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Summary. — The quantum-mechanical energy, the Fermi energy, and the degen-
eracy pressure are derived for a degenerate Fermi gas in D spatial dimensions in
the non-relativistic and the extreme relativistic cases. The stability of the system
due to the balancing between degeneracy pressure forces and gravitational forces
is investigated. We also examine the asymptotic behavior of our results in very
large dimensions and their limits in the infinite-dimensional space. For computation
purposes, we apply these findings to white-dwarf and neutron stars.

PACS 03.65.-w – Quantum mechanics.
PACS 03.75.Ss – Degenerate Fermi gases.
PACS 05.30.-d – Quantum statistical mechanics.

1. – Introduction

It is widely believed that the space dimension D plays an important role in deter-
mining the behavior of a physical system. Besides its mathematical interest [1, 2], the
D-dimensional space has been used in the study of Schrödinger equation with different
kinds of potentials [3-7] and in quantum field theories [8, 9]. Some workers investigated
higher-dimensional gravity [10, 11] and others examined rotating black holes in multi-
dimensional space [12-15]. Recently, considerations of gravitational collapse in higher
dimensions have been reported [16-20]. Furthermore, the stability of a white-dwarf star
has been investigated in three-dimensional space [21]. The role of the electron degeneracy
pressure in the discussion of the formation of white dwarfs and neutron stars has been
emphasized by many authors [22-26].

The purpose of the present paper is to examine the effect of the space dimension, D,
on the behavior of some of the properties of degenerate electrons or neutrons in a star.
The interest of the present author in the role of space dimension in white-dwarf stars,
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besides its mathematical interest, is simulated by the wide belief that most stars end as
white dwarfs, and thus they have impact on the history of the Universe. Because during
the formation of a white dwarf, mass is lost to the surrounding interstellar medium. This,
therefore, provides insights into the mass content of a galaxy. In addition, white dwarfs
have magnetic fields and thus they behave as pulsators and emit spectra in a varying way.
The structure of this paper is as follows: in sect. 2, we outline the degeneracy pressure
and total energy of the system. Section 3 deals with extreme relativistic degenerate gas.
In sect. 4, we consider neutron degenerate gas. Conclusions and results are given in
sect. 5.

2. – Degeneracy pressure and total energy of the system

Consider a large number of identical, non-interacting, spin-(1/2) particles in a
D-dimensional box with impenetrable walls each of length L. Because electrons are
fermions with spin (1/2), each spatial orbital has S possible spin states. As was shown
by Menon and Agrawal [27], S must be (D − 1) for D > 1. Denoting by NS the num-
ber of particle states having energies E = h̄2k2/2m, these states are contained within a
hyper-sphere of radius k in k-space. Therefore,

(1) NS = (D − 1)
(

L

2π

)D

VD,

where VD is the volume of the hyper-sphere which is given by [28]

(2) VD =
πD/2kD

Γ(1 + D/2)
,

where Γ(x) is the gamma-function. Therefore,

(3) NS = (D − 1)(L/2π)D πD/2kD

Γ(1 + D/2)
.

For the non-relativistic case, E = h̄2k2/2m and thus eq. (3) becomes

(4) NS = (D − 1)(L/2π)D πD/2

Γ(1 + D/2)

(
2m

h̄2

)D/2

ED/2.

The density of states, g(E), is defined as the number of particle quantum states per unit
energy range, so that

(5) g(E) =
dNS

dE
=

D

2
(D − 1)(L/2π)D πD/2

Γ(1 + D/2)

(
2m

h̄2

)D/2

E(D−2)/2.

The Fermi energy is obtained by requiring that the total number of particles (Nq) in the
system is

Nq =
∫ EF

0

g(E)dE,
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with q being the number of electrons per nucleon. Using L3 = V , the above requirement
yields

(6) EF =
2πh̄2

m

[
Nq

V

Γ(1 + D/2)
D − 1

]2/D

.

The quantum-mechanical energy Em of a Fermi gas in the ground state (at absolute
temperature T = 0) is Em =

∫ EF

0
E g(E)dE, which upon using eq. (5) yields

(7) Em =
D

D + 2

(
2πh̄2

m

)[
Γ(1 + D/2)

D − 1

]2/D

[Nq](D+2)/D V −2/D.

It can be easily checked that the above results for g(E), EF, and Em reduce to the
well-known expressions in the three-dimensional space (D = 3), with the result [29]

(5a) g(E) =
L3

2π2
(2m/h̄2)3/2E1/2,

(6a) EF =
h̄2

2m

(
3π2 Nq

V

)2/3

,

(7a) Em =
h̄2

10mπ2

(
3π2Nq

)5/3
V −2/3.

In terms of the Fermi energy, eq. (7) can be written as

(8) Em =
D

D + 2
NqEF.

This quantum-mechanical energy plays a role that is analogous to the internal thermal
energy of an ordinary gas. In particular, it exerts a pressure on the walls so that when the
system expands by an amount dV , the mechanical energy decreases by dEm = − 2

D
Em

V dV ,
and this shows up as work done on the outside, dW = PdV . Therefore, the quantum
pressure P (called degeneracy pressure) is

(9) P =
2
D

Em

V
=

4π h̄2

m(D + 2)

[
Γ(1 + D/2)

D − 1

]2/D

ρ(D+2)/D,

where ρ = Nq/V is the particle’s density. The above result yields the three-dimensional
case, namely [29]

(9a) P =
h̄2

5m
(3π2)2/3ρ5/3.

It must be noted that this degeneracy pressure has nothing to do with electron-electron
interaction or thermal motion that we excluded here. This pressure is strictly quantum
mechanical, which is due to the anti-symmetrization requirement for the wave function
of identical fermions. An interesting illustration of the role of the degeneracy pressure
is the stabilization of a star against gravitational collapse. At some stage, a star (like a
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white dwarf) is stabilized against gravitational collapse by the pressure of the degenerate
electrons in the interior. This occurs at a star radius R at which the total energy
(quantum-mechanical energy and the gravitational energy) is a minimum. To that end,
we calculate the gravitational energy Eg of a uniform hyper-sphere of radius R and mass
M in D-dimensional space.

Considering building up a hyper-sphere by layers, when its mass is m and its radius
is r, the work necessary to bring in the next layer is dW = −Gmdm/rD−2, where G is
the universal gravitational constant. Writing dm = ρdV , and using eq. (2), we get

dW = − GπDD

[Γ(1 + D/2)]2
ρ2rD+1dr.

The total gravitational energy of the hyper-sphere is thus

Eg =
∫ R

0

dW = − GDπDRD+2ρ2

(D + 2)
[
Γ

(
1 + D

2

)]2 ,

which yields, using ρ = NM/V and using eq. (2),

(10) Eg = −G
D

D + 2
N2M2

R(D−2)
,

where N is number of nucleons and M is the nucleon mass. The substitution of eq. (2)
into eq. (7) and with the help of eq. (10) enables us to write the total energy E(= Eg+Em)
as

(11) E =
A

R2
− B

R(D−2)
,

where

A =
D

D + 2

(
2h̄2

m

)
(Nq)(D+2)/D

(D − 1)2/D

[
Γ

(
1 +

D

2

)]4/D

,(12)

B = G
D

(D + 2)
N2M2.(13)

Requiring the total energy to be a minimum implies that dE/dR = 0, which gives
R(D−4) = B(D − 2)/2A. The substitution of eqs. (12) and (13) yields

(14) R(D−4) =
(D − 2)(D − 1)2/D

4(h̄2/GmM2)
1[

Γ
(
1 + D

2

)]4/D

N (D−2)/D

q(D+2)/D
.

The above equation clearly shows the dependence of the radius of stability of the star
on the space dimension D and it easily reduces to the known formula in the three-
dimensional space (D = 3) [29], namely R = h̄2

GnM2 ( 9π
4 )2/3 q5/3

N1/3 . To demonstrate the
role of the space dimension D on the radius of stabilization of a star, we consider a
star whose mass equals the mass of the Sun (1.989 × 1030 kg) that gives the number of
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Table I. – Stability radius R for different values of the space dimension, D.

D R(m) D R(m)

3 7.157 × 106 10 2.046 × 103

4 - - - - - - - - - - - 20 38.417

5 3.546 × 108 40 5.972

6 1.497 × 106 60 3.809

7 1.039 × 105 100 2.018

8 1.845 × 104 104 1.0066

9 5.310 × 103 105 1.00063

nucleons N = 1.188 × 1057. Using q = 1/2 and h̄2/(GmM2) = 6.534 × 1025 enables us
to calculate R for different values of D, which we show in table I.

We note that R has its largest value when D = 5 and beyond that it decreases as
D increases. The present author believes that this maximum value of R at D = 5
has no physical grounds, because if one calculates the Fermi energy of electrons for the
white dwarf, he will conclude that the Fermi energy is in the order of the rest mass
energy. This implies that the system is getting dangerously relativistic, and thus an
appropriate relativistic treatment of the system must be considered, which we carry out
in sect. 3. For very large D, the value of R approaches unity. This can be shown by
using Stirling’s asymptotic formula Γ(1 + n) ≈

√
2πnn+1/2 exp[−n], with n = D/2 and

one gets RD−4 ≈ 2e2

(h̄2/GmM2)
N
D = 2.687×1032

D . This makes R → [(2.687 × 1032)/D]1/D

which goes to unity as D → ∞. This limiting value of R will be explained later.

3. – The extreme relativistic case

We can extend the theory of a free-electron gas to the relativistic domain by replacing
the classical kinetic energy with the relativistic formula. In particular, we consider the
extreme relativistic case in which the energy is related to the momentum by E ≈ pc =
h̄ck, and thus eqs. (3) and (5) become

NS = (D − 1)
(

L

2π

)D
πD/2

Γ(1 + D/2)
(E/h̄c)D,(15)

g(E) = D(D − 1)
(

L

2π

)D
πD/2ED−1

Γ(1 + D/2)(h̄c)D
.(16)

As we did in the previous section, the Fermi energy is obtained from the density of states
g(E) and the use of eq. (2) gives us

(17) EF =
2h̄c

R

[
Nq

(D − 1)

{
Γ

(
1 +

D

2

)}2
]1/D

.
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The quantum-mechanical energy of the system is

Em =
∫ EF

0

E g(E)dE = 2h̄c
D

D + 1
Nq

√
π

[
Nq

V

Γ(1 + D/2)
D − 1

]1/D

(18)

= 2h̄c
D

D + 1

[
(Nq)D+1

D − 1
{Γ(1 + D/2)}2

]1/D 1
R

.

The above equation and eq. (10) give the total energy E whose minimum requires that
dE/dR = 0, which easily yields the radius of stabilization R, namely

(19) RD−3 =
(D − 2)(D + 1)GNM2

2(D + 2)h̄cq

[
Nq

(D − 1)
{Γ(1 + D/2)}2

]−1/D

.

Again, the quantum-mechanical energy, Em, plays a role in determining the degeneracy
pressure, P , so that when the system expands by dV the mechanical energy decreases
by dEm which is given by dEm = −(Em/DV )dV . Comparison of dEm with the work
dW (= PdV ) gives the degeneracy pressure, which, by using eq. (18), takes the form

(20) P =
Em

DV
=

2h̄cNq

(D + 1)πD/2RD+1

[
Nq

D − 1

]1/D {
Γ

(
1 +

D

2

)}(D+2)/D

.

Our results in eqs. (19) and (20) show, respectively, the dependence of R and P on the
space dimension D. It is instructive to note that there is no special value for R in the
three-dimensional space (D = 3). In this particular case, if the total energy is positive,
then degeneracy forces exceed gravitational forces and the star will expand, whereas if
the total energy is negative, then gravitational forces exceed the degeneracy forces and
thus the star will collapse. Therefore, one can find the critical number of nucleons, Nc, by
equating the quantum-mechanical energy Em, given by eq. (18), with the gravitational
energy Eg, given by eq. (10) for D = 3. The result is

(21) Nc =
3
2
q2

[
5h̄cπ1/3

4GM2

]3/2

.

The above result is the Chandrasekhar limit in the three-dimensional space. Stars with
number of nucleons N > Nc will collapse further and will not be halted by the electron
degeneracy pressure. As we did in the previous section, and for calculation purposes, we
consider a star whose mass equals the mass of the Sun (1.989 × 1030 kg) and thus the
number of nucleons N = 1.188×1057. Substituting the numerical values of the constants
involved in eqs. (19) and (20), we obtain numerical values for the stabilization radius R
and the degeneracy pressure P for the star, which we report in table II.

It is instructive to plot graphs that show the trend in R and in P as the dimension
D changes. This has been done in fig. 1 and fig. 2, respectively.

Figure 1 shows the relation between log R and the space dimension D. It is noticed
that the radius of stability decreases as the dimension increases, which means that the
balance between degeneracy pressure and gravitational force is attained at smaller star
size as the dimension increases. Figure 2 shows the relation between log P and the space
dimension D. It is noticed that the degeneracy pressure decreases as D increases up to
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Table II. – The stability radius R and the degeneracy pressure P of a white-dwarf star (extreme
relativistic).

D R P D R P

4 6.97 × 104 1.56 × 1021 13 32.14 1.44 × 1014

5 8.07 × 103 1.20 × 1018 14 25.08 1.37 × 1014

6 1.83 × 103 6.09 × 1016 15 20.23 1.43 × 1014

7 627.4 8.33 × 1015 16 16.76 1.62 × 1014

8 280.8 2.05 × 1015 18 12.26 2.55 × 1014

9 150.2 7.56 × 1014 20 9.53 5.15 × 1014

10 91.0 3.76 × 1014 40 3.09 4.13 × 1020

11 60.40 2.32 × 1014 60 2.12 2.45 × 1029

12 42.97 1.67 × 1014 100 1.57 4.77 × 1050

Fig. 1. – Dependence of stability radius R on space dimension D of a white dwarf (extreme
relativistic).
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Fig. 2. – Dependence of degeneracy pressure P on space dimension D of a white dwarf (extreme
relativistic).

Table III. – Stability radius R of a neutron star (non-relativistic) in different dimensions.

D R D R

3 1.24 × 104 12 1.20 × 103

5 2.47 × 1011 13 6.54 × 102

6 4.04 × 107 14 3.94 × 102

7 9.46 × 105 20 50.74

8 9.73 × 104 40 7.21

9 2.02 × 104 60 4.30

10 6.24 × 103 100 2.17

11 2.50 × 103 104 1.007



DEGENERATE ELECTRON GAS AND STAR STABILIZATION IN D DIMENSIONS 25

Table IV. – Stability radius R, Fermi energy EF, and degeneracy pressure P for a neutron star
in different dimensions D (extreme relativistic).

D R EF P D R EF P

4 2.93 × 104 2.69 × 103 2.82 × 1022 18 11.67 1.78 × 10−4 1.30 × 1015

5 5.32 × 103 23.69 3.34 × 1019 20 9.13 1.21 × 10−4 2.62 × 1015

6 1.40 × 103 1.28 8.92 × 1017 40 3.03 2.64 × 10−5 1.88 × 1021

7 514.68 0.171 8.17 × 1016 60 2.09 1.90 × 10−5 1.18 × 1030

8 240.30 0.039 1.82 × 1016 80 1.76 1.738 × 10−5 1.14 × 1040

9 132.10 0.013 5.90 × 1015 86 1.69 1.731 × 10−5 2.57 × 1043

10 81.60 5.17 × 10−3 2.68 × 1015 88 1.67 1.730 × 10−5 3.45 × 1044

11 54.95 2.52 × 10−3 1.55 × 1015 90 1.65 1.731 × 10−5 4.91 × 1045

12 39.53 1.40 × 10−3 1.05 × 1015 94 1.62 1.735 × 10−5 1.02 × 1048

13 29.83 8.58 × 10−4 8.64 × 1014 98 1.58 1.741 × 10−5 2.33 × 1049

14 23.44 5.67 × 10−4 7.93 × 1014 100 1.56 1.76 × 10−5 1.83 × 1051

15 19.02 3.98 × 10−4 8.03 × 1014 110 1.51 1.77 × 10−5 3.67 × 1057

16 15.84 2.93 × 10−4 8.83 × 1014 120 1.45 1.81 × 10−5 1.09 × 1064

D = 14, but then it increases. It must be emphasized here that the decreasing part of
P is compensated by a decrease in the gravitational force which can be simply checked
from eq. (10) which yields

Fg = −dEg

dR
=

D(D − 2)
(D + 2)

GN2M2

R(D−1)
,

and therefore R continues to decrease as D increases.
We note that in the extreme relativistic case the radius of stability R is smaller than

its value in the non-relativistic case for any dimension D. The origin of this difference
is attributed to the relation between the energy E and the wave vector k, where E =
h̄2k2/2m in the non-relativistic case and E = h̄ck in the extreme relativistic case. This
implies a different energy dependence of the density of states for the two cases as is seen in
eqs. (5) and (16). This has a consequence on physical properties of the system. Among
these properties, the degeneracy pressure P in the extreme relativistic case is higher
than its counterpart in the non-relativistic case. Therefore, the degeneracy pressure in
a star in the extreme relativistic case can balance greater gravitational force than in
the non-relativistic case, and thus it is expected that the radius of stability R would be
smaller in the extreme relativistic case than in the non-relativistic one.
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Fig. 3. – Dependence of radius of stability R on space dimensions D of a neutron star (extreme
relativistic).

As for the non-relativistic case, Stirling’s formula for very large D makes [Γ(1 +
D/2)]−2/D → (2e/D) and thus eq. (19) gives R → (3.4 × 1019)1/D which goes to 1
as D → ∞. We also remark that the electron degeneracy pressure P decreases as the
space dimension D increases and reaches a minimum value of 1.37 × 1014 at D = 14,
beyond which P increases without upper bound so that it goes to infinity as D → ∞.
This demonstrates that the degenerate electrons exert infinite quantum pressure in the
infinite-dimensional space. This is consistent with the observation that the limit of
the volume of a hyper-sphere as D → ∞ is zero for R → 1. The unity limit of the
stability radius in the infinite-dimensional space can be analyzed as follows: eq. (10)
gives, for large D, the gravitational force Fg = 2DGN2M2/RD−1, while eq. (18) gives
the quantum-mechanical force Fm = 2h̄cNqD/R2, and thus the ratio Fg/Fm goes to
GNM2/h̄cqRD−3. It is noticed that when D → ∞, this ratio goes to zero if R > 1 and
goes to ∞ if R < 1.

4. – Neutron degeneracy pressure

When the mass of a star is greater than the Chandrasekhar limit, it collapses further
and in this case the Fermi energy of the electrons increases to the point where it is
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Fig. 4. – Dependence of degeneracy pressure P on space dimension D for a neutron star (extreme
relativistic).

energetically favorable for them to combine with the protons to produce neutrons via
the inverse beta decay which is called electron capture. The result of this collapse is
an extremely compact neutron star. When neutrons are backed together, the number of
available low-energy states is too small and many neutrons are forced into high-energy
states. These high-energy neutrons make up the entire pressure supporting the neutron
star, which is called neutron degeneracy pressure. The radius of stabilityR of such a
neutron star (non-relativistic) can be calculated, for each D, by using eq. (14), except
that here the mass m is replaced by the mass of the neutron M and the parameter q = 1.
We show this in table III, for a star whose mass equals the mass of the Sun.

It is noticed that R has a maximum value when D = 5, then it decreases and reaches
an asymptotic value of 1 as D → ∞. As is mentioned for the white dwarf, this maximum
value has no physical grounds, since the electrons become relativistic. This maximum
disappears when the extreme relativistic case is considered.

In the extreme relativistic case, the balancing between the neutron degeneracy forces
and the gravitational forces can be discussed. The radius of stability R is computed
from eq. (19) with q = 1. These values of R can be used in eq. (17) with q = 1 to
calculate the Fermi energy EF, and furthermore the neutron degeneracy pressure P is
readily calculated by using eq. (20). All these results are shown in table IV.
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As before, it is interesting to plot log R and log P vs. D which is shown in fig. 3 and
fig. 4, respectively.

The behavior of R, EF, and P for very large D is obtained using Sirling’s formula. As
was shown earlier, R approaches 1 as D → ∞. Letting n = D/2, we get [Γ(1+D/2)]2/D =
[Γ(1 + n)]1/n ≈ (2π)1/2nn(1+1/2n)e−1 ≈ ne−1, and hence EF ≈ (h̄c/e)D which goes to
∞ in the infinite-dimensional space (D = ∞). The behavior of the neutron degeneracy
pressure P with the space dimension D is similar to that of the electron degeneracy
pressure. It decreases as D increases and reaches a minimum value of 7.93 × 1014 at
D = 14 after which it increases without upper bound and becomes infinite as D → ∞,
since we have [Γ(1 + D/2)](D+2)/D ≈ nn+3/2e−n, and therefore P ≈ DDe−D which goes
to ∞ as D → ∞. It is noticed that the Fermi energy EF decreases as D increases and
reaches a minimum value at D = 88 beyond which it asymptotically increases as (h̄c/e)D.

5. – Conclusions and results

In the present paper, we considered degenerate electron gas and derived the quantum-
mechanical energy, Fermi energy, and the degeneracy pressure in D-dimensional space
for the non-relativistic and the extreme relativistic cases. The role of the degeneracy
pressure in the balancing against the gravitational forces of the system was examined.
For computation purposes, we have applied our results to the stability of white-dwarf
and neutron stars against gravitational collapse. The radius of stability R was obtained
by requiring that the total energy (quantum-mechanical energy plus the gravitational
energy) is a minimum. In the non-relativistic case, it has been found that R has a
maximum at a space dimension D = 5 and beyond this value it decreases as D increases
and approaches unity in the infinite-dimensional space (D → ∞). This maximum has
no physical grounds since the electrons become relativistic as can be seen by calculating
the Fermi energy. We also noticed that there is no special value for R when D = 4. In
the extreme relativistic case, we found that there is no special value of R when D = 3 in
which case our result yields the critical number of nucleons NC (called Chandrasekhar
limit) beyond which gravitational collapse occurs. We also showed that the radius of
stability decreases as D increases and again approaches unity in the infinite-dimensional
space. Furthermore, we observed that the electron degeneracy pressure P decreases as
the dimension D increases and approaches a minimum value at D = 14 and then starts
to increase with increasing D and becomes infinite in the infinite-dimensional space. It is
remarkable to note that the gravitational force approaches ∞, in the infinite-dimensional
space, only when R = 1. This explains why the radius of stability approaches unity
as D → ∞. Finally, we have been able to extend our results to neutron degeneracy
pressure. Here, the results showed (in non-relativistic case) that R has a maximum value
at D = 5 (which again has no physical ground) and goes to 1 as D → ∞. For the extreme
relativistic case, we calculated the radius of stability of a neutron star, the Fermi energy,
and the neutron degeneracy pressure. In this case we noticed that for D = 3 there is no
special value for R that minimizes the total energy. It was found that both the radius
of stability and the neutron degeneracy pressure have similar behaviors as those for the
electron degenerate system. It has been found that the stability radius for the neutron
star is smaller than its value in the white dwarf in all space dimensions. Concerning the
Fermi energy, table IV shows that EF decreases as D increases and reaches a minimum
value at D = 88 and then increases to the asymptotic formula EF ≈ (h̄c/e)D. The
present work may shed some light on the role of large extra dimensions and brane physics
in modern physics theories.
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