ + a3 E3

nκ + a2 E2
nκ + a1 Enκ + a0 = 0 (41b)

with coefficients

a4 = q2 D2; a3 = 2q D
⌈

N 2
κ − N 2

n − q DCs
⌉

;

a2 = (N 2
n − N 2

κ )2 + 2q D(D + M + Cs)(N 2
n − N 2

κ ) + 4q D2 N 2
n + q2 D2

(
C2

s + 2MCs − 2M2
)
;

a1 = 2q2 D2 MCs(M − Cs) − 2(D + M)(N 2
n − N 2

κ )2

+2q D
(
M2 − 2MCs − DCs

)
(N 2

n − N 2
κ ) − 4q D2 (D + Cs) N 2

n ;
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a0 = ⌈q DM2 − (D + M)(N 2
n − N 2

κ )
⌉2 − 4q D2 (M − Cs) (D + M)N 2

n

+q2 D2 M2Cs (Cs − 2M) + 2q DMCs(D + M)(N 2
n − N 2

κ );

where we have set c = 1. For a given value of n and κ (or l), the above quartic equation, Eq. (7b),
provides four distinct positive and negative real (real and complex) energy spectra related with E+

nκ

or E−
nκ , respectively. One of the distinct solutions is only valid to obtain the positive-energy bound

states in the limit of the spin symmetry. Therefore, the procedures for calculating the four distinct
energies; namely, E (1)

nκ , E (2)
nκ , E (3)

nκ , and E (4)
nκ are given in Appendix B.

Furthermore, following Ref. 18 the normalized upper- and lower-spinor wave functions can be
calculated as

Fnκ (r ) = (2εnκ )K+1

√
εnκn!

(n + K + 1) � (n + 2K + 2)
r K+1e−εnκr L (2K+1)

n (2εnκr ), (42)

and

Gnκ (r ) = 1

Mc2 + Enκ − Cs
(2εnκ )K+1

√
εnκn!

(n + K + 1) � (n + 2K + 2)

×
[(

(K + 1) + κ

r
− εnκ

)
Fnκ (r ) − 2εnκr K+1e−εnκr L (2K+2)

n−1 (2εnκr )

]
,

K = 1

2
(γ − 1) , (43)

respectively, where L (β)
n (x) are associated Laguerre polynomials. The simplest exact spin solution,

representing the ground state and first excited state, are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Mc2 + E0κ

) (
Mc2 − E0κ + D

) = 1
�2c2

⎛⎝ re(Mc2+E0κ)D

1+
√

(1+2κ)2+ 4Dr2
e

�2c2 (Mc2+E0κ)

⎞⎠2

,

F0κ (r ) = (2ε0κ )K0+1
√

ε0κ

(K0+1)�(2K0+2)r
K0+1e−εnκr ,

G0κ (r ) = 1
Mc2+E0κ

(2ε0κ )K0+1
√

ε0κ

(K0+1)�(2K0+2)

( (K0+1)+κ

r − ε0κ

)
F0κ (r ),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Mc2 + E1κ

) (
D + Mc2 − E1κ

) = 1
�2c2

⎛⎝ Dre(Mc2+E1κ)

3+
√

(1+2κ)2+ 4Dr2
e

�2c2 (Mc2+E1κ)

⎞⎠2

,

F1κ (r ) = (2ε1κ )K1+1
√

ε1κ

(K1+2)�(2K1+3)r
K1+1e−ε1κr (−2ε1κr + 2K1 + 2) ,

G1κ (r ) = 1
Mc2+E1κ

(2ε1κ )K1+1
√

ε1κ

(K+2)�(2K+3)

[( (K1+1)+κ

r − ε1κ

)
F1κ (r ) − 2ε1κr K1+1e−ε1κr

]
,

respectively. Finally, we would like to note that ε0κ and ε1κ can be calculated via Eq. (39) whereas
K0 and K1 via Eq. (43) along with Eq. (38) when Cs = 0.

B. Pseudospin symmetry solutions of the GMP model

From Eq. (10), we can see that the energy eigenvalues, Enκ , depend only on n and l̃, i.e., Enκ =
E(n, l̃( l̃ + 1) ). For l̃ �= 0, the states with j = l̃ ± 1/2 are degenerate. This is a SU (2) pseudospin
symmetry. Following Refs. 22–25, we impose the GMP (Ref. 1) as the �(r ), i.e.,

�(r ) = D

(
1 − b

eαr − 1

)2

, (44)
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TABLE II. Specific values of the constants in the solution of the GMP under
pseudospin symmetry.

Constant Constant

c1 = 1 c2 = 1
c3 = 1 c4 = 0
c5 = − 1

2 c6 = 1
4

[
1 + 4

(
(2 + b) ξ2 − Ẽnκ

)]
c7 =2

(
Ẽnκ − ξ2

)+ κ (κ − 1) c8 = η2
2 = −Ẽnκ

c9 = 1
4

[
(1 − 2κ)2 + 4bξ2

]
c10 = 2η2 = 2i

√
Ẽnκ

c11 =
√

(1 − 2κ)2 + 4bξ2 c12 = η2

c13 = 1
2

(
1 +

√
(1 − 2κ)2 + 4bξ2

)
A = (2 + b) ξ2 − Ẽnκ

B = −2
(
Ẽnκ − ξ2

)− κ (κ − 1) C = η2
2 = −Ẽnκ

leads us to obtain a Schrödinger-like equation in the form:[
d2

dr2
− κ (κ − 1)

r2
+ α2ν2

2

(
1 − be−αr

1 − e−αr

)2

+ α2ω2
2

]
Gnκ (r ) = 0 (45)

where

ν2
2 = 1

α2�2c2

(
Mc2 − Enκ + C ps

)
D, ω2

2 = 1

α2�2c2

[
E2

nκ − M2c4 − C ps
(
Mc2 + Enκ

)]
(46)

where κ (κ − 1) = l̃ (̃l + 1). We follow the same procedures in the previous subsection to obtain a
Dirac equation satisfying Gnκ (r ), (

d2

dz2
+ (1 − z)

z(1 − z)

d

dz

)
Gnκ (z)

+ 1

z2(1 − z)2

{− [̃ε2
nκ − (2 + b) bν2

2

]
z2 + [2 (̃ε2

nκ − bν2
2

)− κ (κ − 1)
]

z − ε̃2
nκ

}
Gnκ (z) = 0, (47)

where

ε̃2
nκ = −ω2

2 − ν2
2 + κ (κ − 1) d0, (48)

where Gnκ (r ) = Gnκ (z). To avoid repetition in the solution of Eq. (45), a careful inspection for the
relationship between the present set of parameters ( ε̃nκ , ν

2
2 ) and the previous one (εnκ , ν

2
1 ) tells us

that the negative energy solution for pseudospin symmetry, where S(r ) ∼ −V (r ), can be obtained
directly from the spin symmetric solution by using the following parameter mapping:18, 55

Fnκ (r ) ↔ Gnκ (r ), κ → κ − 1, V (r ) → −V (r ) (i.e., D → −D), Enκ → −Enκ and Cs → −C ps .

(49)

Following the previous procedures, the constants in the case of pseudospin symmetry concept are
displayed in Table II. Applying the above transformations to Eqs. (27), (32), and (33) leads to the
following pseudospin symmetric energy equation:(

Enκ − Mc2 − C ps
) (

D − Mc2 − Enκ

)+ �
2c2α2κ (κ − 1) d0

= �
2c2α2

(
(2 + b) bν2

2

2 (n + δ2)
+ (n + δ2)

2

)2

, n = 0, 1, 2, . . . , (50)

with

δ2 = 1

2

(
1 +

√
(1 − 2κ)2 − 4b2ν2

2

)
≥ 1. (51)

Note that Eq. (50) can be also expressed in the form of quartic equation (cf. Eq. (7b)) since the two
parameters ν2

2 and δ2 contain the energy eigenvalues Enκ . The procedures of this analytic solution
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is so similar to the one presented in Appendix B with the changes D → −D, Enκ → −Enκ , and
Cs → −C ps . Furthermore, the lower-component wave functions:

Gnκ (r ) = Nnκe−̃εnκαr (1 − e−αr )δ2 P (2̃εnκ ,2δ2−1)
n (1 − 2e−αr )

= Nnκ

(2̃εnκ + 1)n

n!
e−̃εnκαr (1 − e−αr )δ2

2 F1
(−n, n + 2̃εnκ + 2δ2; 1 + 2̃εnκ ; e−αr

)
, (52)

where

ε̃nκ = −
⎛⎝ (2 + b) bν2

2

2n + 1 +
√

(1 − 2κ)2 − 4b2ν2
2

+
2n + 1 +

√
(1 − 2κ)2 − 4b2ν2

2

4

⎞⎠. (53)

The upper-component Fnκ (r ) can be calculated from Eq. (11) as follows

Fnκ (r ) = Nnκ

Mc2 − Enκ + C ps

(
αδ2e−αr

1 − e−αr
− α̃εnκ − κ

r

)
Gnκ (r )

+Nnκ

nα (n + 2̃εnκ + 2δ2)(
Mc2 − Enκ + C ps

)
(1 + 2̃εnκ )

(1 − e−αr )δ2
(
e−αr

)̃εnκ+1

× 2 F1
(
1 − n; n + 2 ( ε̃nκ + δ2) + 1; 2 (1 + ε̃nκ ) ; e−αr

)
. (54)

Hence, in the exact pseudospin symmetry where C ps = 0, Enκ �= Mc2 (only negative energy states
exist).

On the other hand, the pseudospin solutions of the Dirac equation for the Kratzer potential can
be obtained from the spin symmetry case by applying transformation map given by Eq. (49) as

γ̃ =
√

(1 − 2κ)2 − 4Dr2
e

�2c2

(
Mc2 − Enκ + C ps

)
, (55)

ε̃nκ = 1

�c

√
−D

(
Mc2 − Enκ + C ps

)− (E2
nκ − M2c4 − C ps

(
Mc2 + Enκ

))
. (56)

Therefore, the eigenvalue equation is

E2
nκ − M2c4 − C ps

(
Mc2 + Enκ

) = −D
(
Mc2 − Enκ + C ps

)
− 1

�2c2

(
Dre

(
Mc2 − Enκ + C ps

)
n + K + 1

)2

, K̃ = 1

2
(γ̃ − 1) , (57)

and the normalized lower- and upper-spinor wave functions are given by

Gnκ (r ) = (2̃εnκ )K̃+1

√
ε̃nκn!(

n + K̃ + 1
)
�
(
n + 2K̃ + 2

)r K̃+1e−ε̃nκr L(2K̃+1)
n (2̃εnκr ), (58)

Fnκ (r ) = 1

Mc2 − Enκ + C ps
(2̃εnκ )K̃+1

√
ε̃nκn!(

n + K̃ + 1
)
�
(
n + 2K̃ + 2

)
×
[((

K̃ + 1
)− κ

r
− ε̃nκ

)
Gnκ (r ) − 2̃εnκr K̃+1e−ε̃nκr L(2K̃+2)

n−1 (2̃εnκr )

]
. (59)

III. SOME SPECIAL CASES

Let us study three special cases. At first, we study the s (̃s) -states (l = l̃ = 0, i.e., κ = ∓1). It
follows that the spin-orbit coupling term κ(κ + 1)/r2 = 0, and also the corresponding approximation
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to it in Eq. (27). In the presence of the exact spin symmetry limit (Cs = 0), the s-states (κ = −1)
energy equation becomes

E2
n,−1 − M2c4 − D

(
Mc2 + En,−1

) = −�
2c2α2

(
1

�2c2α2 (2 + b)
(
Mc2 + En,−1

)
Db

2 (n + δ)
− n + δ

2

)2

,

(60)

where

δ = 1

2

(
1 +

√
1 + 4

�2c2α2

(
Mc2 + En,−1

)
Db2

)
≥ 1. (61)

The upper- and lower-spinor wave functions are

Fn,−1(r ) = Nn,−1
(2η + 1)n

n!
e−ηαr (1 − e−αr )δ 2 F1

(−n, n + 2η + 2δ; 1 + 2η; e−αr
)
, (62)

and

Gn,−1(r ) = Nn,−1

Mc2 + En,−1

(
αδe−αr

1 − e−αr
− αη − 1

r

)
Fn,−1(r )

+Nn,−1
nα (n + 2η + 2δ)(

Mc2 + En,−1
)

(1 + 2η)
(1 − e−αr )δ

(
e−αr

)η+1

× 2 F1
(
1 − n; n + 2 (η + δ) + 1; 2 (1 + η) ; e−αr

)
, (63)

with

η =
1

�2c2α2 (2 + b)
(
Mc2 + En,−1

)
Db

2 (n + δ)
− n + δ

2
, (64)

where Nn,−1 is calculated in the Appendix C. Moreover, for the s̃-states (κ = 1) in the exact
pseudospin symmetry (C ps = 0), the energy equation (48) becomes

E2
n1 − M2c4 + D

(
Mc2 − En1

) = −�
2c2α2

(
1

�2c2α2 (2 + b)
(
Mc2 − En1

)
Db

2 (n + δ2)
+ (n + δ2)

2

)2

,

(65)
with

δ2 = 1

2

(
1 +

√
1 − 4

α2�2c2

(
mc2 − En1

)
Db2

)
, En1 > mc2, n = 0, 1, 2, . . . . (66)

The wave functions given by Eqs. (52) and (54) become

Gn1(r ) = Nn1e−η2αr (1 − e−αr )δ2 P (2η2,2δ2−1)
n (1 − 2e−αr )

= Nn1
(2η2 + 1)n

n!
e−η2αr (1 − e−αr )δ2

2 F1
(−n, n + 2η2 + 2δ2; 1 + 2η2; e−αr

)
, (67)

with

η2 = (2 + b) ξ2

2n + 1 + √
1 + 4bξ2

− 2n + 1 + √
1 + 4bξ2

4
, (68)

and

Fn1(r ) = Nn1

Mc2 − En1

(
αδ2e−αr

1 − e−αr
− αη2 − 1

r

)
Gnκ (r )

+Nn1
nα (n + 2η2 + 2δ2)(

Mc2 − Enκ

)
(1 + 2η2)

(1 − e−αr )δ2
(
e−αr

)η2+1

× 2 F1
(
1 − n; n + 2 (η2 + δ2) + 1; 2 (1 + η2) ; e−αr

)
, (69)
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where En1 �= Mc2.

Second, we study the nonrelativistic limit. In applying the following appropriate mapping
Enκ − Mc2 → Enl and 1

�2c2

(
Mc2 + Enκ

)→ 2μ

�2 to Eqs. (27) and (32), we obtain the energy levels
of the Schr ödinger equation for any arbitrary orbital quantum number l as

Enl = D + �
2

2μ
l (l + 1) α2d0 − �

2α2

2μ

( μ

�2α2 (2 + b) Db

n + δ̃
− n + δ̃

2

)2

, (70)

and the radial wave functions as

ψnl (r ) = Nnl
(2η̃ + 1)n

n!
e−η̃αr (1 − e−αr )̃δ 2 F1

(
− n, n + 2η̃ + 2̃δ; 1 + 2η̃; e−αr

)
, (71)

with

δ̃ = 1

2

(
1 +

√
(1 + 2l)2 + 8μ

�2α2
Db2

)
≥ 1, η̃ =

μ

�2α2 (2 + b) Db

n + δ̃
− n + δ̃

2
, (72)

where μ = m1m2/(m1 + m2) is the reduced mass of the two atoms and Nnl is calculated in the
Appendix C.

Third, the case α → 0, the nonrelativistic limit of the bound state solutions of Eqs. (41) and
(42) in exact symmetry limit (Cs = 0) can be obtained as

Enl = D − −8μ

�2

⎛⎝ Dre

1 + 2n +
√

(1 + 2l)2 + 8μ

�2 Dr2
e

⎞⎠2

, (73)

and the normalized wave functions:

ψnl(r ) = (2̃εnl)
L+1

√
ε̃nln!

(n + L + 1) � (n + 2L + 2)
r L+1e−ε̃nl r L (2L+1)

n (2̃εnlr ), (74)

where

ε̃nl = 2μDre

�2(n + L + 1)
and L = 1

2

(√
(1 + 2l)2 + 8μ

�2
Dr2

e − 1

)
, (75)

which are identical to the previous results obtained by the function analysis method,51 the NU
method,52, 53 and the EQR (cf. Eq. (29) in Ref. 54 obtained in D-dimensions).

IV. NUMERICAL RESULTS

As in Ref. 10, we calculate the non-relativistic energy levels as function of various values of the
parameter that controls the width of the potential well α = 0.05–0.30 f m−1 and equilibrium inter-
nuclear distance re = 0.4, 0.8 f m for various states with quantum numbers n and l. The atomic units
� = M = 1 are used and the dissociation energy is set to D = 15 f m−1. In Table III, we display our
results with those ones calculated by using the conventional approximation scheme suggested by
Greene and Aldrich12 to deal with the centrifugal term l(l + 1)/r2 together with the values obtained
from the numerical integration procedures based on the MATHEMATICA package programmed by
Lucha and Schöberl.56 Obviously, our results are closely approaching the ones obtained in Ref. 56
for both short range (small α) as well as for long range (large α) potential (see, e.g., our recent
works39, 57). This means that our new approximated calculations using the approximation scheme
(15) proposed recently by us provides much better approximation to the centrifugal term than that
in Ref. 10 even for large α values (see, e.g., Ref. 40 and the references therein). At small values of
α (Kratzer potential), we have also calculated the energy levels as a function of re = 0.1 − 1.5 f m
for various quantum numbers n and l. Hence, our numerical values of these energy levels are shown
in Table IV. Overmore, Table V presents some numerical values for the eigenenergies of the Dirac
valence states obtained from Eq. (27) with parameters M = 1.0 f m−1, D = 15 f m−1, α = 0.1, 0.3
f m−1, and re = 0.4, 0.8 f m (exact spin symmetry case, i.e., Cs = 0 f m−1). We noticed that there
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TABLE III. The Schrödinger bound state energy levels Enl (in au) of the GMP as functions of α and re for various states
with D = 15 where � = μ = 1.

re = 0.4 re = 0.8
States α Present DG (Ref. 10) LS (Ref. 56) Present DG (Ref. 10) LS (Ref. 56)

2p 0.05 7.86080 7.8606 7.8628 4.14088 4.14068 4.14208
0.10 7.95329 7.95247 7.95537 4.21917 4.21835 4.2204
0.15 8.04508 8.04322 8.04724 4.29737 4.29552 4.2987
0.20 8.13616 8.13287 8.13842 4.37551 4.37221 4.3769
0.25 8.22656 8.22142 8.22892 4.45360 4.44845 4.4551
0.30 8.31630 8.30889 8.31874 4.53166 4.52425 4.5332

3p 0.05 10.9978 10.9976 10.9998 7.53279 7.53258 7.5350
0.10 11.1626 11.1617 11.1647 7.72475 7.72393 7.7271
0.15 11.3242 11.3224 11.32647 7.91516 7.9133 7.9177
0.20 11.4828 11.4795 11.48513 8.10400 8.10071 8.1066
0.25 11.6383 11.6331 11.64068 8.29129 8.28615 8.2941
0.30 11.7907 11.7833 11.67565 8.47703 8.46962 8.4799

3d 0.05 10.2160 10.2154 10.21651 5.73974 5.73913 5.7404
0.10 10.3535 10.351 10.35409 5.84574 5.84327 5.8465
0.15 10.4893 10.4837 10.48992 5.95061 5.94505 5.9515
0.20 10.6233 10.6135 10.62403 6.05441 6.04453 6.0553
0.25 10.7557 10.7403 10.75645 6.15720 6.14177 6.1582
0.30 10.8864 10.8642 10.88719 6.25904 6.23682 6.2601

4p 0.05 12.4976 12.4974 12.4992 9.61301 9.6128 9.6156
0.10 12.6968 12.696 12.69851 9.88351 9.88269 9.8862
0.15 12.8883 12.8865 12.8901 10.1485 10.1467 10.1514
0.20 13.0722 13.0689 13.0740 10.4080 10.4047 10.4111
0.25 13.2484 13.2433 13.2501 10.6619 10.6568 10.665

4d 0.05 12.0983 12.0977 12.0989 8.49334 8.49272 8.4948
0.10 12.2850 12.2825 12.2857 8.70708 8.70461 8.7087
0.15 12.4664 12.4608 12.46715 8.91774 8.91218 8.9194
0.20 12.6424 12.6326 12.64324 9.12538 9.11551 9.1272

4f 0.05 11.8208 11.8195 11.8209 7.43469 7.43346 7.4351
0.10 11.9979 11.993 11.9981 7.58636 7.58142 7.5868
0.15 12.1716 12.1604 12.1718 7.73559 7.72448 7.7361
0.20 12.3418 12.3221 12.3421 7.88251 7.86276 7.8831

5p 0.10 13.5421 13.5413 13.5434 11.3021 11.3012 11.3047
0.20 13.9289 13.9257 13.9301 11.9132 11.9099 11.9161

5d 0.10 13.3068 13.3043 13.3075 10.5201 10.5176 10.5219
0.20 13.6925 13.6827 13.6931 11.0692 11.0594 11.0713

5f 0.10 13.1475 13.1426 13.1478 9.7966 9.79166 9.7975
0.20 13.5332 13.5134 13.5333 10.2728 10.253 10.2738

5g 0.10 13.0379 13.0296 13.0379 9.15212 9.14389 9.1524
0.20 13.4267 13.3938 13.42667 9.55246 9.51954 9.5528

6p 0.10 14.0521 14.0513 14.0530 12.2798 12.279 12.2822
6d 0.10 13.9070 13.9045 13.9075 11.7364 11.7339 11.7383
6f 0.10 13.8111 13.8062 13.8113 11.2448 11.2398 11.2459
6g 0.10 13.7465 13.7383 13.7466 10.8152 10.807 10.8158

are only positive energy bound state solutions in the spin symmetry limit. One can also see from
Table V that there are degeneracies between the eigenstates (np1/2, np3/2), (nd3/2, nd5/2),
(n f5/2, n f7/2), (ng7/2, ng9/2), etc. In fact, each of these eigenstates form a spin doublet. For in-
stance, for any specific value of n, where n = 0, 1, 2, . . . , np1/2 with κ = 1 is considered as the
partner of np3/2 with κ = −2. Thus, states that have the same radial n and orbital angular momentum
l quantum numbers with j = l + 1/2 and j = l − 1/2 are degenerate.58
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TABLE IV. The Schrödinger bound state energy levels Enl (in au) of the
Kratzer potential as a function of re for various states with D = 15 where
� = μ = 1.

State/re = 0.1 0.4 0.8 1.0 1.5

2p 13.9765 7.76759 4.06249 3.21339 2.07749
3p 14.5308 10.8298 7.33925 6.26836 4.56776
3d 14.5192 10.0766 5.63256 4.41694 2.74032
4p 14.7319 12.2908 9.33707 8.27299 6.40188
4d 14.7269 11.9062 8.27643 7.04418 5.05045
4f 14.7246 11.6401 7.28048 5.81633 3.61468
5p 14.8268 13.0996 10.6443 9.65890 7.79162
5d 14.8242 12.8774 9.94062 8.80199 6.76420
5f 14.8230 12.7278 9.29975 7.96875 5.69315
5g 14.8224 12.6242 8.73653 7.18597 4.60125
6p 14.8789 13.5937 11.5460 10.6568 8.86976
6d 14.8774 13.4539 11.0555 10.0356 8.07050
6f 14.8768 13.3616 10.6191 9.44444 7.25037
6g 14.8764 13.2985 10.2430 8.89964 6.42694

TABLE V. The eigenenergies of the Dirac valence states in units of f m−1 for several values of n and κ with the parameters
M = 1.0 f m−1 and D = 15 f m−1 in the case of exact spin symmetry limit (Cs = 0 f m−1). We have set � = c = 1.

l n, κ < 0 nL j=l+1/2 En,κ<0 n, κ > 0 nL j=l−1/2 En,κ>0

α = 0.10 f m−1, re = 0.40 f m

1 0, −2 0p3/2 5.5791076 0, 1 0p1/2 5.5791076
2 0, −3 0d5/2 6.8118605 0, 2 0d3/2 6.8118605
3 0, −4 0 f7/2 8.0171073 0, 3 0 f5/2 8.0171073
4 0, −5 0g9/2 9.1025175 0, 4 0g7/2 9.1025175
1 1, −2 1p3/2 8.1823677 1, 1 1p1/2 8.1823677
2 1, −3 1d5/2 8.8815340 1, 2 1d3/2 8.8815340
3 1, −4 1 f7/2 9.6603105 1, 3 1 f5/2 9.6603105
4 1, −5 1g9/2 10.4200196 1, 4 1g7/2 10.4200196

α = 0.30 f m−1, re = 0.40 f m

1 0, −2 0p3/2 5.7078594 0, 1 0p1/2 5.7078594
2 0, −3 0d5/2 6.9646771 0, 2 0d3/2 6.9646771
3 0, −4 0 f7/2 8.2121326 0, 3 0 f5/2 8.2121326
4 0, −5 0g9/2 9.3506414 0, 4 0g7/2 9.3506414
1 1, −2 1p3/2 8.4626850 1, 1 1p1/2 8.4626850
2 1, −3 1d5/2 9.1762544 1, 2 1d3/2 9.1762544
3 1, −4 1 f7/2 9.9831712 1, 3 1 f5/2 9.9831712
4 1, −5 1g9/2 10.7812870 1, 4 1g7/2 10.7812870

α = 0.10 f m−1, re = 0.80 f m

1 0, −2 0p3/2 3.6831690 0, 1 0p1/2 3.6831690
2 0, −3 0d5/2 4.3378367 0, 2 0d3/2 4.3378367
3 0, −4 0 f7/2 5.0775317 0, 3 0 f5/2 5.0775317
4 0, −5 0g9/2 5.8291637 0, 4 0g7/2 5.8291637
1 1, −2 1p3/2 5.8388616 1, 1 1p1/2 5.8388616
2 1, −3 1d5/2 6.2180443 1, 2 1d3/2 6.2180443
3 1, −4 1 f7/2 6.6999906 1, 3 1 f5/2 6.6999906
4 1, −5 1g9/2 7.2334098 1, 4 1g7/2 7.2334098
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On the other hand, in Table VI, we present some numerical values for the eigenenergies of the
Dirac hole states obtained from Eq. (50) with the previous choice of potential parameters for the case
of pseudospin symmetry limit (C ps = 0, 5.0, −5.0 and −10.0 f m−1). One can see from Table VI
that there are degeneracies between the eigenstates (ns1/2, (n − 1) d3/2), (np3/2, (n − 1) f5/2),
(nd5/2, (n − 1) g7/2), (n f7/2, (n − 1) h9/2), etc. In fact, each of these eigenstates forms a pseudospin
doublet. For instance, for specific value of n = 1, 1s1/2 with κ = −1 is considered as the partner
of 0d3/2 with κ = 2. Thus, states that have pseudo orbital angular momentum l̃ quantum numbers,
radial n and n − 1 with j = l̃ − 1/2 and j =̃l + 1/2, respectively, are degenerate.58

V. CONCLUSIONS

We have studied the approximate bound state solutions of the Dirac equation for the GMP model
with any arbitrary spin-orbit κ state under the conditions of the spin (pseudospin) symmetry limita-
tion by means of the NU method including a new improved approximation scheme to approximate
the centrifugal (pseudo-centrifugal) barrier term. By setting �(r ) (�(r )) to the spherically symmetric
GMP, we have derived the solutions of the Dirac equation for the relativistic energy eigenvalues
and associated two-component spinor wave functions for arbitrary spin-orbit κ state that provides
an approximate solution to the spin- and pseudo-spin symmetry. The resulting solutions of the wave
functions are being expressed in terms of the Jacobi polynomials (or hypergeometric functions). We
have shown that the present spin symmetry can be easily reduced to the non-relativistic solution
once we set V (r ) = S(r ) (i.e., �(r ) = 0 or Cs = 0). The non-relativistic limits of our solution are
obtained by imposing appropriate transformations and recalling κ(κ + 1) → l(l + 1) in the spin
symmetry limits. Furthermore, when α → 0, our results can be reduced to the well-known bound
state solutions for the Kratzer potential model. If we choose the spin-orbit quantum number κ = −1
(κ = 1) for spin (pseudospin) symmetry, the problem reduces to the exact s( s̃ )-wave Dirac solution.
We must point out that the numerical calculations for eigenenergy of the Dirac states involved in
Eqs. (27) and (50) are sensitive to the choice of the parameters Cs, C ps, α, re, D and M.

It is found that the spin (pseudospin) limit Dirac eigenenergy valence (hole) states along with
the two-component spinors are identical with the results obtained previously by other meth-
ods and works.15 It is noticed that these results are obtained in a much simpler fashion than
Ref. 15. Finally, Eqs. (27) and (50) can be used to evaluate the binding energies of the GMP
for diatomic molecules such as CH, CO, and N2 (Refs. 2 and 10) in the relativistic frame-
work with spin and pseudospin symmetry cases for any range of potential well α. Equations
(41) and (57) can be also used to evaluate the binding energy of the Kratzer potential in the
relativistic framework with spin and pseudospin symmetry cases at small range potential well
(α → 0).
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APPENDIX A: GENERALIZATION OF THE NU METHOD

We briefly review the Nikiforov-Uvarov essential polynomial functions, root, eigenvalues, and
wave functions (see Eqs. (5)–(11) of Ref. 41) being expressed in terms of the parameters ci (i = 1,

2, . . . , 13) together with A, B, and C :
(i) The relevant constants:

c4 = 1

2
(1 − c1) , c5 = 1

2
(c2 − 2c3) , c6 = c2

5 + A,

c7 = 2c4c5 − B, c8 = c2
4 + C, c9 = c3 (c7 + c3c8) + c6,
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c10 = c1 + 2c4 + 2
√

c8 − 1 > −1, c11 = 1 − c1 − 2c4 + 2

c3

√
c9 > −1,

c12 = c4 + √
c8 > 0, c13 = −c4 + 1

c3

(√
c9 − c5

)
> 0. (A1)

(ii) The essential polynomial functions:

π (z) = c4 + c5z − [(√c9 + c3
√

c8
)

z − √
c8
]
, (A2)

k = − (c7 + 2c3c8) − 2
√

c8c9, (A3)

τ (z) = 1 − (c2 − 2c5) z − 2
[(√

c9 + c3
√

c8
)

z − √
c8
]
, (A4)

τ ′(z) = −2c3 − 2
(√

c9 + c3
√

c8
)

< 0. (A5)

(iii) The energy equation:

(c2 − c3) n + c3n2 − (2n + 1) c5 + (2n + 1)
(√

c9 + c3
√

c8
)+ c7 + 2c3c8 + 2

√
c8c9 = 0. (A6)

(iv) The wave functions:

ρ(z) = zc10 (1 − c3z)c11, (A7)

φ(z) = zc12 (1 − c3z)c13, c12 > 0, c13 > 0, (A8)

yn(z) = P (c10,c11)
n (1 − 2c3z), c10 > −1, c11 > −1, (A9)

Fnκ (z) = Nnκ zc12 (1 − c3z)c13 P (c10,c11)
n (1 − 2c3z), (A10)

where P (μ,ν)
n (x), μ > −1, ν > −1, and x ∈ [−1, 1] are the Jacobi polynomials with

P (α,β)
n (1 − 2s) = (α + 1)n

n!
2 F1 (−n, 1 + α + β + n; α + 1; s) , (A11)

and Nnκ is a normalization constants. Also, the above wave functions can be expressed in terms of
the hypergeometric function as

Fnκ (z) = Nnκ zc12 (1 − c3z)c13
2 F1 (−n, 1 + c10 + c11 + n; c10 + 1; c3z) , (A12)

where c12 > 0, c13 > 0 and z ∈ [0, 1/c3] .

APPENDIX B: SOLVING QUARTIC ENERGY EQUATION

In order to solve the quartic equation (7b), the first step in the solution is to define the following
variables:

u = a2 − 3

8
a2

3 ; v = a1 + 1

8
a3

3 − 1

2
a3a2; w = a0 − 3

256
a4

3 + 1

16
a2

3a2 − 1

4
a3a1; (B1)

which enable us to write down the related auxiliary cubic equation of the form:

aE
3
nκ + bE

2
nκ + cEnκ + d = 0, (B2)

with coefficients

a = 1, b = u

2
, c = 1

16

(
u2 − 4w

)
, d = − v2

64
. (B3)

The next step is solving the cubic equation (B2) by defining the variables

f = c

a
− 1

3

b2

a2
; g = 2

27

b3

a3
− 1

3

bc

a2
+ d

a
; h = 1

4
g2 + 1

27
f 3, (B4)
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and then applying one of the following three cases:

(i) When all three roots are real (h < 0): we define the variables

s =
√

1

4
g2 − h; k = cos−1

(
− g

2s

)
, F = 1

3
√

s
, H = cos

(
k

3

)
, G =

√
3 sin

(
k

3

)
, (B5)

where all the arguments in the trigonometric functions are in radians, to obtain the three possible
roots of (B2) in the form

E
(1)
nκ = 2

H

F
− 1

3

b

a
; E

(2)
nκ = F (H + G) + 3a

b
; E

(3)
nκ = F (H − G) + 3a

b
, (B6)

and hence the four energies of the original quartic equation (7b) take the forms

E (1)
nκ =

√
E
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√
E
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4
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√
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√
E
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8
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(3)
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4
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√
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√
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8
√
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(2)
nκ E

(3)
nκ

− 1

4

a3

a4
.

(B7)
It is worth noting that whenever we have three real root we always choose the two non-zero roots;

say, E
(2)
nκ and E

(3)
nκ in (B6) of the cubic equation.

(ii) When only one root is real (h > 0): the definitions

R = −1

2
g + √

h; S = 3
√

R; T = −1

2
g − √

h; U = 3
√

T ; (B8)

enable us to write down the three roots of (B2):

E
(1)
nκ = S + U − b

3a
; E

(2)
nκ = −1

2
(S + U ) − b

3a
+ i

√
3

2
(S − U ) ;

E
(3)
nκ = −1

2
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3a
− i

√
3

2
(S − U ) , (B9)

and hence the four energies of Eq. (7b) are
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√
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8
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4
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(B10)
It is worth noting that whenever we have one real root and two complex roots we always choose the
two complex roots.

(iii) When all three roots are real and equal ( f = g = h = 0), then the roots of (B2):

E
(1)
nκ = E

(2)
nκ = E

(3)
nκ = − 3

√
d

a
, (B11)

and hence the four energies of the original quartic equation (7b) are

E (1)
nκ = −2 3

√
d

a
− 1

4

a3

a4
; E (2)

nκ = E (3)
nκ = −1
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4
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. (B12)
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APPENDIX C: NORMALIZATION CONSTANTS

The normalization constant, Nnl , can be determined in closed form. We start by using the
relation between the hypergeometric function and the Jacobi polynomials (see formula (8.962.1) in
Ref. 49):

2 F1

(
−n, n + ν + μ + 1; ν + 1;

1 − x

2

)
= n!

(ν + 1)n
P (ν,μ)

n (x),

(ν + 1)n = �(n + ν + 1)

�(ν + 1)
, (C1)

to rewrite the wave functions in (32) as

Fnκ (r ) = Nnκ

n!�(2εnκ + 1)

�(n + 2εnκ + 1)
e−εnκαr (1 − e−αr )δ1 P (2εnκ ,2δ1−1)

n (1 − 2e−αr ). (C2)

From the normalization condition
∫∞

0

[
un,l(r )

]2
dr = 1 and under the coordinate change x = 1 −

2e−αr , the normalization constant in (C2) is given by

N−2
nκ = 1

α

[
n!�(2εnκ + 1)

�(n + 2εnκ + 1)

]2 ∫ 1

−1

(
1 − x

2

)2εnκ
(

1 + x

2

)2δ1−1 (1 + x

2

) [
P (2εnκ ,2δ1−1)

n (x)
]2

dx .

(C3)
The calculation of this integral can be done by writing

1 + x

2
= 1 −

(
1 − x

2

)
,

and using the following two integrals (see formula (7.391.5) in Ref. 49):∫ 1

−1
(1 − x)ν−1 (1 + x)μ

[
P (ν,μ)

n (x)
]2

dx = 2ν+μ �(n + ν + 1)�(n + μ + 1)

n!ν�(n + ν + μ + 1)
, (C4)

which is valid for Re(ν) > 0 and Re(μ) > −1 and (see formula (7.391.1) in Ref. 49):∫ 1

−1
(1 − x)ν (1 + x)μ

[
P (ν,μ)

n (x)
]2

dx = 2ν+μ+1 �(n + ν + 1)�(n + μ + 1)

n!�(n + ν + μ + 1)(2n + ν + μ + 1)
, (C5)

which is valid for Re(ν) > −1, Re(μ) > −1. Thus, the normalization constant:

Nnκ = 1

�(2εnκ + 1)

[
αεnκ (n + εnκ + δ1)

2(n + δ1)

�(n + 2εnκ + 1)�(n + 2εnκ + 2δ1)

n!� (n + 2δ1)

]1/2

, (C6)

where 0 ≤ n, κ < ∞. In the s-wave (κ = −1) case, the above result is written explicitly as

Nn,−1 = 1

�(2η + 1)

[
αη(n + η + δ)

2(n + δ)

�(n + 2η + 1)�(n + 2η + 2δ)

n!� (n + 2δ)

]1/2

. (C7)

Also, the non-relativistic normalization constant is therefore obtained as

Nnl = 1

�(2η̃ + 1)

[
αη̃(n + η̃ + δ̃)

2(n + δ̃)

�(n + 2η̃ + 1)�(n + 2η̃ + 2̃δ)

n!�
(
n + 2̃δ

) ]1/2

. (C8)
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