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Abstract

This paper presents an efficient computational exhaustive method that permits to calculate both up-
per and lower response-time bounds for CAN messages. Response-time analysis for CAN messages is
relatively limited for computations of the worst case situation. It is computed assuming a maximum trans-
mission time and critical instant releasing of messages in the CAN system. This pessimism implies the
maximum interference between messages circulated on the bus. It may be correct from a hard real-time
perspective when synchronous releasing, but it doesn’t give good outlook when non-common messages
releasing. Hence to obtain an analysis close to the reality, the investigated temporal constraints must
take into account both effects of time phasing and bit-stuffing. By using a suitable data structure, our
work introduces an elegant algorithm that is able to deal with the previous effects. The obtained results
for best and worst cases response-times are different from previous results obtained when assuming an
optimist and a pessimist bit-stuffing length.
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1. Introduction

A lot of work has been done and many algorithms have been developed to compute the worst case
response-time for CAN messages [4, 7]. The majority of the present studies deal with the circum-
stances where messages are queued at the critical instants. Because the schedulability analysis is
quite pessimistic, it assumes that a missed deadline in the worst case is equivalent to always missing
the deadline for all instant messages [13]. So in messages scheduling, the reliability is regarded as an
objective issue and the performance of any scheduling algorithm is measured generally by two factors:

1. Its ability to generate a feasible schedule for the set of messages covering all possible combina-
tions of transmitted messages.

2. Determining whether these messages will meet their deadlines or not.

Bit-stuffing is performed by CAN to maintain the phase-locked bit timing. When the transmitter logic
detects five consecutive bits of the same level, it inserts a sixth complementary bit into the original
stream [5]. According to the content of original message, an extra number of bits (stuff bits) is inserted
and merged with the original frame.

Since the scheduling on CAN is non-preemptive, and despite of a fixed number of data bytes that may be
conveyed in each message, the number of inserted stuff bits resulting from stuffing rule may vary from
any transmission period to the next (when the transmitted data is variable). Therefore certain disordering
in the transmission sequence will occur.

This paper extends a scheduling analysis to allow computations of the worst and the best case response-
time taking into account the variation in stuff bits length when error-free message transmission.

2. CAN Messages

According to the terminology of CAN, two types of messages in CAN system may be used:
e Standard CAN frame with 11 bits identifier;

e Extended CAN frame with 29 bit identifier.

Value of the identifier is assigned statically before starting the communication process. As shown in Fig.
1, an extended CAN message format contains 67 bits of protocol control information, including 29 bits
identifier associated with each message assigning its priority, 4 bits for a message length field, 15 bits
for CRC field, 7 bits for the end-of-frame signal, and 3 bits for the intermission between frames.
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Figure 1: Extended message format in CAN

2.1. Message parameters

We suppose that the functionality of the system is guaranteed by a set of pre-determined number n of
messages circulated on a CAN bus. Each message m; € M such M = {m, : i € [1,n]} may be defined
as: m;(m;, a;,b;, 15, d;), where

e The parameter 7; represents message’s priority and it can be deduced from its period T; in the
case of Rate Monotonic [12], deadline or a value that depends on context of the application.
Priorities are unique and indicated by the values of identifiers which are assigned in decreasing
order, so the lowest value of 7 is attributed to the highest priority message in M.

e The parameter a, represents time phasing or the arrival time at which message m; is deposed and
being ready for transmission.

e The number of data bytes that are conveyed in the message is represented by b;.

e The parameter d; represents the absolute deadline of the message. Very often, in distributed
systems where CAN messages are the communication entities between tasks residing on different
processors, it is possible to have deadlines greater than the period.

According to specifications of CAN [14], bit-stuffing rule has to be subjected on all bits starting with SOF
bit until the last bit of CRC field that shown in Fig. 1. Thus, an extended CAN frame is specified such
that only 54 of the 67 control bits are subjected to bit-stuffing rule. Thus, each message m; has a certain
part that represents the lower bound C’il of its length, while the upper limit of this length is represented
by CZ.T. According to the type of CAN frame and as a function of b;, the two bounds are calculated in
terms of bit time (7,;;) as shown in Table 1.

Type c! el

Standard || (47 + 8« DLC) * Ty, | (C' + |3HB2CL | s Ty,

Extended || (67 + 8% DLC) * Ty | (C' + | 2H8LCL |) 5 Ty,

Table 1: Bounds of CAN message length

3. Scheduling and analysis

Message response-time will be denoted by R; with the two superscripts Ril and RiT are the lower "best"
and the upper "worst" case values respectively. R; of message m; is calculated as the interval between
release instant a; of the message and the latest transmission instant of that message. To guarantee
the timing requirement of the system, the maximum response time RiT has to be not greater than the
permitted deadline d; of the message.

Since messages scheduling on CAN is non-preemptive, an arrival of higher priority message may not-
coincide with an instant of scheduling. Thus, the higher priority message will suffer from a bounded
blocking time B; before entering the next priority order competition [15]. The upper limit of blocking-time
is given by:

B; = ol -1 1
max (O —1) )
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where [p represents the subset of messages that are lower priority than the message m;.

To focus on the effect of incertitude in the length and the time phasing on response-time computations,
the releasing jitter delay of the message is integrated in the time phasing parameter a; and will not be
appeared or discussed here.

3.1. Scheduling Period

The proposed CAN model that we will study allows messages to be released asynchronously with arbi-
trary periods. Hence according to [11], when the messages are released synchronously, the sched-
ule period SP is calculated as the least common multiple (LCM) of their periods, otherwise SP =
max;—gq. n}(a;) + 2 LCM. Many studies are done to reduce the SP in the asynchronous release
case [9]. To keep the scheduling duration small, whenever this is possible, the approach is to make
message periods multiples of one another.

Now, to be familiar with the effect of bit-stuffing length on the response-time, we will investigate the
scheduling interaction of the 3 independent CAN messages illustrated in Fig. 2. We assume that priority
of my is higher than that of ms, and the priority of ms is higher than that of ms.
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Figure 2: Configuration of 3 asynchronous messages

When assuming the traditional pessimist bit-stuffing result, each message has a longest possible trans-
mission time. This assumption leads to the following worst response-times:

Rl = cf

Rl = cl+c

T _ Aol
Ry = C]+C,+C;

When the effect of time phasing and the incertitude in stuff bits are considered, messages transmission
sequence may vary from one period to another. This variation will influence strongly the response-time
bounds. Concerning the previous example and with the progress of time, two transmission sequences
as shown in Fig. 3 are possible.
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Figure 3: Two possible transmission sequences

3.2. Message deployment

Along the scheduling period SP, each message is represented by a set of instances that have their own
parameters. Since the deadline of a message may be greater than its period, precedence constraints
between the successive message instances have to be maintained. The system is schedulable if all
messages in the system are schedulable and no message misses a deadline during SP.

Message deployment is achieved as follows: during SP, each m; is deployed by a set of k; instances,



where k; = {%J Thus, the extended set X contains K = )", k; of deployed instances that have the
same period SP. Parameters of the ;" instance of the message m; are calculated as:

¢ since the message has a fixed priority, all instances of the message have the same priority: wf =
Tis

e activation instants are shifted by the period and related with time phasing of the first instance:

al =a;+(j—1)xTy;
e two bounds are the same of the original message: ;" = C} and "' = C/;

¢ absolute deadline of the instance is related with the period and the deadline of the first instance:
D} =D+ (j —1)*T;.

The deployment mechanism is explained by taking the 3-messages shown in 2. Without loss of the
generality and for simplicity, we assume that 75 = 2 x T} = 2 x T, = 30 and other parameters are:
my = (m1,a1,C},CH) = (1,0,3,4), ma = (2,4,3,5) and ms = (3,3,3,4). Since all instances of messages
start during the LCM and terminates before the time instant 30, SP can be considered as LC' M. So, the
extended list X contains 5 elements as shown in Fig. 4.

" 3 l
iy & [ ] !

L ~

m

1
5

| f .
T 15 18 19 =
] L =
19 22 24 30

Figure 4: Deployed instances of 3 messages

3.2.1. Activation array

Since each deployed instance has its own activation date, elements of the extended list X are arranged
according to their activation instants. When many instances are activated at the same instant, then
they are mutually referenced. This mechanism prevents us from doing any non-necessary manipulation
during the calculation. Concerning our example of five instances, this array is shown in Table 2.

# | instant | Instance
1 0 mi
2 3 m3
3 4 ms
4 15 m?
5 19 m3

Table 2: Array of activation dates

3.3. Transmission Sequences

The large number of combinations that results from the application of bit-stuffing do not lead mostly to the
same number of the transmission sequences. The number of combinations resulted from N instances is

N
[Tl -ci+).

i=1

Concerning our previous example, the incertitude in the length of 5 instances leads to 72 combinations
as shown in Fig. 5. For simplicity we show partially the upper part of the combinational tree. The
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Figure 6: Transmission sequences

incertitude in the transmission duration leads only to the 2-sequences (scenarios) that are shown by the
graph in Fig. 6. This graph that symbolizes the transmission sequence has graph acyclic [8] form.

We remark that: whatever the length of m}, mi and mi, only two sequences are possible : the first one
is composed from m} —m3 —mi and the second is composed from mi —mi —m}. At the next scheduling

instant (15), whatever the length of m? and m3 are, the next sequence will be m? — m3.

Conclusion and motivations: We note that when the next activation do not effect on the current
transmission sequence, the new combinations will not bring more information about the response time.
Hence, the investigation of the possible sequence (or scenarios) of transmission becomes our main
objective [3, 1, 2].

3.4. Anticipated prevision about transmission sequences

In this section we will present a mechanism that permits us to verify whether the variation in the trans-
mission time will not change the transmission sequence. This mechanism is based, on one hand, on the
calculation of the busy period BP [10], and on the other hand, on the k — level busy period. For the k"
instance that has priority 7z, the k& — level busy period is denoted by BP,.

3.4.1. Calculation of BP and BP,

Due to the variation in the transmission duration (Cil <C; < CJ), the busy period BP will be bounded
as: BP! < BP < BP'. As shown in Fig. 7, at the current instant t. the bus is occupied by the
transmission of the j*" instance in the extended list X (i.e. j € [1, K]) since dur; time instants.
Analytically, calculations of the two bounds is released as follows:

cl - dur;(t.) ct > dur; (te)
BPl = Cl j j\lc)y i i (te 5
ieIZv ' +{ 0 ) otherwise (2
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Figure 7: Busy period bounds

BP'= Y Cl+C] - dur;t.)

1€Imax

The subsets I,,;, and I,,,, are related to BP! and BP' respectively. They result from:

1. Ready instances at the current instant ¢..

2. Those instances will be ready during the concerned busy period (BP! or BPT')
However, the lower bound of k — level busy period BP! is calculated as:

1 ) 1 )
BP,i _ Z Cil—"_{ Cjo dur;(te), C; > dur;(te)

‘ , otherwise
1€ (IminN(hp(k)UEk))

3

(4)

The subset (1,,:», N (hp(k) U k)) consists of all instances having a priority level equal or greater than that
of the k£*" instance providing that these instances are activated during the continuous period BA}C. Since
all instances are included in the activation array, process of calculation and verification is effectuated

iteratively.

We explain the previous method by an example of 3 configurations as shown in Fig. 8. At the time in-
stant ¢., the 3 configurations lead to the same bounds: BP! = 14 and BPT = 19, but their transmission
sequences may be different. Thus, according to the category of activation, we can judge if the trans-
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Figure 8: Different release configurations

mission sequence is certainly unique (unique transmission scenario) or not. Generally, three activation

categories may be distinguished:

1. Synchronous activations: when all instances belong to the busy period are activated at the same
instance (Fig. 8-a). In this case, whatever their durations, the transmission sequence will be

unique.

2. Pseudo synchronous activations: assuming that m; < m < w3 < w4, as shown in Fig. 8-b,
the activation of an instance occurs certainly before the transmission of any other lower priority
instance. This implies that the transmission of all instances belong to the busy period occurred

according to their priority order.



3. Asynchronous activations: the transmission of the instances can not be guaranteed to agree with
their priorities as shown in Fig. 8-c.

Due to the incertitude in the duration of m; and ms, at t = 10, there is no guarantee that m, (which
is less priority than ms) has not yet started its transmission. Hence, to make sure that the instance j
having a priority 7; is not preceded by the transmission of another less priority instance, the condition:
Vte,a; > te,a; € [t., BP}] must holds.

4., Verification model

The investigated verification method is based basically on the calculation of response time boundaries.
Because of the incertitude in the transmission duration, exhaustive calculations imply the prevision of alll
possible transmission scenarios (sequences), thereby calculate response times for instances compos-
ing each possible scenario. A performant prevision policy must be capable to predict and to verify all
probable combinations of transmission patterns during the hyper-period. The system is schedulable if
all instances in the system are schedulable and no one misses a deadline during the schedule period.

4.1. Computational method

The fundamental idea in our computational method is based on the investigation of all possible schedul-
ing sequences of deployed instances in the list X. Since the deadlines (in our model) are not related to
periods, a FIFO policy is used to schedule the successive instances of the same message.

During the scheduling process along the hyper-period, an instance can be in one of the following three
states:

¢ Waiting to be released;
e Ready to run but not running;
e Running.

A released instance will be denoted as an activity. Each activity represented by a compact data structure
called activity node (AN) that shown in Fig. 9-a. Each AN is symbolized by data structure that is capable
to link the scheduled activities in a way giving low size scheduling map. Thus, the AN has the following
data fields:

- Ind as the index of the activity in X.

- Dur to indicate the assumed duration of the CA that produces the current scenario.
- Pre to link the activity node with another node in the same scheduling scenario.

- EOE (End Of Execution) to indicate the completion instant of the CA.

At each instant along the schedule period, the scheduling process on a resource is symbolized by a
resource node (RN) data structure as shown in Fig. 9-b.
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Figure 9: Used data structures

The RN data structure has the following data fields:
- CA to indicate the current activity that is in execution. If no activity is running CA = —1.

- EC as an execution counter for the activity executed on a resource. If no activity is in execution
EC =0.



- AL is the activity list that contains the dynamic list of all ready activities on the resource. Activities
in the list are enchained as shown in Fig. 10

- SS to signify if the incertitude in the message length, absolutely, has no effect on the transmission
sequence.
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Figure 10: Enchained activities in the ordered AL

- Oth is used to enchain (at the current instant) the different resource node corresponding to the
different possible scenarios. This permits to look into all existing nodes without knowing neither
their contents nor their numbers in a way that leads to an acyclic graph form. The obtained acyclic
graph is not ordered, so an activity in the map may have more than one node with the same EOE
value.

Remark: List of activities have the following properties: activities are completely ordered so that the
head activity has the highest priority, and the representation of lists is unique; there is only one node
characterized by the values of Index and Ptr.

5. Activities submission

The submission of an activity implies the addition of that activity to the whole existing dynamic lists. So,
any released instance will be inserted immediately in the existing ALs. When the bus becomes free and
the list "RN.AL" is not empty, the higher priority activity H P A will be extracted to be scheduled. If the list
RN.AL is empty, the corresponding resource node will be suppressed. This process is illustrated by Fig.
11.
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Figure 11: Submission process illustration

For simplicity, firstly we present in details the submission principles without optimization. In other words,
we create all possible durations for instances that share the same activity period. Therefore, neither
the uniqueness of transmission scenario realized by dint of the SS (Scenario Status) parameter, nor the
concerned optimization will be applied. Then we apply the optimization techniques on the concerned
parts.

5.1. Algorithm without optimization
The submission process is composed of 5 stages:
Stage 1: Initialization of intermediate index and response time bounds arrays.

Stage 2: Starting by zero instant, we look over all time instants such that 0 < Instant < SP.



Stage 3: At this instant, we verify whether there are new released instances, if so, they will be inserted
in all of the existing RN.AL. If no RN exists, a new RN will be created to include the released
instance. The creation of an RN will be explained later.

Stage 4: Due to RN.Oth pointer, we can look quickly over all RNs performing the following jobs:

1. If RN.CA = —1, the head element which is the highest priority activity in RN.AL will be
extracted and scheduled. Scheduling of the activity implies explicitly the creation of new AN
and the suppression of that activity from the list AL.

2. Increment the execution counter RN.EC + +. Supposing that the current activity (AN.CA)
has the index i, we go to the following step.

3. If the current activity will be terminated surely (RN.EC = CZ.T ), we do the following:

a. Memorizing the two bounds of response time; lower bound as R} = mz’n(RﬁAN.EOE)
and the higher one as R] = Maz(R), AN.EOE) .
b. We initialize the following parameters: RN.EC = 0 and RN.CA = —1 to signify that the
current activity is terminated.
4. If the activity is not surely to be terminated (C} < RN.EC < C]), we do the following:
a. If RN.EC = C} we memorize R} = min(R!, AN.EOE).
b. We clone the current RN producing New_RN. (this process will be explained later)

Stage 5: when the submission process on all RNs (enchained by the pointer Oth) is terminated, the
similar RNs (with the same ECs and ALs) are merged to keep only one RN. Merging process lets
us to apply the Acyclic Graph technique [8]. The Acyclic Graph offers a considerable reduction
mechanism in the computations. The reduction is performed by lessening of next scheduling
combinations.

5.1.1. Nodes creation

The creation of new RN implies the following initialization: RN.CA = —1 and RN.EC = 0. The cloning
process of RN is achieved by the creation of New_RN and the initialization of this New_RN as follows:
New_RN.AL = RN.AL, New_RN.CA = —1and New_RN.EC = 0.

5.1.2. Algorithmic description

In Fig. 12, we present the pseudo-code that describes the submission process (without optimization).
It has as input the parameters of the deployed instances and as outputs the response time bounds for
these instances. We use the following abbreviations:

K: number of instances;
SP: Scheduling period;
sai: static activation index;

SAT: Static Activation Table.

5.2. Submission with optimization

When the variation in the transmission times of the instances that share the current busy period do not
have an influence on the transmission sequence, and the sequence is unique. Then, cloning process is
not necessary to be done systematically and one scenario can be considered to generate the response
time bounds of instances that share the busy period.

Therefore, to extract R' and RT, we generate two scenarios; one is symbolized by RN and the other by
RN'. The first (RN) is used to extract R's by considering the minimum duration bounds (Cil 1 Vi € AL).
This is done by setting the parameter SS of RN as Lower Bound Unique Scenario (LBUS).

R's are extracted by considering the maximum duration bounds (C’iT : Vi € AL). This is done by setting
the parameter RN'.SS as Higher Bound Unique Scenario (HBUS). We remember that by default, at the
instant of RN creation, the SS parameter is set as: Non Unique Scenario (NUS).

When we apply the optimization principles, the cloning process in the 4" step of stage 4 (when Cj <
RN.EC < CiT) will not be done systemically. Thus, the corresponding part of the algorithm becomes:



-- Ntage 1 :
Irtialization: sai:=0; RN =null; For all { 1 =0 to £-1){ Rz-“l’ =Max_ Smad . Rl;T:: 0:}
-~ Sirge 2 -
For {Instant ; =0 to XP-1) {
-- Stuge 3 :
If (54 T[sal] instant = Instant) {
If (RN = null) {Create RN}
Insett new actrvation(s) in all existent RN AL
sai++;
1
- Stuged :
While (EM = mull){
If(EN.CA=-17 {RN.CA =HPA; } fmplictly AN.Ind =EN.CA
EN EC+H+,
i=ERMN.CA;
If (RN.EC =T ¢
Ry¥ = min (R;Y, AN EOE) ;
R;| = Maz (R, AN.EOE) ;
EM.C4 =-1, EM.EC =10,
1
Else If (C;¥ <RM.EC) {

If (RN.EC = C;% { Ry = min (R;¥, AN.EOE) ;)
Clane (RN),

1
EM = EN.Oth
1
-- Skege 5
Funning over all RN
IF(EM.EC =0& RN AL =4 { Delete RN}
Compare RNs: Delete sumlar RN except ane |

Figure 12: Pseudo code describing the submission process (without optimization)

Stage 4: ... 4) When C} < RN.EC < C;, we perform the following:

A. If RN.EC = C}, we memorize the lower bound of response time as R} = min(R}, AN.EOE),

B. If RN.SS = NUS (non unique scenario) and the current AL is not empty, we calculate the busy
period Eg. 3, then we do one of the following operations:

- If the new activations (if any) during the current PA" do not change certainly the transmis-
sion sequence, we clone the current RN setting its SS as HBUS while New_RN.SS as
LBUS.

- Otherwise, or in other words, if the new activations can change the context or it is not
possible to determine if the new activations can change current sequence, we clone the
current RN without changing any SS parameter.

C. If RN.SS = LBUS, this signifies that the transmission scenario is unique and the current re-
source node is used to generate strictly the lower bounds of response times. Therefore we
terminate the current activity immediately (this means at RN.EC = C}). The termination is
achieved by setting RN.EC =0 and RN.CA = —1.

D. Otherwise, when RN.SS = HBUS or (SS = NUS while AL is empty), we go to stage 5.

These modifications in the previous procedure are illustrated by the pseudo code illustrated in Fig. 13.
The function No_context_change realizes the anticipated prevision mechanism (83.4). It is implemented
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in a recursive manner. It takes the following parameters as input: current time instant and the upper
bound of the busy period. It returns a Boolean value; yes when no change in the context and no in the
contrary case.

-~ Skwge d:
While (RN = mull) {
If(RN.CA=-1) { RN.CA =HPA; } # AN.Ind = RN.CA
RMN.EC++,
i=RN.CA;
FERNEC=CM ¢
Ry¥ = min (RyY, AN.EOE)
Ry = Max (R;T, AN EOE) ;
EM.CA =-1, EM.EC =10,

1
.
Else If (C < RM.EC) {
If (RN.EC = C;¥) { Ry = min (Ry¥, AN EOE) }
IE((RN.55 = NUS) & (AL =g {
Clone (RN,
If (Ne context charge) (RN .55 = HBUS | New EM.3E5 =LBUS; }
!
Flse if ((RN.85 = LBUS) && (RN.EC = C;¥ ) {RN.CA =1 RN .EC =0:}
I
EM =EREN.COth;
i
-- Skrge 5 :

Figure 13: Stage 4 of the pseudo code after optimization

5.3. Response time extraction

Our method permits to extract dynamically response time bounds without the memorization of results
related to the created RNs. Extraction of absolute bounds (R} and R} ) of the message m; from the
bounds of instances related to the message the achieved as:
L ml _ .
{ ot =D form= 1 ©)
R, = max{R]"" — (m —1) «T;}

where k; = V}PJ

6. Case studies

To be familiar with our developed computational algorithm, we consider two examples. As a first example
we show a simple computation model in details, whereas for the second example we show only results
without schedule map.

6.1. Example 1

We study a simple system composed of the three messages which have the deployed instances shown
in Fig. 4. As shown in Tab. 2, the deploying leads to five instants. At the first activation instant (instant
0), the resource node RN1 will be created. The evolution in the bus state is illustrated by the parameters
of RN1,---, RN4 as shown in Tab. 3.

The shadowed cells represent instants at which new activity nods are created. The single star notation
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Inst. | RH1 RN2 RH3 RH4
0 Ch=1, EC=0, Al= {1}
55=HUS

1 Ch=1 EC=1 &l=1{1

2 Ch=1,BC=d Al=1{]

3 Ch=1 BEC=5 AL={2} * [CA=-1 EC=0, AL~ {2}

4 Ch=1, EC=0, &L= {3, &} | Ch=12, EC=1, &AL = {3}

bt

5 Ch=3 EC=1, Al= {2} Ch=d EC=24, AL~ {3}

f Ch=3 BC=d, Al= {2} Ch=2 BO=3 Al= {3}, [CAa=-1, EC=0, &L= {3},
So=HBIS * S5=1B0s

7 Ch= % HE=% Al= [V {Ch=-1 EC=0, Al= {3}|Ca=73EC=1 Al={1 |Ch= EC=0. AL="{2
#k

S5=HBOZ *

2 Ch=3 BC=4 A= {2} Ch=3EC=1,ALl={} |[Ca=3 EBEC=d Al={} |Ch&=2 EC=l, AL

9 Ch=_1 EC=0, &A1= {21 ** |Ch=73 FC=2 Al={1 |CA=1 EC=0 4l={1*[CA=2 EC=1 AL

10 Ch=2 EC=1, AlL=1{1 Ch=3,EC=3, AL=1{ 1* Ch=-1,EC=0, AL

11 Ch=2 BC=d Al=1{} Ch=3EC=4 Al=1}

12 Ch=3 BC=3 Al=1{} Ch=1 BEC=0, &L= { }
#k

5= LBIE

#*

il
1}
Lt

13 Ch=-1,EC=0, AL={ } **

15 Ch=-1 EC=0, A= {4}
55=HNUS

& Ch=4 BEC=1 Al=1]

17 Ch=4 BC=4 Al=1{}

18 Ch=4 EC=5 AI=11%
19 Ch=.1 EC=0, AL= {5} +*

20 Ch=5 BEC=1, Al=1{}

21 Ch=5 BC=4 Al=1}

22 Ch=35 EC=3 Al=1 1%
3 Ch=5 EC=4 Al=1{]

24 |Ch=-1, BC=5 Al={} ™

Table 3: RNs parameters along the study period

(*) is used to signify the time instant at which the value AN.EOE is memorized as R', While the double
star is used to memorize R = AN.EOE.

6.1.1. Graphical submission structure

Now we illustrate the scheduling map graphically. This map is based on resource node data structures.
Applying the algorithm described in the previous section, we sweep all time instants from 0 to 30 effec-
tuating the submission process. Submission includes the cloning of RNs and the extraction of response
time bounds. This process is illustrated by the graphical structure shown in Fig. 14.

We can follow the evolution in the first created node RN1 until the termination of the last submitted
activity (having the index 5). Nodes RN1 and RN2 serve in the calculation of the upper response time
bounds for the instances 1, 2 and 3. While the nodes RN3 and RN4 serve in the calculation of the
lower response time bounds for the same instances. RN1’ serves in the extraction of both bounds for
instances 4 and 5.

6.1.2. Response time results

Response time bounds for the deployed instances and the final response times for the three messages
are shown in the response time (Tables 4-a and -b).

6.2. Example 2

Now we consider a more sophisticated system composed of the 12 standard messages [6]. All mes-
sages are supposed to be released synchronously. Their parameters are shown in Tab. 5-a. As we can
remark that task periods are not multiples of each other, so the scheduling SP = 420271 = 1, 050000.
The extended set X contains 2267 instances and (169) resource nodes are created. To be used 67,227
times. The calculated response time bounds are shown in the last two columns of Tab. 5-b. Computa-
tions are done within 0.8 seconds (on PC with 1.7GHz CPU) and 17.9 MB of RAM is used.
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# | Instance | R | RT

1 mi 3 | 4

2 mi 6 | 13 m; | RV | RT

3 mas 7 |12 my | 3 | 4

4 m? 18 | 19 mo | 7 | 12

5 m3 22 | 24 mg | 6 | 13
a) instances b) messages

Table 4: Response times

The column Ig_Ip contains the length of the longest lower priority message. This length is calculated
as: lg_lp, = Maz{VEk € Ip(:)}. Applying the analytical method used by Tindell, we obtain the worst
case response times results shown in the last column of the Tab. 5-b. The difference between each
upper response time bound calculated by our method (R,LT ) and that (WCET) calculated by Tindell equal
always the blocking time minus one unity (Ig_Ip; — 1). This means that no blockage by a lower priority
message will be produced along the scheduling period and no priority inversion will happen.

Lmi |m o[ ci [l [ T | [mi [ R | R |lgip | WCRT |
mp | 1 | 8| 111 | 135 | 2500 my | 111 | 135 125 259
me | 2 | 3| 71 | 85 | 3500 mo | 71 | 220 125 344
ms | 5 13| 71 | 85 | 5000 ms | 182 | 475 125 599
mg | 3 12| 63 | 75 | 3750 my | 63 | 295 125 419
ms | 6 | 5| 87 | 105 | 5000 ms | 269 | 580 125 704
me | 8 | 5| 87 | 105 | 10000 me | 435 | 780 125 904
my; | 4 14| 79 | 95 | 3750 my | 142 | 390 125 514
mg | 9 | 5| 87 | 105 | 12500 mg | 198 | 885 125 1009
mg | 7 | 4| 79 | 95 | 5000 mg | 348 | 675 125 799
mi | 11 | 7 | 103 | 125 | 25000 my | 625 | 1115 65 1179
my; | 10 | 5 | 87 | 105 | 12500 my1 | 285 | 990 125 1114
mi2 | 12 | 1 | 55 | 65 | 25000 mio | 680 | 1180 0 1180

a) parameters b) response times

Table 5: 12 CAN messages

7. Conclusions

The reliability of a CAN model depends on its ability to provide a good conception about absolute limits of
schedulability behavior during the hyper duration that symbolizes the eternal life of the system. Focusing
on the impact of the incertitude in stuff bits, we have introduced a general computational method able
to generate and compute response-times for all possible transmission combinations of CAN messages.
To reduce the computational resources when aiming to calculate absolute response-time bounds, we
applied the acyclic graph technique. Then we investigated the direct impact of stuffing result on these
bounds. By this, we have shown that the worst and the best case scenarios that have been discussed
are different from the case of non-common messages releasing.
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Figure 14: Scheduling structure illustrating evolution in resource nodes
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