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1995, IEEE IEEE Real-Time Technology & Applications Symposium, May 1995Distributed Synthesis of Real-Time Computer SystemsAhmad Abualsamid Raed Alqadi Parameswaran RamanathanDepartment of Electrical and Computer EngineeringUniversity of Wisconsin{MadisonMadison, WI 53706{1691.parmesh@ece.wisc.edu, (608) 263{0557AbstractHigh-level synthesis has become commonplace inmany areas of computing such as VLSI design anddigital signal processing. However, it is just begin-ning to receive attention in the area of real-time sys-tems. Given a real-time application and a designlibrary of components, high-level synthesis involvesthree main steps: (i) estimation of processors and re-sources required to meet the constraints of the appli-cation, (ii) identifying suitable architectures using thecomponents from the design library, and (iii) schedul-ing application tasks on the selected architecture. Inthis paper, we focus on the �rst and the third stepsof this process. Speci�cally, we identify key issuesin parallelizing these two steps. We then discuss ap-proaches to deal with these issues and present resultsof our distributed implementation. The results of thisimplementation on a network of workstations showthat considerable speedup in overall runtimes can beachieved by using multiple workstations.1 IntroductionTasks in a real-time application usually have dead-line constraints by which they must complete theirexecution. Failure to complete a computation withina task's deadline may lead to a catastrophe. Examplesof such applications include 
ight-control systems, life-support systems, nuclear power-plants and process-control systems. Due to the severity of the conse-quences, a distributed computing system is often ded-icated to the tasks in a real-time application. Thissystem must be carefully designed to ensure that allthe constraints of the application are satis�ed. How-ever, due to the large number of constraints involvedand due to the numerous design alternatives, design-ing such a computer system is a very di�cult prob-lem. This problem can be alleviated with the help ofcomputer-aided synthesis (CAS) tools which facilitatethe search and evaluation of design alternatives. ThisThe work reported here is supported in part by the NationalScience Foundation grant MIP-9213716.

approach has been successful in other areas of comput-ing such as VLSI design and digital signal processing.However, the approach is just beginning to receive at-tention in the area of real-time systems [2, 7, 9].The main issue in the design of CAS tools is theirruntime complexity. Due to the large search space, thetime required for synthesis may be unacceptably largefor use in \real" applications. To overcome this prob-lem, we have been developing algorithms/heuristicswhich run in a distributed fashion on a network ofworkstations and/or parallel computing systems. Inthis paper, we describe our techniques for such a dis-tributed synthesis of computer systems for real-timeapplications. We have implemented two key steps inthe synthesis process, namely lower bound analysisand scheduling, on a network of workstations. Thelower bound analysis step estimates the number ofprocessors and resources required to meet the con-straints of the application while the scheduling stepveri�es whether the application constraints are sat-is�ed on a candidate architecture. The implementa-tion is done using the Parallel Virtual Machine (PVM)message passing system [6]. The results of this imple-mentation demonstrate that the use of a distributedsystem for computer-aided synthesis has a tremendouspotential.The rest of this paper is organized as follows. Sec-tion 2 contains an overview of the synthesis process.Then, Section 3 identi�es some of the issues in paral-lelizing the lower bound analysis step of the synthe-sis process and then discusses solutions to deal withthem. Section 4 similarly deals with the schedulingstep of the synthesis process. The results of an em-pirical evaluation of our distributed implementationare presented in Section 5. The paper concludes withSection 6.2 Overview of the synthesistoolThe inputs to our synthesis system are a design li-brary of components, and the mission-critical applica-



Figure 1: An example real-time application.tion. The output includes a heterogeneous architec-ture containing components from the design library, amapping of the tasks in the application onto the mod-ules in the architecture, and a schedule for the tasksand messages in the application. The design librarycontains processors, resources, and interconnects fromwhich the distributed system is to be synthesized.Components in the design library are characterizedby attributes such as performance and cost. The ap-plication is speci�ed as a set of cooperating tasks andthe constraints that each task must satisfy, e.g., a taskmay have deadline constraints, resource requirements,precedence relations, computational needs, etc. Theobjective is to identify the lowest cost computer sys-tem (constructed using the components in the designlibrary) which satis�es all the constraints of the appli-cation.For example, Figure 1 shows a simple applicationwith 10 non-preemptive tasks. The tasks are num-bered from 1 to 10. Each task is annotated with itscomputation time and its resource requirements (e.g.,task 10 requires 6 units of computation on processorof type P1 and resource r1). Tasks 1, 2, 3, and 7 arealso annotated with their release times. Tasks 8{10are annotated with their deadlines. The precedencerelationships between the tasks is shown by a directedarrow (e.g., tasks 1 and 2 must complete their exe-cution before task 5 can begin its execution). After atask completes its execution it sends information to itssuccessors. A task must receive this information fromits predecessors before it can begin its execution. Ifa task and its successor are assigned to two di�erentprocessors, then the information is sent in the formof a message. The size of the message is indicatedalongside the directed arrow.For this application, the design library must con-tain several copies of a processor of type P1 and aresource of type r1. The synthesis system will selectappropriate number of copies of processor P1 and re-source r1 and determine an interconnection structurebetween them. In this paper, we assume that the se-lected processors are interconnected through a set ofshared buses. Each processor can send or receive onall the buses in the system. Furthermore, we assumethat there is a separate interconnection between theprocessors and the resources. The design of that com-munication network is not considered in this paper,i.e., we assume that the communicationbetween a pro-cessor and a resource takes place instantaneously andthere is no need to schedule those communications.

Given a real-time application and a design libraryof resources, the key steps in the synthesis process are:1. Lower Bound Analysis: Compute a lower boundon the number of processors, resources, and inter-connects required to meet the constraints of theapplication.2. Module Selection:(a) Choose processors and resources from thedesign library for inclusion in the architec-ture.(b) Identify a suitable interconnection structurebetween the selected components.3. Scheduling: Evaluate the architecture identi�edin Step 2 by scheduling the application tasks andthe resulting messages on the architecture.4. Terminate if a satisfactory solution is found. Oth-erwise, go to Step 2 and improve the architecturebased on the results from Step 3.The lower bound analysis step is considerably longerthan the other steps, thus it is essential to parallelizeit. Steps 2 and 3 will be invoked many times dur-ing the synthesis process, thus they also need to beparallelized.3 Distributed Lower BoundAnalysisFernandez and Bussell [4] did one of the earliestwork on determining a lower bound for the numberof processors required to schedule a given applica-tion within its critical time. They considered applica-tions in which the tasks have integer execution timesand precedence relationships, but, zero communica-tion time with other tasks. Al-Mohummed [1] ex-tended the algorithm in [4] to applications in whichthe communication requirements between the tasksis non-zero. However, Al-Mohummed's work did notdeal with many of the constraints commonly found inreal-time applications. Just recently, Alqadi and Ra-manathan extended the algorithm in [1] to deal withrelease time, deadline, and resource constraints [3].The implementation in this paper is based on the the-oretical results in [3]. However, several issues had tobe resolved in converting the results to an e�cientimplementation. Before describing these issues, webrie
y review the results from [3].3.1 Informal Overview of LowerBound AnalysisThe lower bound analysis in [3] has four basic steps:
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C=5Figure 2: An example application for illustration ofEST analysis.1. EST Analysis: Compute the earliest start time(EST) of each task in the application.2. LCT Analysis: Compute the latest completiontime (LCT) of each task in the application.3. Partitioning: Partition the application tasks intoa sequence of smaller subsets such that each sub-set can be treated independently with respect tolower bound analysis.4. Lower Bound Computation: Compute a lowerbound on the number of units of each proces-sor/resource required by the application.EST Analysis. The EST analysis starts with tasksthat have no predecessors and recursively proceeds to-wards tasks which have no successors. It evaluates theEST of a task only after computing the EST of all itspredecessors. If there are no communication require-ments, then the evaluation of the EST of a task issimple, given the EST of its predecessors. However, ifthere are communication requirements, then the eval-uation of EST is more involved. The basic idea ofthis analysis is best illustrated by a simple example.Consider the evaluation of the EST of task T4 in Fig-ure 2. In this example, T4 has three predecessors, T1,T2, and T3. The computation times of T1, T2, andT3 are 3 units each. The computation time of T4 is 5units. Furthermore, after completion of T1, T2, andT3, the time required to send messages to T4 (if theyare assigned to a di�erent processor) are 1, 2, and 3units, respectively. Also, suppose that the EST of T1,T2, and T3 are 0.If T4 is assigned to a processor di�erent from thoseof T1, T2, and T3, then T4 cannot start before time 6since it must receive a message from T3. However, ifT3 and T4 are assigned to the same processor whichis di�erent from that of T1 and T2, then T4 cannotstart earlier than 5. This is because there is no needto send a message from T3 to T4 and T4 must waitfor a message from T2. Now, if T2, T3, and T4 are

assigned together and T1 is at a di�erent processor,then T4 cannot start earlier than time 6, because T2and T3 must complete their execution before T4 canbegin. That is, the earliest start time of T4 dependson which combination of its predecessors are assignedtogether with T4. Therefore, to determine the ESTof T4, one must �nd the best subset of its predecessorto be assigned to the same processor as T4. An e�-cient algorithm to identify such subsets are describedin [3]. Using this algorithm, the EST of all tasks inan application can be found in O(E) time where Eis the total number of direct precedence relationshipsbetween the tasks.LCT Analysis. The algorithm for LCT analysis issimilar to that of EST analysis. The LCT of a task isevaluated only after the LCTs of its successors. As inthe case of EST analysis, the LCT of all tasks in theapplication can be found using an O(E) algorithm.Partitioning. Using the EST and LCT of the tasks,the third step partitions the application with respectto each resource. The partitioning is done to reducethe runtime complexity of the next step. Basically, letr be a resource used by the application and let STr bethe set of tasks which require resource r. STr is thenpartitioned into subsets Pr1, Pr2, : : : , Prm such thatthe LCT of every task in Prl is less than or equal tothe EST of every task in any Prk, for all l; k, k > l.It is then proved in [3] that each of these partitionscan be treated independently while computing a lowerbound for resource r.Lower Bound Computation. Consider a partitionPrl and let ESTl be the smallest EST among all tasksin Prl. Likewise, let LCTl be the largest LCT amongall tasks in Prl. Now consider an interval [t1; t2] suchthat ESTl � t1 < t2 � LCTl. Let 	r(�; t1; t2) be theminimumcomputation time which must be completedby task � in the interval [t1; t2] on resource r in orderfor all tasks to complete by their respective LCTs.Let STr be the set of tasks which require resourcer. Then �r(t1; t2) = P�2STr 	r(�; t1; t2) is the totalminimumcomputation time which must be completedon resource r in [t1; t2]. Therefore, in order to ensurethat all tasks complete by their respective LCTs, weneed at least ��r(t1; t2)t2 � t1 � copies of resource r. Thatis, LBr = max1�l�m� maxESTl�t1<t2�LCTl ��r(t1; t2)t2 � t1 �� :(3:1)The correctness of the above equation is proved in[3]. In this equation, the outer maximum is over allpartitions and for each partition Prl, the inner max-imum is taken over all possible intervals [t1; t2] �



[ESTl;LCTl].3.2 Implementation IssuesThere are two issues which have to be resolved inconverting the theoretical results in the previous sec-tion to an e�cient distributed implementation. Thesetwo issues are: (i) selection of intervals, and (ii) theparallelism approach. The �rst issue arises becausefor each partition the maximum operation is to betaken over uncountably many intervals. As a result, adirect implementation of Equation 3.1 is computation-ally intractable. On the other hand, if the maximumoperation is taken over fewer intervals, then the re-sulting lower bound may be smaller (hence, weaker)than the lower bound as given by Equation 3.1. Thechallenge is to select a suitable set of intervals suchthat the resulting bound in reasonably close to thebound given by Equation 3.1 while being computa-tionally tractable.The second issue arises because the way in which theworkload is distributed a�ects the runtime e�ciencyof the distributed implementation. In the followingtwo subsections we discuss these two issues in moredetail and present our approach for tackling them.3.2.1 Selection of intervalsIf all the computation and the communication timesin the application are integers, then the bound inEquation 3.1 can be computed by considering all pos-sible integer intervals [a; b] � [0; Dmax], where Dmax isthe largest deadline in the application. This idea wassuggested by Fernandez and Bussell [4], although theirwork did not deal with many of the constraints foundin real-time applications. Since there are O(D2max)such intervals and since Dmax is often quite large, theruntime complexity of this approach may be unaccept-able for many real-time applications.An alternate approach is to only consider all in-tervals of the form [e� ; l� ], where � is a task in theapplication and e� (l� ) is the EST (LCT) of task � .This approach was suggested in [1]. The advantage isthat there are exactly N intervals, where N is the to-tal number of tasks in the application. However, ourexperience indicates that using only N intervals givesa weak lower bound.Our approach is to choose a set of random intervalswithin each partition. For each partition, the totalnumber of intervals considered is equal to R �N , whereR is a design parameter and N is the number of tasksin the application. In our implementation, R = 40.3.2.2 Parallelism IssueThere are two possible ways of parallelizing thelower bound analysis, Application Parallel and Com-putation Parallel. In the discussion below, we describe

these two ways and argue that Computation Parallelapproach is better than the Application Parallel ap-proach for lower bound analysis.Application Parallel Approach. In this approach,the computational load is distributed among the work-stations by partitioning the application and assigninga subset of tasks to each workstation. Each work-station then performs all computations in the lowerbound analysis for the set of tasks that has been as-signed to it. The workload is distributed because eachworkstation has to deal with only a subset of the tasksin the application.However, due to the nature of the computations inthe lower bound analysis, each workstation will haveto communicate extensively with other workstationsto perform its computation. For example, consider thecomputations in the EST analysis. To compute theEST of a task, the corresponding workstation needsthe EST of the predecessors of the task. If a prede-cessor of the task is assigned to a di�erent worksta-tion, then its EST value must be obtained from theother workstation, i.e., a communication overhead isincurred in the EST analysis. A similar type of com-munication overhead is necessary for the LCT analy-sis.There is also a need for communication in the �nallower bound computation step, and when performingthe max operations.Computation Parallel Approach. In this ap-proach, each workstation has the entire application.However, for each task, it performs only part of thecomputations needed in the lower bound analysis. Inparticular, each workstation independently computesthe EST and the LCT of all tasks in the applica-tion. Each workstation then independently identi�esthe partitions for each resource. The workstationsthen independently choose to work on mutually dis-joint set of intervals, i.e., the workload here is dis-tributed by dividing the set of intervals among theworkstations. Each workstation independently com-putes a lower bound for each resource based on its setof intervals. The workstations perform a reductionoperation to compute an overall lower bound for eachresource.The main disadvantage of this approach is thatsome of the computations are redundantly performedby all workstations. The advantage, of course, is thatthere is no need to convey this value to other worksta-tions. The only communication occurs at the end; amaximum operation on one value for every resource.Since communication is very expensive in a network ofworkstations, the reduction in communication is moresigni�cant than the increase in computation. Thus



this approach works better than the Application Par-allel approach.4 Distributed Static Schedul-ingDue to its importance, the scheduling problemhas received considerable attention from researchers[8, 11, 12]. For the kind of applications consideredhere, the problem is known to be NP-complete, butseveral good heuristics have been proposed [5, 11].However, to the best of our knowledge, none of the ex-isting work have addressed the problem of distributinga static scheduler to reduce its runtime. Existing workon distributed schedulers usually focus on inserting adynamically arriving task in the schedule of tasks al-ready present in the system [10]. The incoming tasksare typically assumed to be independent of the tasksalready present in the system. The main issue is todetermine whether the constraints of an incoming taskcan be met without jeopardizing the promises made toother tasks.In contrast, in this paper, we discuss an approachfor distributing a static scheduler. A static schedulerhas all the necessary informationabout the tasks it hasto schedule. However, the number of tasks is typicallyfairly large and the tasks are usually not independentof each other. The main issue here is how to distributeand coordinate the computations in a scheduler in or-der to ensure that all the constraints of the applicationare satis�ed.As in the case of lower bound analysis, there are twoways of distributing the scheduling workload among anetwork of workstations. One approach is to partitionthe set of processors and resources required by theapplication and assign a subset to each workstation.The workstation is then responsible for scheduling onits subset of processors and resources. Each worksta-tion may have to perform some computation for everytask in the application. An alternate approach is topartition the application tasks and assign a subset oftasks to each workstation. A workstation is then re-sponsible for scheduling only the tasks in its assignedsubset. However, each workstation may have to sched-ule on all the processors and resources required by theapplication.The two approaches di�er in the nature and theamount of interaction needed between the worksta-tions. In the �rst approach, when scheduling a task,the workstations need to know where and when thetask's predecessors have been scheduled. To obtainthis information, a communication overhead is in-curred after scheduling each task in the application.This approach has signi�cant communication over-

head and thus lower runtime e�ciency. In contrast, asshown later in this section, the amount of communica-tion between the workstations in the second approachcan be minimal if the application is partitioned care-fully. Consequently, the second approach has betterruntimes. We pursue this approach in this paper. We�rst present the partitioning scheme and then give anoverview of the scheduler used in our implementation.4.1 Partitioning SchemeLet � be the set of tasks in the application and letm be the number of workstations participating in thedistributed scheduler. Then, the objective of the par-titioning strategy is to identify m disjoint subsets �1,: : : , �m such that: (i) [mi=1�i = �, and (ii) the LCTof all tasks in �i is less than or equal to the EST ofall tasks in �j , for all i; j, j > i. The rationale for thisobjective is that each of these sets can be scheduledindependently by a workstation without any commu-nication overhead. This is because the time windowin which the tasks in �i must execute is disjoint fromthe time window for the tasks in �j, j 6= i.However, it may not always be possible to partition� in this fashion without some additional constraints.To make this possible, the partitioning strategy im-poses additional release time and/or deadlines con-straints on some tasks. Theoretically, these additionalconstraints may make the application impossible toschedule. However, our experience indicates that thisis not the case (see Section 5). The question thenis how do we select the additional constraints to beimposed on the application?Our approach for determining the additional con-straints is very simple. This simplicity is of at mostimportance because this partitioning step is an over-head which is not present in a non-distributed sched-uler and this overhead a�ects the runtime e�ciencyof the distributed implementation. Our approach isto �rst partition the interval [0; Dmax] into m equalsubintervals, where Dmax is the largest hard deadlinein the application. For tasks whose EST and LCT liewithin the same subinterval, we do not impose any ad-ditional constraints. For other tasks, we either add arelease time greater than the task's EST or a deadlineless than its LCT so that its modi�ed EST and LCTlie within one subinterval. Note that, because of theway in which the constraint is generated, any feasibleschedule of the modi�ed application is also a feasi-ble schedule of the application. However, as statedearlier, it is theoretically possible for the modi�ed ap-plication to be infeasible even though the applicationis feasible. If this happens, the distributed schedulerwill not be able to identify a feasible schedule whereasa non-distributed scheduler may have succeeded.



1 2

4

A B

C Period 10

1D Period 4(a) Periodic jobs [0, 4]

[4, 8]

[8, 12]

[12, 16]

[16, 20]

[2, 10]

[0, 6] [0, 6]

[10, 16] [10, 16]

[12, 20]

1A 1B

1C

2A 2B

2C

1D

2D

3D

4D

5D(b) Invocations in a superperiodFigure 3: An example application.To illustrate this approach consider the simple ap-plication in Figure 3(a). The application has two pe-riodic jobs with periods 4 and 10, respectively. The�rst job is comprised of three non-preemptive tasks(namely A, B, and C) whereas the second periodicjob has only one non-preemptive task (namely D). Theprecedence relations between the tasks in the �rst jobare shown as directed arrows. The execution time ofthe tasks is shown as weights near the correspondingvertices. For simplicity, the communication times be-tween the tasks are assumed to be zero. Figure 3(b)shows the invocations of these two jobs in a super-period (i.e., least common multiple of the periods).The scheduler must �nd a feasible schedule for all thetasks in this superperiod and repeat the schedule forthe subsequent superperiods. The numbers enclosedin [ ] are the EST and the LCT of the correspondingtask.Now suppose that this application is to be sched-uled using two workstations. Then, we must partitionthe tasks in Figure 3(b) into two groups and assignthem to the two workstations. To identify this parti-tion, our approach divides the [0; 20] into two subin-tervals [0; 10] and [10; 20]. For all tasks whose ESTand LCT lie within one of these intervals no addi-tional constraints are imposed. In this example, thiscondition is true for all tasks except task 3D. TheEST of task 3D lies in [0; 10] whereas its LCT lies in[10; 20]. We, therefore, need to impose an additionalconstraint on this task. Since the subinterval bound-ary (i.e., 10) is midway between the EST and the LCTof this task, we can add either a release time or adeadline constraint. For example, we can impose adeadline of 10 on this task and thus make its modi�edLCT equal to 10. With this one additional constraint,tasks 1A, 1B, 1C, 1D, 2D, and 3D will belong to apartition while the remaining tasks will belong to the

other partition. One workstation will independentlyschedule the tasks in the �rst partition in the interval[0; 10] while the other workstation will schedule theremaining tasks in the interval [10; 20]. Since theseintervals are disjoint, no communication is requiredbetween these workstations after they have identi�edtheir respective partitions. In fact, they can each useany appropriate scheduling heuristic to schedule theirpartition on the processors and resources identi�ed atthe end of the lower bound analysis step.Described below is an informal overview of thescheduler we used in obtaining results presented inSection 5.4.2 Overview of the schedulerThe scheduler is provided with the number of copiesof each resource needed by the application. It is re-sponsible for assigning the tasks to the resources andthen determining a start time for each task such thatall constraints of the application are satis�ed.The scheduler starts by ordering the tasks in theincreasing order of their latest start times1. Initially,the latest start times are as obtained during the lowerbound analysis. The tasks are considered for schedul-ing one at a time.A task is scheduled on the processor on which itcan complete the earliest. To identify this earliestcompletion time, the scheduler �rst picks the least uti-lized copy of each required resource. It then considersall possible processor assignments for the task. Eachpossible processor assignment generates a di�erent setof predecessor messages that have to be scheduled onthe communication network. This is because only pre-decessors which are assigned to a di�erent processorneed to send a message through the communicationnetwork. For each possible assignment, the scheduler�rst determines the earliest completion time of all thepredecessor messages of the task under consideration.The least schedulable time (i.e., when the processorand the resources under consideration are free to exe-cute the task) after all predecessor messages have ar-rived plus the corresponding execution time for thetask is the earliest completion time of the task on agiven processor. The task is scheduled on the proces-sor in which it has the minimum earliest completiontime. After a task is scheduled, the ready list is up-dated to possibly include the immediate successors ofthe just scheduled task.The scheduler continues in this fashion until alltasks have been tentatively scheduled. If some tasksdo not meet their deadlines, then the whole process isrepeated after recomputing the latest start time of all1The latest start time of a task is its LCT minus its compu-tation time.



tasks based on the assignment just generated. Notethat, a new assignment results in a di�erent communi-cation pattern for some tasks. Consequently, there isa change in the latest completion time of some tasks,which in turn, changes the priority order among thetasks in the next iteration. The scheduler terminateseither when a feasible schedule is identi�ed or when apre-speci�ed iteration limit is exceeded.5 EvaluationIn this section, we present results of an empiricalevaluation of the distributed synthesis tools. Thegoal of this evaluation is to demonstrate that mul-tiple workstations can be e�ectively used to synthe-size computer systems for real-time applications. Todemonstrate this fact, we show that: (i) there is a sig-ni�cant reduction in the overall runtime as a resultof using multiple workstations, and (ii) the likelihoodof a distributed scheduler being able to �nd a feasibleschedule is comparable to that of a sequential sched-uler. It is necessary to demonstrate this second aspectbecause in distributing the scheduler, additional con-straints are imposed on the application. We need todemonstrate that these additional constraints do nothave much impact on the likelihood of �nding a feasi-ble schedule.The evaluation is carried out by running the lowerbound analysis and the scheduler on several syntheticapplications. Each synthetic application is comprisedof a number of periodic jobs with di�erent periods, re-lease time and deadline constraints. The periodic jobshave between 5{15 non-preemptive tasks with prece-dence, resource, and communication constraints. Thelower bound and scheduling analysis are performed byconsidering all the task activations in the interval [0,LCM], where LCM is the least common multiple ofthe periods of the jobs in that application.Table 1 shows the summary of the results obtainedfrom our implementation on a network of HewlettPackard workstations model HP 735. Each worksta-tion has 80 MBytes of memory and runs HPUX 9.0 op-erating system. The workstations are interconnectedusing a Fiber Data Distributed Interface (FDDI) net-work. The distributed implementations are based onthe Parallel Virtual Machine (PVM) message passingsystem version 3.3.5. In this table, the �rst columncontains the number of task instances in the interval[0, LCM] of the corresponding application. The sec-ond column contains the results of the lower boundanalysis; it shows the lower bound on the numberof copies of the processor and resources R1,R2, andR3, respectively. The �nal three columns show theoverall runtimes in seconds for executions with 1, 2,

Table 1: Summary of the results from our distributedimplementation.Appln. Lower Timing (secs)(Size) Bounds 1 wk 2 wk 4 wkG1 (106) (4 1 1 1) 6.6(S) 4.7(S) 3.2(S)G2 (503) (5 3 3 3) 142.0(S) 83.9(F) 47.0(F)G3 (88) (4 1 1 1) 7.7(F) 4.0(S) 2.9(F)G4 (214) (4 2 2 2) 26.5(S) 15.8(S) 10.1(S)G5 (115) (2 1 1 1) 8.9(S) 6.0(S) 4.5(S)G6 (49) (2 1 1 1) 2.1(S) 1.7(S) 1.3(F)G7 (61) (2 1 1 1) 4.1(F) 2.5(F) 1.8(F)G8 (540) (5 3 2 3) 159.6(S) 90.9(S) 50.4(S)G9 (922) (4 2 2 3) 477.8(S) 254.1(S) 137.7(S)G10 (71) (3 1 1 1) 4.1(S) 2.6(S) 2.0(S)G11 (106) (4 1 1 1) 9.4(F) 5.3(S) 3.4(F)G12 (186) (5 2 2 2) 21.3(S) 13.0(S) 8.3(S)G13 (91) (2 1 1 1) 5.4(S) 3.5(S) 2.9(S)G14 (1220) (4 3 2 2) 909.6(S) 477.0(S) 241.2(S)G15 (67) (2 1 1 1) 1.3(S) 0.9(S) 0.7(S)G16 (324) (3 2 2 2) 18.4(S) 10.2(S) 6.2(S)G17 (277) (2 2 1 2) 14.0(S) 7.9(S) 4.9(S)G18 (306) (2 1 1 1) 19.7(F) 11.2(F) 7.1(F)G19 (65) (1 1 1 1) 1.3(F) 0.8(S) 0.6(F)G20 (215) (4 2 2 2) 9.1(S) 5.3(S) 3.3(F)G21 (694) (4 2 2 3) 83.1(S) 43.7(S) 24.2(S)G22 (150) (4 2 2 2) 5.4(S) 3.2(S) 2.2(F)G23 (315) (3 2 1 2) 18.7(S) 10.4(S) 6.2(S)G24 (142) (3 1 2 1) 4.2(S) 2.7(S) 1.9(S)G25 (1109) (3 2 1 1) 198.8(S) 110.3(S) 66.1(S)G26 (839) (2 1 2 1) 113.0(S) 62.7(S) 37.5(S)G27 (2933) (2 1 1 1) 1594.6(F) 858.9(F) 510.2(F)and 4 workstations, respectively. In these results, thescheduler is given two additional copies of the proces-sor than the lower bound given in the second column.Alongside the runtimes, labels S and F are includedto indicate whether the scheduler Succeeded or Failedin �nding a feasible schedule for the application.Figure 4 shows the fraction of applications whichare successfully scheduled when 1, 2, 3, and 4 work-stations are used. The four curves in this �gure corre-spond to the number of processors given to the sched-uler after the lower bound analysis. For instance, forthe curve labeled Proc LB, the number of processorsgiven to the scheduler is equal to the value computedfrom the lower bound analysis. Likewise, for the curvelabeled Proc LB+2, the number of processors givento the scheduler is two more than the value computedfrom the lower bound analysis. Observe that, the per-centage of success does not vary signi�cantly with thenumber of workstations used. This means that theadditional constraints imposed on some tasks to re-
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(b) All failureFigure 5: Speedup in the overall time.�nds a feasible schedule.By comparing Figures 5 and Figure 6, we observethat speedups achieved in the lower bound analysisare very similar to those corresponding to the overallexecution time. This is because 80{90% of the overallexecution time is due to the lower bound analysis. Al-though, scheduling forms a small fraction of the overalltime in this paper, it is important to have a very fastscheduling step. This is because in the overall synthe-sis process, the scheduler will be invoked thousands oftimes to evaluate di�erent candidate architectures. Inthis paper, we are presenting results from only one in-vocation of the scheduler because only one candidatearchitecture is considered.In Figure 7, we also notice that the speedupsachieved by the scheduler vary more drastically thanin the lower bound analysis. Further, we observe thatin some cases the speedups are much greater thanfour even when only four workstations are used. This
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(b) All failureFigure 6: Speedup in the time required for the lowerbound analysis.is because, when multiple workstations are used, wepartition the application and impose some additionalconstraints on few tasks to reduce the amount of com-munication. As a result, the search space investigatedis di�erent for di�erent number of workstations.6 ConclusionsThe paper focused on a distributed implementationof two key steps of a synthesis systems. The �rststep, namely lower bound analysis, determines a lowerbound on the number of processors and resources re-quired to meet the constraints of the application. Thesecond step, namely scheduling analysis, determineswhere and when the application tasks will execute.We discussed several alternative techniques for par-allelizing these two steps. The promising techniqueswere implemented using the Parallel Virtual Machinemessage passing system. The results of this imple-
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