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In the framework of static and QCD-motivated model potentials for heavy quarkonium,
we present a further comprehensive calculation of the mass spectrum of b̄c system and
its ground state spin-dependent splittings in the context of the shifted l-expansion tech-
nique. We also predict the leptonic constant fBc

of the lightest pseudoscalar Bc, and
fB∗

c
of the vector B∗

c states taking into account the one-loop and two-loop QCD cor-
rections. Furthermore, we use the scaling relation to predict the leptonic constant of
the nS-states of the b̄c system. Our predicted results are generally in high agreement
with some earlier numerical methods. The parameters of each potential are adjusted to
obtain best agreement with the experimental spin-averaged data (SAD).
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1. Introduction

Recently, theoretical interest has risen in the study of the Bc-meson, the heavy �bc

quarkonium system with open charm and bottom quarks composing of two nonrel-

ativistic heavy quarks.

The spectrum and properties of the �bc systems have been calculated various

times in the past in the framework of heavy quarkonium theory.1 Moreover, the

recent discovery2 Bc meson (the lowest pseudoscalar 1S0 state of the Bc system)

opens up new theoretical interest in this subject.1,3{12 The Collider Detector at

Fermilab (CDF) Collaboration quotes MBc
= 6.40±0.39

±0.13 GeV.2

This state should be one of a number of states lying below the threshold for

emission of B and D mesons. Furthermore, such states are very stable in com-

parison with their counterparts in charmonium (�cc) and upsilon (�bb) systems. A

particularly interesting quantity should be the hyper�ne splitting that as for �cc
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case seems to be sensitive to relativistic and subleading corrections in the strong

coupling constant αs. For the above reasons it seems worthwhile to give a detailed

account of the Schr�odinger energies for �cc, �bb and �bc meson systems below the con-

tinuum threshold. Because of the success of the nonrelativistic potential model and

the 
avor independence of the �q1q2 potential, we choose a set of phenomenological

and a QCD-motivated potentials by insisting upon strict 
avor-independence of its

parameters. We also use a potential model that includes running coupling constant

e�ects in both the spherically symmetric potential and the spin-dependent poten-

tials to give a simultaneous account of the properties of the �cc, �bb and �bc meson

systems. Since one would expect the average values of the momentum transfer in

the various quark{antiquark states to be di�erent, some variation in the values of

the strong coupling constant and the normalization scale in the spin-dependent

potential should be expected.1,10{12

This study is almost a full treatment for the potentials used in the literature.

Therefore, in order to minimize the role of 
avor-dependence, we use the same

values for the coupling constant and the renormalization scale for each of the levels

in a given system and require these values to be consistent with a universal QCD

scale.

Kwong and Rosner7 predicted the masses of the lowest vector and pseudoscalar

states of the �bc system using an empirical mass formula and a logarithmic potential.

Eichten and Quigg1 gave a more comprehensive account of the energies and decays

of the Bc system that was based on the QCD-motivated potential of Buchm�uller

and Tye.13 Gershtein et al.8 also published a detailed account of the energies and

decays of the Bc system using the QCD sum rule calculations. Baldicchi and Pros-

peri6 have computed the �bc spectrum based on an e�ective mass operator with

full relativistic kinematics. They6 have also �tted the entire light-heavy quarko-

nium spectrum. Fulcher4 extended the treatment of the spin-dependent potentials

to the full radiative one-loop level and thus included the e�ects of the running

coupling constant in these potentials. He also used the renormalization scheme de-

veloped by Gupta and Radford.14 Ebert et al.1 comprehensively investigated the

Bc meson masses and decays in the relativistic quark model. Very recently, we have

reproduced the Bc meson spectroscopy and the bound-energy masses of mesons

containing the fourth generation and iso-singlet quarks by employing the shifted

large-N expansion technique (SLNET) using a group of static and improved QCD

motivated potentials.10,11

One of the important objectives of the present work is to extend our previ-

ous works by using the shifted l-expansion technique (SLET)15 developed for the

Schr�odinger equation to reproduce the �bc spectroscopy10,11 using a class of three

static together with Martin and Logarithmic potentials10{12 which have already

been utilized12 for the spin-averaged masses of the self-conjugate ( �QQ and �qq) and

also the non-self conjugate ( �Qq) mesons.12 We also extend our work by using an

improved QCD-motivated potential previously proposed by Buchm�uller and Tye.13
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The contents of this paper are as follows: in Sec. 2, we present the solution of

the Schr�odinger equation using the SLET for the non-self conjugate �Qq meson mass

spectrum. In Sec. 3, we brie
y present all the potentials used in the present work.

In Sec. 4, we present the �rst-loop and second-loop correction of the Bc leptonic

decay constant. Finally, our discussions and conclusions are given in Sec. 5.

2. The Method

In our previous papers10{12 we have applied the shifted 1/N expansion technique

(SLNET) to solve nonrelativistic and relativistic wave equations.11,12 The method

starts by writing the original wave equation in an N -dimensional space which is

su�ciently large and using the expansion 1/�k as a perturbation parameter.16 Here
�k = N + 2l − a, N is the number of spatial dimensions of interest, l is the angular

quantum number, and a is a suitable shift as an additional degree of freedom and is

responsible for speeding up the convergence of the resulting energy series. The main

motivation of the present method is to overcome the shortcomings of the previous

approaches and to formulate an elegant algebraic approach to yield a fairly simple

analytic formula which gives rapidly converging leading-orders of the energy values

with good accuracy. In this work another technique simply consists of using 1/�l as

an expansion parameter, where �l = l−a, l is an angular quantum number and a is a

suitable shift which is mainly introduced to avoid the trivial case l = 0. The choice

of a is physically motivated so that the next to the leading energy eigenvalue series

vanish as in SLNET. It suggests we should not worry about the N -dimensional form

of the wave equation and we should expand directly through the quantum numbers

involved in the problem. This method seems more 
exible and simple in treatment

and has a quite di�erent mathematical expansion than SLNET. Like SLNET, the

shifted l-expansion technique (SLET) is also a pseudoperturbative technique. We

feel encouraged to extend our previous works10{12 using the SLET. We consider

the radial part of the Schr�odinger equation for an arbitrary spherically symmetric

potential V (r) (in units ~ = 1)

{

−
1

4µ

d2

dr2
+
l(l+ 1)

4µr2
+ V (r)

}

u(r) = En,lu(r) , (1)

where µ = (mqmQ)/(mq+mQ) is the reduced mass for the two interacting particles

and En,` denotes the Schr�odinger binding energy. Furthermore, Eq. (1) can be

rewritten as

{

−
1

4µ

d2

dr2
+

[�l2 + (2a+ 1)�l + a(a+ 1)]

4µr2
+ V (r)

}

u(r) = En,lu(r) , (2)

where �l = l−a with a representing a proper shift to be calculated later on and l is the

angular quantum number. We follow the shifted l-expansion method15 (expansion
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as 1/�l) by de�ning

V (y(r0)) =

∞
∑

m=0

(

dmV (r0)

drm0

)

(r0y)
m

m!Q
�l−(m−4)/2 , (3)

and also the energy eigenvalue expansion10{12,15

En,l =
∞
∑

m=0

�l(2−m)

Q
Em . (4)

Here y = �l1/2(r/r0−1) with r0 being an arbitrary point where the Taylor expansions

is being performed about and Q is a scale to be set equal to �l2 at the end of our

calculations. Inserting Eqs. (3) and (4) into Eq. (2) yields
{

−
1

4µ

d2

dy2
+

1

4µ

[

�l + (2a+ 1) +
a(a+ 1)

�l

] ∞
∑

m=0

(−1)m(m+ 1)ym

�lm/2

+
r20
Q

∞
∑

m=0

(

dmV (r0)

drm0

)

(r0y)
m

m!
�l(2−m)/2

}

χnr
(y) = ξnr

χnr
(y) . (5)

Hence the �nal analytic expression for the 1/�l expansion of the energy eigenvalues

appropriate to the Schr�odinger particle is15

ξnr
=
r20
Q

∞
∑

m=0

�l(1−m)Em . (6)

Now we formulate the SLET (expansion as 1/�l) for the nonrelativistic motion of

spinless particle bound in spherically symmetric potential V (r). On the other hand,

the Schr�odinger equation for a one-dimensional anharmonic-oscillator is16

ξnr
= �l

[

1

4µ
+
r20V (r0)

Q

]

+

[(

nr +
1

2

)

ω +
(2a+ 1)

4µ

]

+
1
�l

[

a(a+ 1)

4µ
+ γ(1)

]

+
γ(2)

�l2
+O

(

1
�l3

)

, (7)

where γ(1) and γ(2) are two expressions given explicitly in Appendix A. Thus,

comparing Eq. (6) with Eq. (7) gives

E0 = V (r0) +
Q

4µr20
, (8)

E1 =
Q

r20

[(

nr +
1

2

)

ω +
(2a+ 1)

4µ

]

, (9)

E2 =
Q

r20

[

a(a+ 1)

4µ
+ γ(1)

]

, (10)
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and

E3 =
Q

r20
γ(2) . (11)

The quantity r0 is chosen as to minimize the leading term, E0, that is,12

dE0

dr0
= 0 and

d2E0

dr20
> 0 , (12)

which yields the relation

Q = 2µr30V
′(r0) . (13)

Further, to solve the shifting parameter a, the next contribution to the energy

eigenvalues is chosen to vanish,10{12,15,16 i.e., E1 = 0, which provides smaller con-

tributions for the higher-order corrections in (4) compared to the leading term con-

tribution (8). It implies that the energy states are being calculated by considering

only the leading term E0, the second-order E2 and the third-order E3 corrections.

So, the shifting parameter is determined via

a = −
[1 + 2µ(2nr + 1)ω]

2
, (14)

with

ω =
1

2µ

[

3 +
r0V

′′(r0)

V ′(r0)

]1/2

. (15)

Therefore, the Schr�odinger binding energy (4) to the third order is

En,l = V (r0) +
1

r20

[

a(a+ 1) +Q

4µ
+ γ(1) +

γ(2)

�l
+O

(

1
�l2

)]

. (16)

Furthermore, setting �l =
√

Q rescales the potential, we derive an analytic expression

that is satisfying r0 as

2l +

{

1 + (2nr + 1)

[

3 +
r0V

′′(r0)

V ′(r0)

]1/2
}

= 2
[

2µr30V
′(r0)

]1/2
, (17)

where nr = n − 1 is the radial quantum number. Once r0 is being found through

Eq. (17) for any arbitrary state, the determination of the binding energy for the
�Qq system becomes relatively simple and straightforward. Finally, the Schr�odinger

binding mass can be determined by

M( �Qq) = mq +mQ + 2En,l . (18)

It is being found that for a �xed n, the computed energies become more accurate as

l increases.10{12,15,16 This is expected since the expansion parameter 1/�l becomes

smaller as l becomes larger since the parameter �l is proportional to n and appears

in the denominator in higher-order correction.
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3. Some Model Potentials

The �bc system that we investigate is often considered as nonrelativistic system and

consequently our treatment is based upon Schr�odinger equation with a Hamiltonian

H0 = −
∇2

4µ
+ V (r) + VSD , (19)

where we have supplemented our nonrelativistic Hamiltonian with the standard

spin-dependent terms1,10,11,17

VSD → VSS =
32παs

9mqmQ
(s1 · s2)δ

3(r) . (20)

Here, the spin dependent potential is simply a spin-spin part1,17 that would enable

us to make some preliminary calculations of the energies of the lowest two S-states

of the �bc system. The potential parameters in this section are all strictly 
avor-

independent and �tted to the low-lying energy levels of �cc and �bb systems. Like

most authors (cf. e.g. Ref. 1), we determine the coupling constant αs(m
2
c) from the

well measured hyper�ne splitting of the 1S(�cc) state17

�Ehfs = MJ/ψ −Mηc
= 117± 2 MeV , (21)

for each desired potential to produce the center-of-gravity (cog) of the �Mψ(1S)

value. The numerical value of αs is found to be dependent on the potential form

and also be compatible with the other measurements.1,3,4,6{8 Therefore, the 1S-

state hyper�ne splitting10,11,17 is given bya

�Ehfs =
8αs(µ)

9mcmb
|R1S(0)|2 , (22)

with the radial wave function originally determined via10,11,17

|R1S(0)|2 = 2µ

〈

dV (r)

dr

〉

. (23)

Hence, the total mass of the low-lying pseudoscalar Bc meson is10

MBc
(0−) = mc +mb + 2E1,0 − 3�Ehfs/4 , (24)

and for the vector B∗
c meson

MB∗

c
(1−) = mc +mb + 2E1,0 + �Ehfs/4. (25)

Hence, the square-mass di�erence can be simply found as

�M2 = M2
B∗

c
(1−) −M2

Bc
(0−) = 2�EHF(mc +mb + 2E1,0 − �EHF/4) . (26)

aAt present, the only measured splitting of nS-levels is that of ηc and J/ψ, which allows us to
evaluate the so-called SAD using M̄ψ(1S) = (3MJ/ψ + Mηc)/4 and also M̄(nS) = MV (nS) −
(MJ/ψ −Mηc)/4n.17,18
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The perturbative part of such a quantity was evaluated at the lowest order in αs.

Baldicchi and Prosperi6 used the standard running QCD coupling expression

αs(Q) =
4π

(

11− 2
3nf

)

ln
(

Q2

Λ2

)
, (27)

with nf = 4 and � = 0.2 GeV cut at a maximum value αs(0) = 0.35, to give the

right J/ψ − ηc splitting and to treat properly the infrared region.6 Furthermore,

Brambilla and Vairo3 took in their perturbative analysis 0.26 ≤ αs(µ = 2 GeV) ≤

0.30. Badalian et al.19 used αs(µ = 0.92 GeV) ' 0.36 for all states, but the splittings

do not practically change if αs(µ = 1.48 GeV) = 0.30 is taken. Furthermore,

Motyka and Zalewski20 found αs(m
2
c) = 0.3376 and from which they calculated

αs(m
2
b) = 0.2064 and αs(4µ

2
b̄c

) = 0.2742.

3.1. Static potentials

The potential in Eq. (19) includes a class of static potentials previously proposed

by Lichtenberg21

V (r) = −ar−β + brβ + c; 0 < β ≤ 1 , (28)

where a > 0, b > 0 and c may be of either sign. These static quarkonium potentials

are monotone nondecreasing and concave functions which satisfy the condition

V ′(r) > 0 and V ′′(r) ≤ 0 . (29)

This comprises a wide class of potentials presented in our previous works.10{12

3.1.1. Cornell potential

The QCD-motivated Coulomb-plus-linear potential (Cornell potential)22

VC(r) = −
a

r
+ br + c , (30)

with the adjustable set of parameters

[a, b, c] = [0.52, 0.1756 GeV2, −0.8578 GeV] . (31)

3.1.2. Song–Lin potential

This phenomenological potential was proposed by Song and Lin23 with the form

VSL(r) = −ar−1/2 + br1/2 + c , (32)

with the adjustable set of parameters

[a, b, c] = [0.923 GeV1/2, 0.511 GeV3/2, −0.798 GeV] . (33)
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3.1.3. Turin potential

Lichtenberg et al.21 suggested that such a potential is an intermediate between the

Cornell and Song{Lin potentials with the form

VT (r) = −ar−3/4 + br3/4 + c , (34)

with the adjustable values of parameters

[a, b, c] = [0.620 GeV1/4, 0.304 GeV7/4, −0.823 GeV] . (35)

3.1.4. Martin potential

The phenomenological power-law potential of the form24,25

VM (r) = b(�Mr)
0.1 + c , (36)

is labeled as Martin’s potential24 with the values of parameters (potential units are

also in GeV)

[b, c,�M ] = [6.898 GeV1.1, −8.093 GeV, 1 GeV] . (37)

3.1.5. Logarithmic potential

A Martin’s power-law potential reduces into the form24

VL(r) = b ln(�Lr) + c , (38)

with

[b, c,�L] = [0.733 GeV, −0.6631 GeV, 1 GeV] . (39)

The potential forms in (36) and (38) were used by Eichten et al.1 and Kiselev.25

Further, all of these potential forms were also used for ψ and � data probing

0.1 fm < r < 1 fm region.25 The characteristic feature of these potentials may be

traced in Refs. 10 and 11.

3.2. QCD-motivated potentials

3.2.1. Igi–Ono potential

Igi and Ono13,26 proposed a potential which is consisting of two parts, the short

distance interquark one-gloun exchange part of the form

V
(nf=4)
OGE (r) = −

16π

25

1

rf(r)

[

1 −
462

625

ln f(r)

f(r)
+

2γE + 53
75

f(r)

]

, (40)

with

f(r) = ln

[

1

r2�2
M̄S

+ b

]

, (41)
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where nf is the number of 
avors with mass below µ, and γE = 0.5772 is the Euler’s

number. Moreover, the long distance interquark potential grows linearly leading to

con�nement as

VL(r) = ar . (42)

Therefore, the Igi{Ono potential is26

V (nf =4)(r) = V
(nf=4)
OGE + ar + dre−gr , (43)

where the term dre−gr in (43) is added to interpolate smoothly between the two

parts and to adjust the intermediate range behavior by which the range of �M̄S

is extended to keep linearly rising con�ning potential. Numerical calculations show

that potential is good for �M̄S in the range 100{500 MeV to keep a good �t to the

�cc and �bb spectra. Thereby, the potential with b = 20 is labeled as type I, the one

with b = 5 is labeled as type II. Their adjusted parameters are given in Table 3 of

our previous work.11 Furthermore, the potential with a = 0.1414 GeV, d = g = 0,

and b = 19 is labeled as type III.11

3.2.2. Improved Chen–Kuang potential

Chen and Kuang27 proposed two improved potential models so that the parameters

therein all vary explicitly with �M̄S , therefore these parameters can only be given

numerically for several values of �M̄S . Such potentials have the natural QCD in-

terpretation and explicit �M̄S dependence both for giving clear link between QCD

and experiments and for convenience in practical calculation for a given value of

�M̄S . It has the general form

V (nf=4)(r) = kr −
16π

25

1

rf(r)

[

1 −
462

625

ln f(r)

f(r)
+

2γE + 53
75

f(r)

]

, (44)

where the string tension is related to Regge slope by k = 1
2πα . The function f(r)

in (44) can be read o� from

f(r) = ln

[

1

�M̄Sr
+ 5.10−A(r)

]2

, (45)

with

A(r) =

[

1 −
1

4

�M̄S

�I
M̄S

]

1 − exp
{

−
[

15
(

3
ΛI

M̄S

ΛM̄S
− 1

)

�M̄Sr
]2}

�M̄Sr
. (46)

The scale parameter �I
M̄S

is very close to the value of �M̄S determined from the

two-photon processes and is also close to the world-averaged value of �M̄S . The

�tted values of its parameters are as follows
[

k, α′,�
I
�MS

]

= [0.1491 GeV2, 1.067 GeV−2, 180 MeV] . (47)

The details of this potential can be traced in Ref. 27 and the �tted quark masses

are also displayed in Ref. 11.
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4. Leptonic Constant of the Bc-Meson

The study of the heavy quarkonium system has played a vital role in the devel-

opment of the QCD. Some of the earliest applications of perturbative QCD were

calculations of the decay rates of charmonium.28 These calculations were based

on the assumption that, in the nonrelativistic (NR) limit, the decay rate factors

into a short-distance (SD) perturbative part associated with the annihilation of

the heavy quark and antiquark, and a long-distance (LD) part associated with the

quarkonium wavefunction. Calculations of the annihilation decay rates of heavy

quarkonium have recently been placed on a solid theoretical foundation by Bodwin

et al.29 Using NRQCD30 to seperate the SD and LD e�ects, Bodwin et al. derived

a general factorization formula for the inclusive annihilation decay rates of heavy

quarkonium. The SD factors in the factorization formula can be calculated using

pQCD,18 and the LD factors are de�ned rigorously in terms of the matrix elements

of NRQCD that can be estimated using lattice calculations.5 It applies equally well

to S-wave, P -wave, and higher orbital-angular-momentum states, and it can be

used to incorporate relativistic corrections to the decay rates.

In the NRQCD30 approximation for the heavy quarks, the calculation of the

leptonic decay constant for the heavy quarkonium with the two-loop accuracy re-

quires the matching of NRQCD currents with corresponding full-QCD axial-vector

currents32

J λ|NRQCD = −χ†
bψcv

λ and Jλ|QCD = �bγλγ5c , (48)

where b and c are the relativistic bottom and charm �elds, respectively, χ†
b and

ψc are the NR spinors of anti-bottom and charm, and vλ is the four-velocity of

heavy quarkonium. The NRQCD lagrangian describing the Bc-meson bound state

dynamics is33

LNRQCD = Llight + ψ†
c(iD0 + D2/(2mc))ψc + χ†

b(iD0 −D2/(2mb))χb + · · · ,

(49)

where Llight is the relativistic lagrangian for gluons and light quarks. The two-

component spinor �eld ψc annihilates charm quarks, while χb creates bottom anti-

quarks. The relative velocity v of heavy quarks inside the Bc-meson provides a small

parameter that can be used as a nonperturbative expansion parameter. To express

the decay constant fBc
in terms of NRQCD matix elements we express Jλ|QCD in

terms of NRQCD �elds ψc and χb. Only the λ = 0 current-component contributes

to the matrix element in the rest frame of the Bc-meson:

〈0|�bγλγ5c|Bc(P)〉 = ifBc
P λ , (50)

where |Bc(P)〉 is the state of the with four-momentum P . It has the standard

covariant normalization

1

(2π)3

∫

ψ∗
Bc

(p′)ψBc
(p)d3p = 2Eδ(3)(p′ − p) , (51)
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and its phase has been chosen so that fBc
is real and positive. Hence, the matching

yields

�bγ0γ5c = K0χ
†
bψc +K2(Dχb)

† · Dψc + · · · , (52)

where K0 = K0(mc,mb) and K2 = K2(mc,mb) are Wilson SD coe�cients. They

can be determined by matching perturbative calculations of the matrix element

〈0|�bγ0γ5c|Bc〉, a contribution is mostly coming up from the �rst term in

〈0|�bγ0γ5c|Bc〉|QCD = K0〈0|χ
†
bψc|Bc〉|NRQCD

+K2〈0|(Dχb)
† · Dψc|Bc〉|NRQCD + · · · , (53)

where the matrix element on the left side of (53) is taken between the vacuum and

the state |Bc〉. Hence, equation (53) can be estimated as:

|〈0|χ†
bψc|Bc〉|

2 '
3MBc

π
|R1S(0)|2 . (54)

Onishchenko and Veretin33 calculated the matrix elements on both sides of

Eq. (53) up to α2
s order. Therefore, in one-loop calculation, they found the

SD-coe�cients:

K0 = 1 and K2 = −
1

8µ2
, (55)

with µ being de�ned after Eq. (1). Furthermore, Braaten and Fleming (BF) in

their work34 calculated the perturbation correction to K0 up to order αs (one-loop

correction) as

K0 = 1 + c1
αs(µ)

π
, (56)

with c1 being calculated in Ref. 34 as

c1 = −

[

2 −
mb −mc

mb +mc
ln
mb

mc

]

. (57)

Finally, the leptonic decay constant for the one-loop calculations is

f
(1-loop)
Bc

=

[

1 −
αs(µ)

π

(

2 −
mb −mc

mb +mc
ln
mb

mc

)]

fNR
Bc

, (58)

where the NR leptonic constant35 is given by

fNR
Bc

=

√

3

πMBc

|R1S(0)| (59)

and µ is any scale of order mb or mc of the running coupling constant. On the

other hand, the calculations of two-loop correction in the case of vector current and

equal quark masses were done in Ref. 36. Furthermore, Onishchenko and Veretin33

extended the work of Ref. 36 into the non-equal mass case. They found an expression

for the two-loop QCD corrections to Bc-meson leptonic constant which is given by

K0(αs,M/µ) = 1 + c1(M/µ)
αs(M)

π
+ c2(M/µ)

(

αs(M)

π

)2

+ · · · , (60)
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where c1(M/µ) is explicitly given in Eq. (57) and the two-loop matching coe�cient,

c2(M/µ), is given in Ref. 33; Eqs. (16){(20). In the case of Bc-meson and pole quark

masses (mb = 4.8 GeV, mc = 1.65 GeV), they found

f
(2-loop)
Bc

=

[

1 − 1.48

(

αs(mb)

π

)

− 24.24

(

αs(mb)

π

)2
]

fNR
Bc

. (61)

Here, the two-loop correction is large and constitutes nearly 100% of one-loop

correction as stated in Ref. 33.

5. Results and Conclusions

We solve the Schr�odinger equation for di�erent phenomenological and QCD-

motivated potentials. With the help of Eq. (21), we determine the position of the

charmonium center-of-gravity �Mψ(1S) mass spectrum. Furthermore, we �x the cou-

pling constant αs(mc) for each potential. For simplicity we neglect the variation

of αs with momentum in (27) to have a common spectra for all states and scale

the splitting of �bc and �bb from the charmonium value in (21). The consideration

of the variation of the e�ective Coulomb interaction constant becomes especially

essential for the � particle, for which αs(�) 6= αs(ψ).b So, we follow our previous

works10,11 to calculate the corresponding low-lying center-of-gravity �MΥ(1S) and

consequently the low-lying �MBc
(1S). Thus, in calculating the splittings of the �bc

spectra, we have to take into account the αs(µ) dependence on the reduced mass

of the heavy quarkonium instead of αs(Q) for the reasons stated in Ref. 3. That

is, the QCD coupling constant αs in (27) is de�ned in the Gupta-Radford (GR)

renormalization scheme14

αs =
6π

(33− 2nf ) ln
(

µ
ΛGR

) , (62)

in which �GR is related to �M̄S by

�GR = �M̄S exp

[

49− 10nf/3

2(33− 2nf )

]

. (63)

Taking the momentum dependence of Baldicchi et al. [cf. Eq. (27)] into account

would increase the accuracy and probably reproduce the experimental values

equally well within the errors.

Table 1 reports our prediction for the Schr�odinger mass spectrum of the four

lowest c�b S-states together with the �rst three P - and D-states below their strong

decay threshold for di�erent static potentials. Since the model is spin indepen-

dent and as the energies of the singlet states of quarkonium families have not been

bKiselev et al.25 have taken into account that ∆MΥ(1S) =
αs(Υ)
αs(ψ)

∆Mψ(1S) with αs(Υ)/αs(ψ) '

3/4. Furthermore, Motyka and Zalewski20 also found
αs(m2

b)

αs(m2
c)

' 11/18.
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Table 1. The b̄c masses and hyperfine splittings (∆nS) calculated in different static potentials
(in MeV).

States Refs. 1, 6 Cornell Song–Lin Turin Martin Logarithmic

αs(m2
c) 0.320 0.263 0.286 0.251 0.220

mc(GeV) 1.840 1.820 1.790 1.800 1.500

mb(GeV) 5.232 5.199 5.171 5.174 4.905

M(b̄c)

1S 6315 6315 6306 6307 6301 6317

13S1 6334 6335 6325 6326 6319 6334

11S0 6258 6252 6249 6249 6247 6266

∆1S
a 77 83.5 76.1 76.7 71.6 68.0

2S 6873 6888 6875 6880 6892 6903

23S1 6883 6897 6884 6889 6902 6911

21S0 6841 6860 6850 6852 6865 6879

∆2S 42 37.9 34.0 36.5 36.7 31.3

3S 7246 7271 7209 7246 7236 7225

4S 7587 7455 7535 7483 7448

1P 6772 6743 6733 6731 6730 6754

2P 7154 7138 7104 7123 7125 7127

3P 7464 7371 7428 7398 7375

1D 7043 7003 6998 6998 7011 7027

2D 7367 7340 7284 7320 7311 7301

3D 7636 7510 7588 7536 7502

a∆nS = M(n3S1) −M(n1S0).

measured,11,18,21 a theoretical estimates of these unknown levels introduce uncer-

tainty into the calculated SAD.c Our results in Table 1 for the Bc and B∗
c meson

masses are in a pretty good agreement with the other authors.1,4,7,11 Here, we report

the range of the strong coupling constant at the mc scale we take in our analysis

0.1985 ≤ αs(m
2
c) ≤ 0.320 for all types of potentials and 0.220 ≤ αs(m

2
c) ≤ 0.320 for

the class of static potentials. In this model, we point out a di�erent choice of the

potential which would in general lead to a di�erent value of the wave function at the

origin and a di�erent determination of αs(m
2
c) from the same hyper�ne splitting.

Furthermore, our predictions to the �bc masses of the lowest S-wave (singlet and

triplet) together with the other estimations by many authors are given in Table 2.

Larger discrepancies among the various methods occur for the ground and excited

states.6 Furthermore, Table 2 reports the binding masses of the singlet and triplet

states and also the hyper�ne splitting of the ground state together with those of

other authors. Moreover, in Table 3, we also estimate the radial wave function of

cIt is worthwhile to note that SAD is defined as the average mass of the (s = 1, l = 1) states in

the form SAD(nP j) = 1
9
[5M(n3P2) + 3M(n3P1) + M(n3P0)] and for (s = 1, l = 0) states by

SAD(nS j = 1
4
[3M(n3S1) +M(n1S0)], in which the SAD S-level gives the weight of only 1/4 to

the unknown singlet level and 3/4 to the known triplet level.11
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the low-lying state of the �bc system, so that we have

|R1S(0)| = 1.280− 1.540 GeV3/2 , (64)

for the group of static potentials. Furthermore, we present our results for the NR

leptonic constant fNR
Bc

= 466+19
−25 MeV and fNR

B∗

c
= 463+19

−24 MeV as an estimation

of the potential models without the matching.4,18 Our results are compared with

those of Gershtein et al.,37 who used Martin’s potential, those of Ebert et al.,1 and

also with those of Jones and Woloshyn (JW).38 Moreover, the one-loop correction,

f
(1-loop)
Bc

and the two-loop correction, f
(2-loop)
Bc

are also given in Table 3. Hence, in

the view of our results, the prediction for the one-loop calculations is

f
(1-loop)
Bc

= 408+16
−14 MeV and f

(1-loop)
B∗

c
= 405+17

−14 MeV , (65)

and for two-loop calculations

f
(2-loop)
Bc

= 315+16
−51 MeV and f

(2-loop)
B∗

c
= 313+26

−51 MeV . (66)

So, our numerical value for fNR
Bc

is in agreement with the estimates obtained in the

framework of the lattice QCD result,5 fNR
Bc

= 440 ± 20 MeV, QCD sum rules,39

potential models,1,4,18 and the scaling relation.25 It indicates that the one-loop

matching32 provides the magnitude of correction of nearly 12%. Further, the most

recent calculation32 in the heavy quark potential in the static limit of QCD with

the one-loop matching is

f
(1-loop)
Bc

= 400± 15 MeV . (67)

Table 2. The predicted b̄c masses of the lowest S-wave and its splitting com-
pared with the other authors (in MeV).

Worka MBc
(11S0)b MB∗

c
(13S1) ∆1S

Eichten et al.1 6258 ± 20

Colangelo and Fazio3 6280 6350

Chabab43 6250 ± 200

Baker et al.44 6287 6372

Roncaglia et al.45 6320 ± 10

Godfrey et al.9 6270 6340

Bagan et al.1,46 6255 ± 20 6330 ± 20

Brambilla et al.3 6326+29
−9 60c

Baldicchi et al.6 6194 ∼ 6292 6284 ∼ 6357 65 ≤ ∆1S ≤ 90

SLETd 6253+13
−6 6328+7

−9 68 ≤ ∆1S ≤ 83

SLETe 6258+8
−11 6333+2

−14

aThe prediction is done by using two versions of QCD sum rules.
bThe experimental mass of the singlet state is given in Ref. 2.
cHere we cite Ref. 5.
dAveraging over the five values in Table 1.
eWe treat Eichten and Quigg’s results in the same manner, see Ref. 1.
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Table 3. The characteristics of the radial wave function at the origin |R1S(0)|2 (in GeV3), NR,
one-loop and two-loop corrections to pseudoscalar and vector decay constants of the low-lying
Bc-meson (the accuracy is 5%) alculated in different static potential models (in MeV).

Quantity Cornell Song–Lin Turin Martin Logarithmic GKLT37 EFG1 JW38

|ψ1S(0)|2 0.112 0.123 0.111 0.119 0.102

|R1S(0)|2 1.413 1.54 1.397 1.495 1.28

f
(NR)
Bc

464.5 485.1 462.0 478.0 441.7 460 ± 60 433 420 ± 13

f
(NR)
B∗

c
461.5 482.2 459.2 475.3 439.3 460 ± 60 503

f
(1-loop)
Bc

393.6a 424.4 399.6 421.2 399.3

f
(2-loop)
Bc

264.1b 333.0 296.6 339.1 340.9

f
(1-loop)
B∗

c
391.0 421.9 397.1 418.8 397.2

f
(2-loop)
B∗

c
262.3 331.0 294.8 337.2 339.0

aFirst loop SD Wilson coefficient for all potentials, K0 = 0.85 − 0.90.
bSecond loop SD Wilson coefficient for all potentials, K0 = 0.57 − 0.77.

Therefore, in contrast to the discussion given in Ref. 32, we see that the di�erence

is not crucially large in our estimation to one-loop value in the Bc meson. On the

other hand, our �nal result of the two-loop calculations is

f
(2-loop)
Bc

= 315+26
−50 MeV , (68)

the larger error value in (68) is due to the strongest running coupling constant in

Cornell potential. Moreover, Motyka and Zalewski20 also found f
(1-loop)
Bc

= 435 MeV

for the ground state of �bc quarkonium.

In the potential model, we note that slightly di�erent additive constants are

permitted to bring up data to their center-of-gravity values. However, with no

additive constant to the Cornell potential,40 we notice that the smaller mass value

for the composing quarks of the meson leads to a rise in the values of the potential

parameters which in turn produces a notable lower value for the leptonic constant.

Our predictions for the �bc mass spectrum for the Igi{Ono potential (type I and

II) are given in Table 4. Moreover, the singlet and triplet masses together with the

hyper�ne splittings predicted for the two types of this potential are also reported in

Table 5. We, hereby, tested acceptable parameters for �M̄S from 100 to 500 MeV

for the type I and II potentialsd to produce the �bc masses and their splittings.

Small discrepancies between our prediction and SAD experiments11,18,21,41 can be

seen for higher states and such discrepancies are probably seen for any potential

model and it might be related to the threshold e�ects or quark-gloun mixings. The

�tted set of parameters for the Igi{Ono potential (type III)11 are also tested in our

dThe parameters of this potential are given in Table 3 of Ref. 11.
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Table 4. The b̄c mass spectra predicted for various ΛM̄S using Igi–Ono
(type I and II) potential (in MeV).

ΛM̄S

States Refs. 6, 24 100 200 300 400 500

b = 20a αs = 0.1985 0.217 0.238 0.250 0.262

1S 6327 6329 6318 6310 6316 6327

2S 6906 6915 6904 6881 6880 6901

3S 7246 7264 7242 7244 7241 7252

4S 7508 7522 7545 7542 7552

1P 6754 6755 6744 6733 6732 6742

2P 7154 7144 7131 7125 7122 7134

1D 7028 7029 7017 7004 7000 7010

2D 7367 7334 7327 7327 7323 7333

b = 5b αs = 0.1985 0.227 0.230 0.2405

1S 6327 6331 6324 6316 6307

2S 6906 6914 6898 6910c 6918

3S 7246 7258 7277 7236 7201c

4S 7521 7517 7478 7500

1P 6754 6756 6743 6737 6730

2P 7154 7142 7138 7134 7120

1D 7028 7029 7015 7012c 7007

2D 7367 7335 7323c 7314 7316

ac0 = −0.022 to −0.031 MeV.
bc0 = −0.019 to −0.026 MeV.
cCarried out to the second correction order.

method with b = 19 and �M̄S = 300 MeV and also 390 MeV, and then b = 16.3

and �M̄S = 300 MeV which seems to be more convenient than �M̄S = 500 MeV

used by other authors.13 Results of this study are also presented in Table 6. It is

clear that the overall study seems likely to be good and the reproduced masses

of states are also reasonable. We see that the quark masses mc and mb are sensi-

tive to the variation of �M̄S . Therefore, as �M̄S increases the contribution of the

potential (cf. e.g., Eqs. (40) and (41)) and consequently the binding energy En,l
term decreases which leads to an increase in the constituent quark masses of the

convenient meson, cf. Eq. (18).

It is also found that the �Qq potentials can reproduce the experimental masses of

the �bc states for various values of �M̄S . Using this model, we see that the experimen-

tal �bc splittings can be reproduced for �M̄S ∼ 300 MeV in type I, �M̄S ∼ 400 MeV

in type II (cf. Table 5) and �M̄S ∼ 300 MeV in type III (cf. Table 6). We also pre-

dicted the splittings in exact agreement with several MeV with the other formalisms

(cf. Table 1 of Ref. 6).

In Table 6, we �nd thatmc andmb are insensitive to the variation of �M̄S for this

Chen{Kuang (CK) potential. This is consistent with the conventional idea that, for
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Table 5. The b̄c mass spectrum, splittings and leptonic constant
predicted for various ΛM̄S using Igi–Ono (type I and II) potential (in
MeV).

ΛM̄S

States 100 200 300 400 500

Type I

13S1 6343 6334 6327 6334 6344

11S0 6287 6272 6259 6263 6274

∆1S 56.3 62.0 68.3 71.1 69.8

|R1S(0)|2 0.826 1.005 1.156 1.19 1.114

fNR
Bc

354.1 391.1 420.0 426.0 411.7

f
(1-loop)
Bc

328.1 356.5 376.8 379.2 364.4

f
(2-loop)
Bc

290.0 306.1 311.7 306.5 287.1

fNR
B∗

c
352.6 389.2 417.7 423.6 409.4

f
(1-loop)
B∗

c
326.7 354.8 374.7 377.1 362.4

f
(2-loop)
B∗

c
288.7 304.6 310.0 304.7 285.6

Type II

13S1 6345 6340 6331 6323

11S0 6288 6279 6269 6259

∆1S 56.7 60.6 61.8 64.4

|R1S(0)|2 0.819 0.891 1.03 1.204

fNR
Bc

352.7 368.2 396.0 428.6

f
(1-loop)
Bc

327.1 334.9 357.4 382.1

f
(2-loop)
Bc

289.1 283.0 300.1 314.4

fNR
B∗

c
351.2 366.4 394.1 426.4

f
(1-loop)
B∗

c
325.6 333.3 355.7 380.1

f
(2-loop)
B∗

c
287.8 281.7 298.6 312.8

heavy quarks, the constituent quark mass is close to the current quark mass which

is �M̄S independent. Numerical calculations show that this potential is insensitive

to �M̄S in the range from 100 to 300 MeV, and as �M̄S increases, the potential

becomes more sensetive for the 1S-state only. The obtained n1S0 and n3S1 hyper�ne

splittings for the Bc meson in the Chen{Kuang potential are also listed in Table 6.

They are considerably smaller than the corresponding values �1S(�bc) = 76 MeV,

and �2S(�bc) = 42 MeV predicted by the quadratic formalism of Ref. 6. Moreover,

Chen{Kuang27 predicted �1S(�bc) = 49.9 MeV, and �2S(�bc) = 29.4 MeV for their

potentials with �M̄S = 200 MeV in which the last splitting is almost constant as

�M̄S increases. Our predictions for �1S(�bc) = 68 MeV, and �2S(�bc) = 35 MeV

for the Chen{Kuang potential with �M̄S running from 100 into 375 MeV. We also

�nd �1S(�bc) = 67 MeV, and �2S(�bc) = 33 MeV for the Igi{Ono potential with
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Table 6. The b̄c mass spectrum, splittings and leptonic constant predicted for
various ΛM̄S using Igi–Ono (type III) and Chen–Kuang potentials (in MeV).

State IO (III) CK

b = 16.3 19 19 5.1 5.1 5.1

ΛM̄S = 300 300 390 100–300 350 375

αs = 0.250 0.2505 0.2205 0.270 0.270 0.270

1S 6309 6309 6297 6324 6372 6354

2S 6880 6870 6877 6880 6880 6880

3S 7247 7236 7254 7258 6258 6258

4S 7553 7541 7563 7570 7570 7570

1P 6725 6721 6737 6723 6723 6723

2P 7124 7114 7135 7127 7127 7127

3P 7441 7429 7452 7452 7452 7452

1D 6997 6990 7013 6993 6993 6993

2D 7328 7317 7341 7332 7332 7332

3D 7613 7599 7624 7625 7625

13S1 6326 6327 6315 6341 6389 6371

11S0 6259 6258 6243 6273 6321 6304

∆1S 67.3 68.6 72.6 67.8 67.8 67.7

|R1S(0)|2 1.115 1.119 1.339 1.017 1.017 1.017

fNR
Bc

412.loop)
Bc

367.loop)
Bc

296.
-26028.9123 0 Td
(294)Tj
/R35 7.97011 Tf
12.5768 0 Td
(:)Tj
/R14 7.97011 Tf
2.399 0 Td
(0)Tj
33.2323 0 Td
(345)Tj
/R35 7.97011 Tf
12.5768 0 Td
(:)Tj
/R14 7.97011 Tf
2.399 0 Td
(
-26029.8722 0 Td
(269)Tj
/R35 7.97011 Tf
12.5768 0 Td
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(0)Tj
25.6722 0 Td
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44.8481 0 Td
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(
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Table 7. The nS-levels leptonic constant of the b̄c 4fsystem, cal-
culated in different static potential models (the accuracy is 3–7%),
in MeV, using the SR.

Quantity Cornell Song–Lin Turin Martin Logarithmic

f1S 449.6 450.4 448.0 448.8 420.9
f2S 305.8 305.0 303.3 303.5 284.7
f3S 243.0 243.2 241.3 241.8 227.2
f4S 206.0 207.1 204.9 205.9 193.8

The scaling relation (SR) for the S-wave heavy quarkonia has the form25

f2
n

Mn(�bc)

(

Mn(�bc)

M1(�bc)

)2 (

mc +mb

4µ

)

=
d

n
, (69)

where mc and mb are the masses of heavy quarks composing of the Bc-meson,

µ is the reduced mass of quarks, and d is a constant independent of both the

quark 
avors and the level number n. The value of d is determined by the splitting

between the 2S and 1S levels or the average kinetic energy of heavy quarks, which

is independent of the quark 
avors and n with the accuracy accepted. The accuracy

depends on the heavy quark masses and it is discussed in detail.25 The parameter

value in Eq. (69), d ' 55 MeV, can be extracted from the experimentally known

leptonic constants ψ and �. So, from Table 1, the SR gives the 1S-level

f
(SR)
Bc

' 444+6
−23 MeV (70)

for all static potentials used. Furthermore, Kiselev25,32 estimated fBc
= 400 ±

45 MeV and f
(SR)
Bc

= 385 ± 25 MeV, Narison42 found f
(SR)
Bc

= 400 ± 25 MeV, and

also the optimal result of Chabab43 was fBc
= 300 ± 65 MeV obtained by using

two versions of QCD sum rules which took into account the uncertainties due to

the variations of the continuum threshold within the stability regions.

On the other hand, we present the leptonic constants for the excited nS-levels

of the �bc in Table 7. We see that our prediction f
(SR)
Bc(2S) = 300± 15 MeV is in good

agreement with the ones predicted by Kiselev et al.,18 f
(SR)
Bc(2S) = 280± 50 MeV for

the 2S-level in the �bc system. This also agrees with the scaling relation.25

We conclude that the approximated values of the excited nS-states agree well

with the simple scaling relation (SR) derived from QCD sum rules for the state

density. It is clear that the estimates obtained from the potential model and SR are

in good agreement with several MeV. However, the di�erence between the leptonic

constants for the pseudoscalar and vector 1S-states is caused by the spin-dependent

corrections, which are small. Numerically, we get |fB∗

c
− fBc

|/fB∗

c
< 1%. For the

heavy quarkonia, the QCD sum rule approximation provides that the fP and fV
values for the pseudoscalar and vector states. Leptonic constant is practically inde-

pendent of the total spin of quarks, so that

fV,n ' fP,n = fn . (71)
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Our numerical approximation for the decay constants of the pseudoscalar and vector

states in Tables 3, 5, and 6 is a con�rmation to the last formula Eq. (71).

In this paper, we have developed the SLET in the treatment of the �bc sys-

tem using group of static and QCD-motivated potentials. For such potentials the

method looks quite attractive as it yields highly accurate results. The convergence

of this method seems to be very fast as the higher corrections to energy have lower

contribution. In this context, in reproducing the SAD, we used the same �tted pa-

rameters of the other authors, cf. Ref. 11 and the references therein, for the sake

of comparison and testing the accuracy of our approach. Once the experimental

leptonic constant of the Bc-meson becomes clear, one can sharpen the analysis.

Here, we would like to make the following general remark regarding the SLET:

It is worthwhile to notice that the objectives of using the same wide class of quarko-

nium potentials with the same �tting parameters in our previous work is to demon-

strate to the readers that the SLET method generates exactly the same results as

in the SLNET. It also refutes the claims of the authors in Ref. 15 that this method

is a reformation of SLNET and has a wider domain of applicability. Therefore, it

is just a simpler alternative parallel mathematical pseudoperturbative expansion

technique.
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Appendix A. SLET Parameters for the Schrödinger Equation

Here, we list the analytic expressions of γ(1), γ(2), εi and δj for the Schr�odinger

equation:

γ(1) = [(1 + 2nr)�ε2 + 3(1 + 2nr + 2n2
r)�ε4]

−ω−1[�ε21 + 6(1 + 2nr)�ε1�ε3 + (11 + 30nr + 30n2
r)�ε

2
3] , (A.1)

γ(2) = [(1 + 2nr)�δ2 + 3(1 + 2nr + 2n2
r)

�δ4 + 5(3 + 8nr + 6n2
r + 4n3

r)
�δ6

−ω−1(1 + 2nr)�ε
2
2 + 12(1 + 2nr + 2n2

r)�ε2�ε4 + 2�ε1�δ1

+ 2(21 + 59nr + 51n2
r + 34n3

r)�ε
2
4 + 6(1 + 2nr)�ε1�δ3

+ 30(1 + 2nr + 2n2
r)�ε1

�δ5 + 2(11 + 30nr + 30n2
r)�ε3

�δ3

+ 10(13 + 40nr + 42n2
r + 28n3

r)�ε3
�δ5 + 6(1 + 2nr)�ε3�δ1]

+ω−2[4�ε21�ε2 + 36(1 + 2nr)�ε1�ε2�ε3 + 8(11 + 30nr + 30n2
r)�ε2�ε23

+ 24(1 + 2nr)�ε
2
1�ε4 + 8(31 + 78nr + 78n2

r)�ε1�ε3�ε4

+ 12(57 + 189nr + 225n2
r + 150n3

r)�ε
2
3�ε4]
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−ω−3[8�ε31�ε3 + 108(1 + 2nr)�ε
2
1�ε23 + 48(11 + 30nr + 30n2

r)�ε1�ε33

+ 30(31 + 109nr + 141n2
r + 94n3

r)�ε
4
3] , (A.2)

where

�εi =
εi

(4µω)i/2
, i = 1, 2, 3, 4 , (A.3)

and

�δj =
δj

(4µω)j/2
, j = 1, 2, 3, 4, 5, 6 , (A.4)

ε1 =
−(2a+ 1)

2µ
, ε2 =

3(2a+ 1)

4µ
, (A.5)

ε3 = −
1

µ
+
r50V

′′′(r0)

6Q
, ε4 =

5

4µ
+
r60V

′′′′(r0)

24Q
, (A.6)

δ1 = −
a(a+ 1)

2µ
, δ2 =

3a(a+ 1)

4µ
, (A.7)

δ3 = −
(2a+ 1)

µ
, δ4 =

5(2a+ 1)

4µ
, (A.8)

δ5 = −
3

2µ
+
r70V

′′′′′(r0)

120Q
, δ6 =

7

4µ
+
r80V

′′′′′′(r0)

720Q
. (A.9)
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