
Journal on Parallel and Distributed Computing, special issue Petri Net Models of Parallel
Computers, vol. 15, no. 3, July 1992, pp. 238-254.

DEPENDABILITY EVALUATION USING COMPOSED SAN-BASED

REWARD MODELS�

William H. Sanders and Luai M. Malhis

Department of Electrical and Computer Engineering

The University of Arizona

Tucson, AZ 85721 USA

whs@ece.arizona.edu and malhis@ece.arizona.edu

ABSTRACT

Dependability evaluation is an important, but di�cult, aspect of the design of fault-tolerant
parallel and distributed computing systems. One possible technique is to use Markov mod-
els, but if applied directly to realistic designs, this often results in large and intractable mod-
els. Many authors have investigated methods to avoid this explosive state-space growth, but
have typically either solved the problem for a speci�c system design, or required manipula-
tion of the model at the state-space level. Stochastic activity networks (SANs), a stochastic
extension of Petri nets, together with recently developed reduced base model construction
techniques, have the potential to avoid this state space growth at the SAN level for many
parallel and distributed systems. This paper investigates this claim, by considering their
application to three di�erent systems: a fault-tolerant parallel computing system, a dis-
tributed database architecture, and a multiprocessor-multimemory system. We show that
this method does indeed result in tractable Markov models for these systems, and argue
that it can be applied to the dependability evaluation of many parallel and distributed
systems.

Keywords: Dependability evaluation, Parallel and distributed systems, Fault-tolerant
systems, Stochastic Petri nets, Reduced base model construction, and Stochastic activity
networks.

�This work was funded in part by the Digital Equipment Corporation Faculty Program: Incentives for

Excellence, Intel Corporation, and US West Advanced Technologies.

I Introduction

Dependability evaluation of parallel and distributed systems is an important and di�cult

undertaking. The inherent component redundancy in such systems often permits them to

continue operating in the presence of faults, and application of fault-tolerant system design

techniques can reduce the probability of total system failure. This is especially important

for those systems that have life critical applications, such as
ight control systems, during

a crucial but short mission time. Estimation of the degree of this fault tolerance is often

not easy, due to the complexity of such systems. Many techniques have been developed

to attempt to do this via modeling (for a good survey of these techniques, see [1].) Both

simulation and analytic-based methods have been proposed. Among analytic methods,

Markov process have been an important method, but su�er from the fact that the system

to be modeled must be described at the state level, and the number of states that must be

considered can be very large, on the order of hundreds of thousands of states or more.

Higher-level representations can be constructed to ease in the description process. Ex-

amples, among others, include the block diagrams used in SAVE [2], stochastic Petri nets

used in HARP [3], SPNP [4], GreatSPN [5], and METASAN [6], dynamic queueing networks

[7], production rules [8], and objects [9]. While each of these representations aided in the

model description process, they, if not coupled with some state reduction technique, still

lead to very large Markov models. Such large models make it di�cult to perform transient

and steady state analysis using current solution techniques and available computers. Thus,

large e�ort has been devoted to state space reduction. Techniques to do this can be ap-

proximate, or exact. Examples of techniques that yield approximate results include model

decomposition and state aggregation [10], state trimming [11], generating the most probable

states [12], and the use of numerical techniques augmented by semi-Markov models [13].

Exact techniques are less common, but show promise for medium size problems. Most

methods of this type are based on lumping theorems for Markov processes [14]. Unfor-

tunately, direct application of such methods would require prior generation of the entire

state space of the original model, which would be prohibitively expensive. Several recently

developed techniques for stochastic Petri nets have the potential to avoid this problem.

Most of these rely on using colored or high-level Petri nets to identify appropriate lump-

ings in the stochastic process [15, 16, 17, ?, 19]. Another technique, known as reduced

base model construction [20], makes use of both the structure of the net and the perform-

1

ance/dependabiliity/performability variables considered to determine an appropriate notion

of state. Using this method, models (in this case a stochastic extension of Petri nets known

as stochastic activity networks) are replicated and joined together to form a complete, or

composed, model.

In addition to possible state space explosions, a second problem that must be dealt

with in modeling fault-tolerant parallel and distributed systems is coverage [21]. Including

coverage factors in a model is not a simple task [22]. Lee et al. [13] point out that most

existing modeling tools fail to accurately model coverage factors at all levels in large, hier-

archal systems. Stochastic activity networks have the potential to do this, through the use

of their \case" construct.

The purpose of this paper is to investigate the applicability of stochastic activity net-

works and reduced base model construction to medium to large fault-tolerant parallel and

distributed systems. We do this by considering the dependability evaluation of three sys-

tems: a fault-tolerant parallel computing system, a distributed database architecture, and

a multiprocessor-multimemory system. Each of these systems has been considered before in

the literature. In the case of the �rst two, only approximate solutions have been given, and

in the case of the third, an exact answer was obtained by direct construction of a Markov

process at the state level. In this paper, we obtain exact (to the numerical accuracy of

the machine used) results using stochastic activity networks and reduced base model con-

struction, as implemented in a software package known as UltraSAN [23]. We show that

this method allows systems to be modeled using a convenient formalism (stochastic activity

networks), produces tractable Markov models for the considered systems, and argue that it

can be applied to the dependability evaluation of many parallel and distributed systems.

The remainder of this paper is organized as follows. Section II gives a review of the

models and methods used: stochastic activity networks, composed SAN-based reward mod-

els, and reduced base model construction. Section III gives the analysis of the three systems

considered. Finally, section IV gives remarks about the generality of these techniques in

modeling fault-tolerant parallel and distributed systems.

II Modeling Framework

The models employed are hierarchical, with stochastic activity networks of individual

components replicated and joined together with other models.

2

cpus

OG1

OG2

OG3

ioports

errorhandlers

memory_failed

computer_failed

IG1

ioport_failure

Figure 1: I/O Ports Submodel

A Stochastic Activity Networks

Stochastic activity networks (SANs) [24, 25, 26], are a stochastic extension to Petri nets.

Structurally, they consist of activities, places, input gates, and output gates. Activities,

which are similar to transitions in normal Petri nets, are of two types: timed and instanta-

neous. Timed activities represent activities of the modeled system whose durations impact

the system's ability to perform. Instantaneous activities, on the other hand, represent

system activities which, relative to the dependability variables in question, complete in a

negligible amount of time.

To illustrate activities and other SAN components, we consider a simple model of I/O

ports in a fault-tolerant parallel processor system, which will also be used in a later section

(see Figure 1). In this model, a timed activity is used to represent an I/O port failure.

As shown in table 1, times associated with activities can depend on the marking of the

network. Cases associated with activities (represented as small circles on one side of an

activity) permit the realization of uncertainty concerning what happens when an activity

completes, such as whether a fault is covered, in this model. As with activity times, case

probabilities can be (and typically are) dependent on place markings. For example, see

table 2 which gives the case probabilities associated with activity ioport failure.

3

Table 1: I/O Port Modules Activity Time Distributions

Activity Distribution

ioport failure expon(0.0052596 * MARK(ioports))

Table 2: I/O Port Modules Case Probabilities for Activities

Case Probability

port module ioport failure

1 if (MARK(ioports) == 2)
return(0:99);

else

return(0:0);
2 if (MARK(ioports) == 2)

return(0:0095);
else

return(0:95);
3 if (MARK(ioports) == 2)

return(0:0005);
else

return(0:05);

4

Table 3: I/O Port Modules Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(ioports) > 0) &&
(MARK(memory failed) < 2) &&
(MARK(computer failed) < 2)

identity

Places are used to represent the \state" of a system (e.g., place ioports, cpus, errorhan-

dlers, memory failed and computer failed, in Figure 1) and may contain tokens (e.g., each

small black dot in ioports is a token). For example, the number of tokens in ioports repre-

sents the number of operational I/O ports in the system. When an activity completes, one

token is removed from each of the places directly connected (i.e., not through a gate) to the

input of the activity and one token added to each of the places directly connected to the

output of the activity.

Input gates and output gates permit greater
exibility in de�ning enabling and comple-

tion rules than with regular Petri nets. In particular, input gates have enabling predicates

and functions, while output gates have only functions. The enabling predicate can be any

computable predicate (taking on true and false values) of the places connected to it, and,

as seen in that which follows, controls the enabling of an attached activity. The function

associated with each input gate describes an action (change in marking) that will occur

upon completion of the activity. As with predicates, gate functions can be any computable

function on the places connected to the gate. Activities are enabled if there is at least one

token in each of the places directly connected to the activity and if the predicate of each

connected input gate is true (i.e., holds). For example, input gate IG1 controls the enabling

of activity ioport failure. This gate speci�es that the associated activity is to be enabled if

there is at least one I/O port that has not failed and the computer that this module is asso-

ciated with has not failed (i.e., the number of tokens in memory failed and computer failed

is less than two.) The function associated with this gate is the identity function, i.e., no

change is made to the places ioports, memory failed, and computer failed when this gate is

executed.

Output gates, together with directly connected output places, are used to specify the

action to be taken upon completion of an activity. The function associated with each output

gate can be any computable function on the connected places. For example, as shown in

5

Table 4: I/O Port Modules Output Gate Functions

Gate Function

OG1 if (MARK(ioports) == 2)
MARK(ioports)��;

OG2 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(errorhandlers) = 0;
MARK(memory failed) = 2;
MARK(computer failed) + +;

OG3 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(errorhandlers) = 0;
MARK(memory failed) = 2;
MARK(computer failed) = 2;

table 4, output gate OG1 decrements the number of tokens in place ioports if the current

marking of the place is equal to two.

Note the use of gates in the modeling of this subsystem as a stochastic activity network.

It can be shown that SANs are equivalent to stochastic Petri net models without gates, in

the sense that every gate can be replaced by a subnetwork of instantaneous activities, places,

and arcs, preserving the behavior of the system. However, there are many logical actions

and enabling conditions that are much more easily represented in functional form, rather

than graphically, using logic implemented as instantaneous subnetworks. Gates allow the

exibility to use both speci�cation methods: functions and predicates when they are more

natural, and arcs, instantaneous activities, and places when they are more appropriate.

While the use of gates does preclude using structural analysis of the type described in [27],

we feel is a reasonable alternative for many models. If one desires to use structural analysis,

the use of gates can be avoided.

B Variable Speci�cation

The formalism used to represent variables at the stochastic activity network level is an

extension of the idea of a \reward model" [28]. Traditional reward models consist of three

components: a stochastic process, a reward structure, and a performance variable de�ned

in terms of the stochastic process and reward structure. The reward structure typically

consists of two types of rewards: an impulse reward that is associated with each state

6

change, and a rate reward that is associated with the time spent in a state. We extend

this idea to the SAN level, where impulse rewards can naturally be assigned to activity

completions, and rate rewards can be assigned to particular numbers of tokens in places.

Dependability (as well as performance and performability [29]) variables can then be

easily de�ned in terms of these rewards. In particular, we have de�ned a family of variables,

distinguished by the intervals of time on which they depend. Three categories of variables

are distinguished: instant-of-time variables, which represent the status of the SAN at either

a particular time t or in steady state, interval-of-time variables, which represent the total

accumulated reward obtained from executing the SAN for a particular interval of time, and

time-averaged interval-of-time variables, which represent the time-averaged accumulated

reward obtained from executing the SAN for a particular interval of time. For the second

and third categories, three types of variables are considered. The �rst type represents the

total or time-averaged reward accumulated during some interval [t; t+ l]. The second type

corresponds to an interval of length l as t goes to in�nity, and is useful in representing

the reward that is accumulated during some interval of �nite length in steady state. The

�nal variable type corresponds to the total or time-averaged reward accumulated during an

interval starting at t and of length l as l !1.

For example, the reliability for some mission time [0,t], when there is no repair from a

failed state, can be formulated in terms of an instant-of-time variable at time t. Steady-state

availability, on the other hand, can be determined in terms of an instant-of-time variable

in the limit as t ! 1. More generally, these variables and the reward structure discussed

previously give us the ability to represent many traditional and non-traditional measures

of performability, including queueing time, queue length, processor utilization, steady-state

and interval availability, reliability, and productivity [31].

C Composed SAN-based Reward Models

Given the SAN and variable speci�cation formalism just described, it is possible to

investigate construction of small stochastic process representations that permit solution for

a speci�ed variable or variables. This is known as model construction. More precisely, it is

the process of identifying a performance variable and determining a base model (stochastic

process) that permits solution of that variable. Model solution, in turn, is the determination

of the probabilistic nature of the selected performance variables.

7

Reduced based model construction proceeds by taking a more general view in the base

model construction process, in which knowledge of the structure of the network and per-

formance variable is used to determine the notion of state to use in the resulting stochastic

process [20]. Traditional model construction methods for stochastic Petri nets and exten-

sions do not use this approach. They typically obtain the base model stochastic process by

choosing the reachable stable markings of the network to be the states of the process. To

distinguish between these two approaches, a stochastic process which supports a large class

of variables is referred to as a detailed base model, while a stochastic process constructed

speci�cally to support a designated performance variable, dependability for example, is a

reduced base model.

The reduced base model construction methods developed in [20] are applicable for a

restricted, but common class of stochastic activity networks and performance or depend-

ability variables. This class includes stochastic activity networks that have some replicated

components, such as many parallel and distributed systems, and variables that are regular

in the sense that they assign equal rewards to identical events and markings in di�erent

replicated components. These methods abstract unnecessary information from the base

model without rendering it unsolvable.

To use this approach, a complete (or \composed") model is built from one or more

SAN submodels using \replicate" and \join" operations. Formally, the resulting model is

known as a composed SAN-based reward model (SBRM). The replicate operation replicates

a SAN and associated reward structure a certain number of times, holding some subset of

its places, called its \distinguished places" in [20], common to all resulting submodels. It

is through these distinguished places that the replicated submodels interact. Each replica

will have values for the impulse and rate rewards speci�ed as in the original submodel. The

replicate operation allows one to construct composed models that consist of several identical

component submodels.

The combination of several di�erent submodels is accomplished using the join opera-

tion. Informally, the e�ect of the operation is to produce a composed model which is a

combination of the individual submodels. Again, distinguished places play an important

role in the construction operation. In this case, however, a list of places is associated with

each component submodel. The �rst place in each of the lists is merged to form a single

place, the second place is merged to form another place, and so on. We allow particular

elements on the lists to be null, permitting the case where certain places are created from

8

a proper subset of the submodels joined. (See examples in section III.)

Stochastic activity networks can be solved via analytic methods when all activity time

distributions are exponential, activities are reactivated often enough to ensure that their

rates depend only on the current state, and the state space is not too large relative to the

capacity of the machine.

Reduced base model construction is accomplished by using a description of a composed

model, including one or more SAN submodels and dependability variables, to build a com-

pact state-level representation. This representation consists of a set of states, rates to

transition between each pair of states, and a rate reward for each state. The notion of state

employed is variable and depends on the structure of the composed model.

After a reduced base model is constructed, solution for the desired variables proceeds us-

ing known stochastic process solution techniques to obtain the appropriate state-occupancy

probabilities. These probabilities, together with the rate reward calculated for each state

while generating the reduced base model, are then used to generate the mean, variance, prob-

ability density function, and probability distribution function for each variable. Three ana-

lytical solvers are available in UltraSAN [23] for dependability evaluation: a direct steady-

state solver, an iterative steady-state solver, and a transient solver. The two steady-state

solvers can be used to determine the long-run behavior of a system such as the availability of

the multiprocessor system. The direct steady-state solver is based on the LU decomposition

technique, while the iterative steady-state solver is based on the successive over-relaxation

technique. The transient solver uses a computationally stable version of the randomiza-

tion technique developed by Gross and Miller [30]. A solver that can solve the probability

distribution function of interval-of-time variables is under development.

III Dependability Evaluation Using Composed SAN-Based Reward Mod-

els

We now investigate the use of composed SAN-based reward models in the dependability

evaluation of fault-tolerant parallel and distributed computer systems.

A Fault-Tolerant Parallel Computing System

The �rst system considered is a highly redundant fault-tolerant multiprocessor system,

taken from Lee et al. [13] and shown in Figure 2. As shown here, at the highest level the

9

Table 5: Coverage Probabilities

Redundant Component Fault Coverage Probability

RAM Chip 0:998
Memory Module 0:95
CPU Unit 0:995
I/O Port 0:99
Computer 0:95

system consists of 2 computers, where each computer is composed of 3 memory modules of

which 1 is a spare module, 3 CPU units of which 1 is a spare unit, 2 I/O ports of which

1 is a spare port, and 2 non-redundant error-handling chips. Lee et al. consider a system

that is similar but that has 10 computers at the highest level, but are only able to obtain

an approximate solution, without bounds.

Internally, each memory module consists of 41 RAM chips, 2 of which are spare chips,

and 2 interface chips. Each CPU unit and each I/O port consists of 6 non-redundant chips.

The system is considered operational if at least 1 computer is operational. A computer

is classi�ed as operational if, of its components, at least 2 memory modules, at least 2

CPU units, at least 1 I/O port, and the 2 error-handling chips are functioning. A memory

module is operational if at least 39 of its 41 RAM chips, and its 2 interface chips are working.

Where there is redundancy (available spares) at any level of system hierarchy, there is a

coverage factor associated with the component failure at that level. For example, following

the parameter values used by Lee et al., if one CPU unit fails, there is a 0.995 probability

that the failed unit will be replaced by the spare unit, if available, and the corresponding

computer continues to operate. On the other hand, there is also a 0.005 probability that

fault recovery procedure will fail and the corresponding computer will cease to operate.

Table 5 shows the redundant components and the fault coverage probability associated

with each component. Finally, the failure rate of every chip in the system, as in [13], is

assumed to be 100 failures per billion hours.

In terms of the fault-tolerant parallel processor example, a composed model for the

entire system is built by �rst de�ning SAN submodels to represent the failure of various

components in the system (e.g., the model of the I/O system failure shown in Figure 1).

We then use the replicate and join operations previously de�ned to construct a complete

composed model. Figure 3 shows a composed model for a system with n identical memory

10

memory module memory modulememory module errorhandlers

interface bus

CPU module CPU moduleCPU module I/O port I/O port

computer

co
m

pu
te

r

co
m

pu
te

r

41 RAMs

2 int. ch.

..

41 RAMs

2 int. ch.

..

41 RAMs

2 int. ch.

..

2 ch.

..

chips

..

chips

..

chips
6 CPU

..

chips
6 CPU

..

chips
6 CPU 6 I/O 6 I/O

Figure 2: Fault-Tolerant Multiprocessor System

11

memory_module

Rep cpu_modules io_port_modules errorhandlers

Join

Rep

Figure 3: Composed Model for Fault-Tolerant Multiprocessor System

modules. The leaf nodes represent the individual submodels, together with their reward

structures. The memory module is replicated n times with the place computer failed, see

Figure 5, held common among all replicas. This submodel is then joined to the I/O ports

model (Figure 1), CPUs failure model (Figure 4), and error-handler model (Figure 6) by

joining the place named computer failed in each submodel to form a single new place.

The SAN-based reward model used to determine the reliability of the system is shown in

Figure 3. The leaf nodes of the tree, which are labeled memory module, cpu modules,

io port modules, and errorhandlers, correspond to the SAN submodels of the reliability

of the memory module, the 3 CPU units, the 2 I/O ports, and the 2 error-handling chips,

respectively. The internal node labeledRep corresponds to replicating the memory module

3 times, which equals the number of memory modules in one computer. The internal node

labeled Join joins the 4 SAN submodels to construct the SAN model of one computer.

Finally, the joined SAN model of one computer is replicated 2 times to generate the �nal

reliability SAN model of the multiprocessor system.

The SAN submodel of the CPUs is called cpu modules and is shown in Figure 4. The

places named cpus and computer failed represent the current state of the CPUs, and the

current state of the multiprocessor system, respectively. The number of tokens in cpus

represents the number of operational CPUs in a given computer. The number of tokens

in computer failed indicates the number of computers that have failed in the system. In

addition, the places labeled ioports, errorhandlers, and memory failed are also included in

12

cpus
cpu_failure

OG1

OG2

OG3

ioports

errorhandlers

memory_failed

computer_failed

IG1

Figure 4: SAN Submodel of cpu modules

this model to aid in reducing the state space size of the overall system model by lumping

as many failed states together as possible.

Additional state lumping (with respect to that provided by the reduced base model

construction method) can be achieved because once a computer fails, there is no need

to keep track of which of its components failed that caused the computer to fail. More

speci�cally, by assuming that all internal components of the failed computer have failed,

then the states that represent a computer failure due to a CPU failure, a memory module

failure, an I/O port failure, or an error-handling chip failure are combined into a single

state. The marking of the combined state is reached by setting the number of tokens in

each of the places cpus, ioports, and errorhandlers to zero, setting the number of tokens in

memory failed to 2, and incrementing the the number of tokens in computer failed.

When the timed activity cpu failure completes, one CPU unit is assumed to have failed.

This activity completion rate is shown in table 6. If a spare CPU unit is available (i.e., the

MARK(cpus) == 3), there are three cases associated with this activity completion. The

�rst case represents a successful coverage of a CPU unit failure. If this case occurs, the

failed CPU unit is replaced by the spare unit and its corresponding computer continues

to operate. The second case represents the situation where a CPU unit failure occurs

that is not covered, but where the failure of its corresponding computer is covered. If

this occurs and a spare computer is available, the failed computer is replaced by the spare

13

Table 6: cpu modules Activity Time Distributions

Activity Distribution

cpu failure expon(0.0052596 * MARK(cpus))

computer and the system continues to operate. However, if no spare computer is available,

the multiprocessor system fails. The third case is where neither the CPU failure nor the

corresponding computer failure are covered, resulting in a total system failure.

On the other hand, if a spare CPU is not available (i.e., MARK(cpus) == 2), then

a CPU unit failure causes a computer failure. In this marking, there are two possible

actions associated with the completion of activity cpu failure. The �rst situation is that in

which a spare computer is available (i.e., MARK(computer failed) == 0). In this case, the

computer failure can be covered. The second case is that no spare computer is available,

i.e., MARK(computer failed) == 1, which, in turn, causes the system to fail. Table 7 shows

the case numbers and the probabilities associated with each case. It is clear that these case

probabilities are marking dependent since the coverage factors are dependent on the state

of the system.

The input gate IG1 is used to determine whether the timed activity cpu failure is enabled

in the current marking, hence, can complete. This activity is enabled only if at least 2

working CPU units are available and their corresponding computer and the system have

not failed. Table 8 shows the predicate and function associated with this gate.

The output gates, OG1, OG2 and OG3, are used to determine the next marking based

on the current marking and the case chosen when cpu failure completes. Table 9 lists the

output gates and the function of each gate.

Another way to model the failure of CPU modules would be to model the failure of

a single CPU module as a SAN and replicate this model three times. However, since the

failure of any chip inside the CPU module causes the CPU to fail, and each chip is assumed

to have an exponentially distributed failure rate, the failure rate of one CPU module is just

the sum of the failure rates of the 6 CPU chips. Therefore, modeling the failure of one

CPU module, then replicating this model three times, is equivalent to the cpu modules

submodel described above. Either way will generate an equivalent number of states. In

contrast, a signi�cant state space reduction can be achieved by modeling one memory

14

Table 7: cpu modules Case Probabilities for Activities

Case Probability

module cpu failure

1 if (MARK(cpus) == 3)
return(0:995);

else

return(0:0);
2 if (MARK(cpus) == 3)

return(0:00475);
else

return(0:95);
3 if (MARK(cpus) == 3)

return(0:00025);
else

return(0:05);

Table 8: cpu modules Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(cpus) > 1) &&
(MARK(memory failed) < 2) &&
(MARK(computer failed) < 2)

identity

Table 9: cpu modules Output Gate Functions

Gate Function

OG1 if (MARK(cpus) == 3)
MARK(cpus)��;

OG2 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(errorhandlers) = 0;
MARK(memory failed) = 2;
MARK(computer failed) + +;

OG3 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(errorhandlers) = 0;
MARK(memory failed) = 2;
MARK(computer failed) = 2;

15

memory_chips

interface_chips

IG1

IG2
interface_chip_failure

memory_chip_failure

OG1

OG2

OG3

computer_failed

OG5

OG6

OG7

memory_failed

OG4

Figure 5: SAN Submodel of the memory module

module as a SAN and replicating this model three times as compared to modeling the

failure of the three memory module in one SAN. This is because the failure of a single RAM

chip does not cause the memory module to fail and, hence, a memory module can not be

modeled as a single entity.

The SAN submodel of the I/O ports, memory module, and the two error-handling chips

are shown in Figures 1, 5, and 6, respectively. The line of reasoning followed in modeling

each of these components is similar to that followed in modeling the cpu modules. (Note

similarity between 1 and 4.) In the joined model of one computer, places that have the

same name are joined together, hence, treated as single places among all system submodels.

The tables associated with each submodel are also shown in Appendix A.

Using the reward structure formalism de�ned in section II, we de�ne the multiprocessor

system reliability in terms of the following rate reward

C(a) = 0; 8 activities a

16

OG1

OG2

ioports

errorhandlers
memory_failed

computer_failed

IG1

cpus

errorhandling_chip_failure

Figure 6: SAN Submodel of the errorhandlers

R(�) =

(
0 if � = f(computer failed; 2)g
1 otherwise,

where C(a) is the impulse reward associated with the the completion of activity a, and R(�)

is a rate reward of zero when the marking of computer failed is 2, and one, otherwise. Then,

if we de�ne Vt as the instant-of-time variable at time t and Vt!1 as the limit of this variable

at t!1, E[Vt] is the reliability at time t.

The reliability of the system was then evaluated using UltraSAN transient solver, for

20 years mission time. The result of this evaluation is shown in Figure 7. The state space

of the reduced base model consists of 10114 states. In addition, the reliability of 6 other

design variations of the design described above are measured. Table 10 lists the 7 di�erent

designs, and the size of the reduced base model, and reliability of each design assuming 10

years mission time.

B Distributed Database Architecture

The second system considered is a distributed architecture for a database system, as

shown in Figure 8. This example, which is a modi�ed version of the examples given in [12]

and [32], is intended to illustrate the use of reduced base model construction technique in

evaluating database and �le systems. The database consists of 6 disk clusters, 2 sets of disk

controllers, and 2 processors. Each disk cluster consists of 4 disks. Data on each disk is

replicated such that one third of the data is on each of the other three disks in the same

17

|
0.0

|
2.0

|
4.0

|
6.0

|
8.0

|
10.0

|
12.0

|
14.0

|
16.0

|
18.0

|
20.0

|0.98

|0.99

|1.00

 Coverage Considered at Each Level

 Years

 R
el

ia
bi

lit
y �

�

�

�

�

�

�

�

�

�

�

Figure 7: Reliability vs. Mission Time

Table 10: Reliability for Di�erent System Designs

Design Description State Space
Size

Reliability
(10 Years Mission
Time)

100% coverage at all levels 4278 0.999539
Non-perfect coverage considered at all levels 10114 0:995579
Non-perfect coverage considered at all levels, no
spare memory module

1335 0.987646

Non-perfect coverage considered at all levels, no
spare CPU module

3299 0:973325

Non-perfect coverage considered at all levels, no
spare I/O port

3299 0:985419

Non-perfect coverage considered at all levels, no
spare memory module, CPU module, or I/O port

511 0:935152

100% coverage at all levels, no spare memory mod-
ule, CPU module, I/O port, or RAM chips

6 0:702240

18

disk cluster 1

spare

processor

disk cluster 3 disk cluster 4 disk cluster 6

disk
controllers

....

Figure 8: Database System

cluster. The disk clusters are placed into two groups, where each group contains 3 disk

clusters. One set of controllers is connected to each group of disk clusters. Each processor

can access the data on any disk cluster through the disk controllers.

The database system is considered to be operational if at least one processor can access

the data in each disk cluster. Thus, the criteria for correct operation is that at least one

processor, at least one disk controller in each set of controllers, and at least 3 disks in each

disk cluster are operational. System repair is carried out by having one repair facility for

each disk cluster, one repair facility for each set of controllers, and one repair facility for

the two processors. Furthermore, we assume that components can continue to fail even if

the system is in a failed state. Each repair facility repairs one component at a time. Repair

on a given component starts as soon as its corresponding repair facility becomes free. If the

system is in a failed state, it goes back into a working state when enough components have

been repaired for the system to be in an operational state. For our numerical solution, we

let the failure and repair rates for the components be, as in [32], the values listed in table

11.

For this system, both reliability and steady-state availability can be evaluated. We �rst

consider the steady-state availability of the database. The composed model of the database

system availability is shown in Figure 9. Replicate and Join operations are applied on three

availability submodels, disks, controllers, and processors, to generate the composed

19

Table 11: Components Per Hour Failure and Repair Rates for the Database System

Component Failure Rate Repair Rate

Processor 1/2000 1
Disk controller 1/2000 1
Disk 1/6000 1

disks

Rep controllers

Join

Rep processors

Join

Figure 9: Composed Availability Model for Database System

model. The submodel disks represents the failure and repair of disks in a given disk

cluster. The submodel controllers represents the failure and repair of disk controllers in

one set of controllers. The submodel processors models the failure and repair of the two

processors. The disks submodel is �rst replicated 3 times, then joined with one set of

controllers. This composed submodel represents one-half of the database, controlled by a

replicated disk controller. This submodel is then replicated 2 times before it is joined with

the processors submodel to generate the composed model of the database system used to

determine steady-state availability.

The SAN submodel of a single disk cluster is shown in Figure 10. This submodel

contains three places, disks working, disks failed, and system fail. Disk failure and repair is

represented by the timed activities disk failure, and disk repair, respectively. The marking

of disks working indicates the current number of disks that are operational in a given disk

20

system_fail

disk_failure
disks_failed

disk_repair
disks_working OG1 OG2

Figure 10: SAN Availability Submodel of a Disk Cluster

Table 12: Disks Availability Submodel Activity Time Distributions

Activity Distribution

disk failure expon(1/6000.0 * MARK(disks working))
disk repair expon(1.0)

cluster, initially 4. If a disk fails, i.e. the activity disk failure completes, then the marking

of disks working is decremented by one and the marking of disks failed is incremented by

one. If the number of operational disks in a given disk cluster becomes less than three, the

marking of system fail is incremented by one.

Whenever a failed disk's repair is complete (i.e., activity disk repair completes) the

status of the corresponding disk cluster is evaluated to see whether it should become op-

erational, if it was not. More speci�cally, if the disk cluster was in a failed state, e.g.,

MARK(disks working) == 2, and now it is in a working state, i.e., MARK(disks working)

== 3, the marking of system fail is decremented by one. The marking of system fail can

be as high as 9 due to the failure of the 6 disk clusters, the two sets of controllers, and the

two processors. The system is considered operational only if the marking of system fail is

zero. The completion rates of the timed activities in each disk cluster submodel are listed

in table 12. The input gate predicates and functions for this SAN submodel are also listed

in table 13.

The SAN submodels for the disk controllers, the two processors, and the tables asso-

21

Table 13: Disks Availability Submodel Output Gate Functions

Gate Function

OG1 MARK(disks failed) + +;
if (MARK(disks working) == 2)
MARK(system fail) + +;

OG2 MARK(disks working) + +;
if (MARK(disks working) == 3)
MARK(system fail)��;

ciated with each submodel are shown in appendix A. The construction of these models is

similar to that for the disk cluster and, hence, will not be discussed here. Using the com-

plete composed model, the steady-state availability was determined by using UltraSAN to

construct the reduced base model for the composed model, and solving it using available

state-state Markov solution methods. The following rate reward variable is de�ned for the

database system availability,

C(a) = 0; 8 activities a

R(�) =

(
1 if � = f(system fail; 0)g
0 otherwise,

where R and Vt!1 are as de�ned previously. The steady-state availability is E[Vt!1]. For

the parameters used the steady state availability was evaluated using the steady-state solver

in UltraSAN and found to be 0.999997. The reduced base model size is 16695 states.

The reliability of the database system discussed above can also be determined. To do

this, we use the same composed model structure as that used to determine steady-state

availability, but must change the SAN submodels which represent the individual system

components. Speci�cally, in determining the reliability of the system, it is not necessary to

consider component repair. The SAN submodel used for the reliability of a disk cluster is

shown in Figure 11. The tables associated with this submodel are given in table 14 and 15.

As is readily apparent, this model is a simpli�cation of that used to determine steady-state

availability, in which repair times are not considered. The remaining SAN submodels used

(for each set of controllers and the two processors), and the tables associated with them are

also given in appendix A.

22

IG1

system_fail

disk_failure

disks

Figure 11: SAN Reliability Submodel of a Disk Cluster

Table 14: Disk Cluster Reliability Submodel Activity Time Distributions

Activity Distribution

disk failure expon(1/6000.0 * MARK(disks))

Table 15: Disk Cluster Reliability Submodel Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(disks) > 2) &&
(MARK(system fail) == 0)

MARK(disks)��;

if (MARK(disks) == 2) f

MARK(system fail) = 1;

MARK(disks) = 0;

g

23

Table 16: Database System Reliability for Di�erent Designs

Design Description State
Space
Size

Reliability
(5 Weeks
Mission
Time)

6 disk clusters, 2 controller sets, and 2 processors 268 0:425082
6 disk clusters + 1 spare disk per cluster, 2 controller sets,
and 2 processors

1510 0:650810

6 disk clusters + 1 spare disk per cluster, 2 controller sets
+ 1 spare controller per set, and 2 processors

3075 0:769799

|
0.0

|
1.0

|
2.0

|
3.0

|
4.0

|
5.0

|0.00

|0.10

|0.20

|0.30

|0.40

|0.50

|0.60

|0.70

|0.80

|0.90

|1.00

 6 Disk Clusters, 2 Controller Sets, and 2 Processors

 Weeks

 R
el

ia
bi

lit
y �

�

�

�

�

�

Figure 12: Database System Reliability vs. Mission Time

Using the same reward structure used for database system availability and reward vari-

able E[Vt] to de�ne database system reliability, the result is plotted for a 5 week mission

time in Figure 12. The state space of the reduced base model used to model reliability

consists of 268 states. In addition, for comparison, the reliability of several other design

variations are also evaluated and the results are tabulated in table 16.

C Multiprocessor-Multimemory System

The third system considered is a multiprocessor-multimemory system (MPMMS), shown

in Figure 13 [33]. In this system there are 16 processors that share 16 memories. The proces-

sors are connected to the memories through a 2 stage omega network which is constructed

24

processors

memories

stage 1
stage 2

F
igu

re
13:

16
P
ro
cessors

an
d
16

M
em

ories
In
tercon

n
ected

U
sin

g
an

O
m
ega

N
etw

ork
W
ith

E
igh

t
4x
4
S
w
itch

in
g
E
lem

en
ts

T
ab
le
17:

C
om

p
on
en
ts
F
ailu

re
an
d
R
ep
air

R
ates

for
M
P
M
M
S

C
o
m
p
o
n
e
n
t

F
a
ilu
re

R
a
te

P
ro
cesso

r
0
.0
0
0
0
6
8
9

M
em

o
ry

0
.0
0
0
2
2
4
1

S
w
itch

0
.0
0
0
0
1
0
1
2

from
eigh

t
4x
4
sw

itch
in
g
elem

en
ts

(S
E
s).

T
h
rou

gh
th
e
sw

itch
in
g
elem

en
ts

an
y
p
ro
cessor

can
com

m
u
n
icate

w
ith

all
m
em

ories.
T
h
e
sy
stem

is
con

sid
ered

op
eration

al
as

lon
g
as

at

least
U
p
ro
cessors

can
access

at
least

V
m
em

ories.
T
o
illu

strate
th
e
evalu

ation
of

a
sy
stem

su
ch

as
th
is,

w
e
con

sid
er

th
e
case

w
h
ere

U
=

V
=

4.
T
h
e
failu

re
rate

p
er

h
ou
r
for

th
e

com
p
on
en
ts

in
th
is
sy
stem

are
sh
ow

n
in

tab
le
17.

T
h
e
com

p
osed

m
o
d
el

u
sed

to
d
eterm

in
e
th
e
reliab

ility
of

th
e
M
P
M
M
S
is

sh
ow

n
in

F
igu

re
14.

E
ach

of
th
e
S
A
N
su
b
m
o
d
els

in
th
e
com

p
osed

m
o
d
el
(i.e.,

sta
g
e
1
an
d
sta

g
e
2
)

is
rep

licated
4
tim

es.
T
h
e
rep

licated
su
b
m
o
d
els

are
th
en

join
ed

togeth
er

to
gen

erate
th
e

com
p
lete

com
p
osed

m
o
d
el
of

th
e
M
P
M
M
S
u
sed

to
d
eterm

in
e
its

reliab
ility.

T
h
e
S
A
N

su
b
m
o
d
el
of

th
e
�
rst

stage
of

sw
itch

in
g
elem

en
ts

(i.e.,
sta

g
e
1
)
is
sh
ow

n
in

F
igu

re
15.

In
th
is
S
A
N
,
th
e
failu

re
of
a
sw

itch
an
d
th
e
failu

re
of
th
e
p
ro
cessors

con
n
ected

to

th
is
sw

itch
are

m
o
d
eled

.
In

p
articu

lar,
com

p
letion

of
tim

ed
activ

ity
p
rocesso

r
fa
ilu

re
rep

-

resen
ts

th
e
failu

re
of

a
p
ro
cessor.

S
im

ilarly,
w
h
en

S
E
fa
ilu

re
com

p
letes,

a
sw

itch
fails

an
d
,

25

stage1 stage2

Rep Rep

Join

Figure 14: Composed Reliability Model of the MPMMS

processors

IG1
processor_failure

processors_failed

memories_failed

IG2
SE_failure

Figure 15: SAN Reliability Submodel of stage1

hence, all working processors that are connected to this switch lose the ability to commu-

nicate (see table 19). The system fails if the number of failed processors or failed memories

is greater than 12 (i.e., there are at least four functioning processors and memories).

The SAN submodel stage2, shown in appendix A, is similar to the reliability submodel

of stage 1. In the stage2 SAN, the failure of a switch and the failure of the 4 memories

connected to this switch are modeled. The tables associated with this submodel are also

shown in appendix A.

The following reward variable can be used to de�ne the MPMMS reliability,

C(a) = 0; 8 activities a

26

Table 18: stage1 Reliability Submodel Activity Time Distributions

Activity Distribution

SE failure expon(0.00001012)
processor failure expon(0.0000689 * MARK(processors))

Table 19: stage1 Reliability Submodel Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(processors) > 0) &&
(MARK(processors failed) < 13)
&&(MARK(memories failed) < 13)

MARK(processors)��;

MARK(processors failed) + +;

IG2 (MARK(processors) > 0) &&
(MARK(processors failed) < 13) &&
(MARK(memories failed) < 13)

MARK(processors failed) =
MARK(processors failed) +
MARK(processors);

MARK(processors) = 0;

R(�) =

(
0 if � = f(processors failed; i); (memory failed; j)g; 8 i; j 12 < i < 17 or 12 < j < 17
1 otherwise,

where E[Vt] is the reliability at time t.

The reliability of the MPMMS for 12000 hours mission time is plotted in Figure 16, for

various mission times. The state space size for this model is 4851 states. In addition, the

reliability of the MPMMS was also evaluated for di�erent values of K=U=V, the results

are shown in table 20.

Table 20: MPMMS Reliability for Di�erent Values of K=U=V

K State Space Size Reliability (1000 Hours Mission Time)

4 4851 0.999856
8 3081 0.994883
12 480 0.747444
16 5 0.008489

27

|
0.0

|
2000.0

|
4000.0

|
6000.0

|
8000.0

|
10000.0

|
12000.0

|0.00

|0.10

|0.20

|0.30

|0.40

|0.50

|0.60

|0.70

|0.80

|0.90

|1.00

|1.10

 K = U = V = 4

 Hours

 R
el

ia
bi

lit
y

� �

�

�

�

�

�

Figure 16: MPMMS Reliability vs. Mission Time

IV Conclusions

The purpose of this paper was to investigate the applicability of stochastic activity

networks and reduced base model construction to modeling medium to large fault-tolerant

parallel and distributed systems. In order to do this, we considered their applicability

to three representative systems: a fault-tolerant parallel computing system, a distributed

database architecture, and a multiprocessor-memory system. We showed that models of

these systems can be easily constructed using stochastic activity networks, and that the

processes that resulted from the reduced base model construction procedure were solvable.

The results obtained were exact, to the numerical accuracy desired. Approximate techniques

can solve larger problems than can be solved using these techniques, but the example

systems considered illustrate that these methods indeed can be used to solved models of

many realistic systems.

More speci�cally, with respect to the �rst example, we provided an exact solution for

the reliability of the fault-tolerant multiprocessor system for the case of two computers at

the highest level. The technique discussed in [13] was used to solve this example for up

to ten computers at the highest level, but was approximate, with no bounds given on the

approximation. Architectures similar to the second example, a distributed database system,

have been investigated by other researchers using importance sampling and simulation [32]

28

and a state truncation technique [12]. The state-truncation technique does not require that

the failure rates on identical subsystems be the same, but as with the technique in [13] is

approximate. Finally, the third example, a multiprocessor-multimemory system, has been

considered by [33], who provided an exact solution, but built the state space directly at the

state level. This works for small systems or those with a very regular structure, but is much

too tedious for many systems.

In summary, stochastic activity networks and the reduced base model construction tech-

nique work well, and provide an exact solution, for many medium size, but realistic systems.

They can be used when the system considered has some replicated components, as is the

case with most fault-tolerant parallel and distributed systems. Models can be constructed

at the network, rather than state, level and many design speci�cs, such as coverage, can be

incorporated that can have a direct impact on system dependability.

REFERENCES

[1] A. M. Johnson, Jr. and M. Malek, \Survey of software tools for evaluating reliability,
availability and serviceability," ACM Computing Surveys, vol. 20, pp. 227{269, Dec.
1988.

[2] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg and K. .S. Trivedi , \The
system availability estimator," in Proceedings of FTCS-16, pp. 84{89, July, 1986.

[3] S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothmann and W. E. Smith \Analysis
of typical fault-tolerant architectures using HARP," IEEE Transactions on Reliability,
vol. R-36, pp. 176{185, June 1987.

[4] G. Ciardo, J. Muppala and K. S. Trivedi, \SPNP: Stochastic Petri net package," in Pro-
ceedings of the Third International Workshop on Petri-nets and Performance Models,
pp. 142{151, 1989.

[5] G. Chiola \A software package for the analysis of generalized stochastic Petri net
models," in Proceedings of the International Workshop on Timed Petri nets, pp. 136{
143, 1985.

[6] W. H. Sanders and J. F. Meyer, \METASAN: A performability evaluation tool based
on stochastic activity networks," in Proceedings of the 1986 Fall Joint Conference,
pp. 807{816, Computer Society Press, 1986.

[7] B. R. Haverkort and I. G. Niemegeers, \Performability modeling using dynamic queue-
ing networks," in Performance Evaluation Review, vol. 17, p. 225, 1989.

[8] J. A. Carrasaco and J. Figueras , \METFAC: Design and implementation of a software
tool for modeling and evaluation of complex fault-tolerant computing systems," in
Proceedings of FTCS-16, pp. 424{429, 1986.

29

[9] S. Berson, E. de Souza e Silva and R. R. Muntz, \An object oriented methodology
for the speci�cation of Markov models," in The First International Conference on the
Numerical Solutions of Markov Chains, pp. 2{29, 1990.

[10] R. A. Sahner and K. S. Trivedi, \Reliability modeling using SHARPE," IEEE Trans-
actions on Reliability, vol. R-36, pp. 186{193, June 1987.

[11] A. L. White and D. L. Palumbo, \State reduction of semi-Markov reliability models,"
1990 Proceedings annual Reliability and Maintainability Symposium, pp. 280{285, 1990.

[12] R. R. Muntz, E. de Souza e Silva and A. Goyal, \Bounding availability of repairable
computer systems,"Performance Evaluation Review, vol. 17, pp. 29{38, May 1989.

[13] D. Lee, J. Abraham, D. Rennels and G. Gilley, \A numerical technique for the eval-
uation of large, closed fault-tolerant systems," in Dependable Computing for Critical
Applications 2, eds. J.F. Meyer and R.D. Schlichting, Springer-Verlag, Wien, pp. 95{
114, 1992.

[14] J. C. Kemeny and J. L. Snell, Finite Markov Chains, Princeton: D. Van Nostrand
Co., Inc., 1969.

[15] A. Zenie, \Colored stochastic Petri nets," in Proc. International Workshop on Timed
Petri Nets, pp. 262{271, Torino, Italy, July 1985.

[16] C. Lin and D. C. Marinescu, \Stochastic high-level Petri nets and applications," IEEE
Trans. on Computers, vol. C-37, no. 7, pp. 815{825, July 1988.

[17] C. Dutheillet and S. Haddad, \Regular stochastic Petri nets," Proc. Tenth European
Workshop on Application and Theory of Petri Nets, Bonn, W. Germany, June 1989.

[18] G. Chiola and G. Franceschinis, \Colored GSPN models and automatic symmetry
detection," Proc. Third International Workshop of Petri Nets and Performance Models,
Kyoto, Japan, Dec. 1989.

[19] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, \On well-formed coloured
nets and their symbolic reachability graph", Proc. Eleventh International Conference
on Application and Theory of Petri Nets, Paris, France, June 1990.

[20] W. H. Sanders and J. F. Meyer, \Reduced base model construction methods for stochas-
tic activity networks," IEEE Journal on Selected Areas in Communications, vol. 9,
pp. 25{36, Jan. 1991.

[21] T. F. Arnold, \The concept of coverage and its e�ect on the reliability model of a
repairable system," IEEE Transactions on Computers , vol. C-22, pp. 251{254, Mar.
1973.

[22] J. B. Dugan and K. S. Trivedi, \Coverage modeling for dependability analysis of fault-
tolerant systems," IEEE Transactions on Computers , vol. 38, pp. 775{787, June 1989.

[23] J. A. Couvillion, R. Freire, R. Johnson, W. D. Obal II, M. A. Qureshi, M. Rai,
W. H. Sanders and J. Tvedt , \Performability modeling with UltraSAN," IEEE Soft-
ware, pp. 69{80. Sept. 1991.

30

[24] A. Movaghar and J. F. Meyer, \Performability modeling with stochastic activity net-
works," in Proc. 1984 Real-Time Systems Symp., Austin, TX, Dec. 1984.

[25] J. F. Meyer, A. Movaghar andW. H. Sanders, \Stochastic activity networks: Structure,
behavior, and application," in Proc. International Workshop on Timed Petri nets,
Torino, Italy, July 1985, pp. 106{115.

[26] W. H. Sanders, \Construction and solution of performability models based on stochas-
tic activity networks," Computing Research Laboratory Technical Report CRL-TR-9-
88, The University of Michigan, Ann Arbor, MI, August 1988.

[27] M. A. Marsan, G. Balbo, G. Chiola, and G. Conte,\Generalized stochastic Petri nets
revisited: random switches and priorities," in Proc. International Workshop on Petri
nets and performance models, Madison, Wisconsin, August 1987, pp. 44{53.

[28] R. A. Howard, Dynamic Probabilistic Systems, Vol II : Semi-Markov and Decision
Processes, New York: Wiley, 1971

[29] J. F. Meyer, \On evaluating the performability of degradable computing systems,"
IEEE Transactions on Computers, vol. C-22, pp. 720{731, Aug. 1980.

[30] D. Gross and D. R. Miller, \The randomization technique as a modeling tool and
solution procedure for transient Markov processes," in Operations Research, vol. 32,
no. 2, pp. 343-361, March-April 1984.

[31] W. H. Sanders and J. F. Meyer, \A uni�ed approach for specifying measures of per-
formance, dependability and performability," in Dependable Computing for Critical
Applications, eds. A. Avizienis and J. C. Laprie, Springer-Verlag, Wien, pp. 216{237,
1991.

[32] V. F. Nicola, M. K. Nakayama, P. Heidelberger and A. Goyal \Fast simulation of
dependability models with general failure and maintenance processes," The Twentieth
International Conference of Fault-Tolerant Computing, pp. 491{498, June 1990.

[33] J. T. Blake, A. L. Reibman and K. S. Trivedi \Sensitivity analysis of reliability and
performability measures for multiprocessor system," Proceedings of the 1988 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems, pp. 177{
186, May 1988.

V Appendix A

Table 21: memory module Activity Time Distributions

Activity Distribution

interface chip failure expon(0.0008766 * MARK(interface chips))
memory chip failure expon(0.0008766 * MARK(memory chips))

31

Table 22: memory module Case Probabilities for Activities

Activity Case Probability

interface chip failure 1 0.95
2 0.0475
3 0.0025

Table 23: memory module Case Probabilities for Activities

Case Probability

module memory chip failure

1 if (MARK(memory chips) == 39)
return(0:0);

else

return(0:998);
2 if (MARK(memory chips) == 39)

return(0:95);
else

return(0:0019);
3 if (MARK(memory chips) == 39)

return(0:0475);
else

return(0:000095);
4 if(MARK(memory chips) == 39)

return(0:0025);
else

return(0:000005);

Table 24: memory module Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(memory chips) > 38) &&
(MARK(computer failed) < 2) &&
(MARK(memory failed) < 2)

identity

IG2 (MARK(interface chips) > 1) &&
(MARK(memory failed) < 2) &&
(MARK(computer failed) < 2)

MARK(memory chips) = 0;

32

Table 25: memory module Output Gate Functions

Gate Function

OG1 if (MARK(memory chips) > 39)
MARK(memory chips)��;

OG2 MARK(memory chips) = 0;
MARK(interface chips) = 0;
MARK(memory failed) + +;
if (MARK(memory failed) > 1)
MARK(computer failed) + +;

OG3 MARK(memory chips) = 0;
MARK(interface chips) = 0;
if ((MARK(memory failed) == 1) && (MARK(computer failed) == 0)) f

MARK(memory failed) = 2;
MARK(computer failed) = 2;
g

else f
MARK(memory failed) = 2;
MARK(computer failed) + +;
g

OG4 MARK(memory chips) = 0;
MARK(interface chips) = 0;
MARK(memory failed) = 2;
MARK(computer failed) = 2;

OG5 MARK(interface chips) = 0;
MARK(memory failed) + +;
if (MARK(memory failed) > 1)

MARK(computer failed) + +;
OG6 MARK(interface chips) = 0;

if ((MARK(memory failed) == 1) && (MARK(computer failed) == 0)) f
MARK(memory failed) = 2;
MARK(computer failed) = 2;
g

else f
MARK(memory failed) = 2;
MARK(computer failed) + +;
g

OG7 MARK(interface chips) = 0;
MARK(memory failed) = 2;
MARK(computer failed) = 2;

Table 26: errorhandlers Activity Time Distributions

Activity Distribution

errorhandling chip failure expon(0.0008766 * MARK(errorhandlers))

33

Table 27: errorhandlers Case Probabilities for Activities

Activity Case Probability

errorhandling chip failure 1 0.95
2 0.05

Table 28: errorhandlers Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(errorhandlers) == 2) &&
(MARK(memory failed) < 2) &&
(MARK(computer failed) < 2)

MARK(errorhandlers) = 0;

Table 29: errorhandlers Output Gate Functions

Gate Function

OG1 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(memory failed) = 2;
MARK(computer failed) + +;

OG2 MARK(cpus) = 0;
MARK(ioports) = 0;
MARK(memory failed) = 2;
MARK(computer failed) = 2; ;

34

controller_failure
controllers_failed

system_fail

controllers_working OG1 OG2
controller_repair

Figure 17: SAN Availability Submodel of a Set of Controllers

Table 30: A Set of Controllers Availability Submodel Activity Time Distributions

Activity Distribution

controller failure expon(1/2000.0 * MARK(controllers working))
controller repaire expon(1.0)

35

Table 31: A set of Controllers Availability Submodel Output Gate Functions

Gate Function

OG1 MARK(controllers failed) + +;
if(MARK(controllers working) == 0)
MARK(system fail) + +;

OG2 MARK(controllers working) + +;
if(MARK(controllers working) == 1)
MARK(system fail)��;

processor_failure
processor_repair

system_fail

processors_failed
processors_working OG1

OG2

Figure 18: SAN Availability Submodel of the Two Processors

Table 32: processors Availability Submodel Activity Time Distributions

Activity Distribution

processor failure expon(1/2000.0 * MARK(processors working))
processor repair expon(1.0)

Table 33: processors Availability Submodel Output Gate Functions

Gate Function

OG1 MARK(processors failed) + +;
if(MARK(processors working) == 0)
MARK(system fail) + +;

OG2 MARK(processors working) + +;
if(MARK(processors working) == 1)
MARK(system fail)��;

36

controllers

controller_failure

system_fail

IG1

Figure 19: SAN Reliability Submodel of a Set of Controllers

Table 34: Set of Controllers Reliability Submodel Activity Time Distributions

Activity Distribution

controller failure expon(1/2000.0 * MARK(controllers))

Table 35: Set of Controllers Reliability Submodel Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(controllers) > 0) &&
(MARK(system fail) == 0)

MARK(controllers)��;

if (MARK(controllers) == 0)
MARK(system fail) = 1 ;

IG1
processor_failure

system_fail

processors

Figure 20: SAN Reliability Submodel of the Two Processors

Table 36: processors Reliability Submodel Activity Time Distributions

Activity Distribution

processor failure expon(1/2000.0 * MARK(processors))

37

Table 37: processors Reliability Submodel Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(processors) > 0) &&
(MARK(system fail) == 0)

MARK(processors)��;

if(MARK(processors) == 0)
MARK(system fail) = 1;

IG1

processors_failed

memories_failed

IG2
SE_failure

memories

memory_failure

Figure 21: SAN Reliability Submodel of stage2

Table 38: Stage2 Reliability Submodel Activity Time Distributions

Activity Distribution

SE failure expon(0.00001012)
memory failure expon(0.0002241 * MARK(memories))

Table 39: stage2 Reliability Submodel Input Gate Predicates and Functions

Gate Enabling Predicate Function

IG1 (MARK(memories) > 0) &&
(MARK(processors failed) < 13) &&
(MARK(memories failed) < 13)

MARK(memories)��;

MARK(memories failed) + +;
IG2 (MARK(memories) > 0) &&

(MARK(processors failed) < 13) &&
(MARK(memories failed) < 13)

MARK(memories failed) =
MARK(memories failed) +
MARK(memories);
MARK(memories) = 0;

38

