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Abstract

In this article, we develop a set of partial differential equations describing the flow of

a dusty fluid in variable porosity media. The developed equations take into account the

effect of the porous microstructure on the flowing phases.

We presented and overview of the equations governing the flow of a dusty gas in

various type media, including that in naturally occurring porous media. Numerical

techniques are used to solve the set of partial differential equations describing the flow

for different values of the porous media parameters of interest. These parameters are the

Forchheimr drag coefficient Cd, the permeability g and the Reynold number Re.
� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Gas-particle flow, dusty fluid flow and the flow of suspension through po-

rous media have received considerable attention due to the importance of these

types of flow in studies associated with the design of industrial filters, liquid-

dust seperators and water purification plants.
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Applications of the above types of flow in the environment are exhibited in

solid-waste and pollutant dispersal and storage in the ground layers. Fluid flow
through porous media has become a topic of increasing importance due to its

applicability in many physical situation including the prediction of oil reservoir

behavior, ground water flow, irrigation problems and the biophysical sciences

where the human lungs for example, are modeled as porous layers.

The above and many other applications emphasize two fundamental aspects

of the study of gas particulate flow in porous media

i(i) Models describing gas–particulate flow through porous media must accu-
rately take into account the effect of the porous media quantities on the

flow constitute on each other, this necessitates developing model that take

into account the porous microstructure and its effects on the flowing

phases.

(ii) Solution of boundary and initial value flow problems that should accu-

rately predict the flow patterns and the nature of the flow fields of the con-

stituents involved.

A model describing the flow of a dusty gas in porous media was developed in

[5] and it is based on the differential equations approach. It incorporates the

factors affecting the gas–particulate mixture in the type of porous media where

Brinkman�s equation is applicable and thus inertial effects were ignored under

the assumption of creeping motion in a high-porosity medium.

Dusty fluid flow through porous media with applications to deep filtration

has been widely studied in [7] via the empirical and semi-empirical approach,

the suggested model takes into account the optimal design of filters, liquid-dust
separation and clogging mechanisms of the pores. In the case of flow of sus-

pensions through a deep porous bed the authors in [7] gave a review of the a

available literature and outlined the mechanisms of deposition and the possible

capturing processes which include sedimentation, inertial impacting, direct

interception, hydrodynamic effects and diffusion by Brownian motion.

In cases where the particle size is greater than 1 lm, the particle diffusion is

negligible [6] while the effect of inertial impacting is negligible if the fluid-phase

is liquid [9]. In additional, if the particles are spherical in shape then the hy-
drodynamic effects can be neglected [7]. This leaves the interception capture

mechanism to be dominant and the particles are captured mainly on the sur-

faces of the media grains. Settling of particles by sedimentation is also possible

due to the high density associated with the dust particles.

Equations governing flow of a dusty fluid between two porous flat plates

with suction and injection are developed and closed-form solutions for the

velocity profiles, displacement thickness and skin friction coefficients for both

phases are obtained. Graphical results of the exact solutions are presented and
discussed [1].
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The problem of gas-particulate flow through a two-dimensional porous

channel bounded by curved boundaries is considered [6], and a set of general
averaged transport equations for a multi-phase system consisting of an arbi-

trary number of phased, interfaces and contact lines is established in [8]. A

structure for the system is proposed and hydrodynamic interaction between the

phases, interfaces and contact lines is also presented.
2. Mathematical formulation

The steady flow of an incompressible dusty fluid in a porous medium of

constant permeability is given by the following coupled set of equations. These
equations take into account the absence of dust effects, that is, the fluid-phase

momentum equation takes the well-known Darcy–Lapwood–Brinkman (DLB)

form. In this type of porous media the speed of the flow is not small and the

viscous shearing action is important [4,8]. The set of equations are:

The fluid-phase equations given by

The continuity equation
ru ¼ 0 ð1Þ
and the momentum equation
quru ¼ �rp þ lr2u� l
g
u ð2Þ
The dust-phase equations given by

The continuity equation
r:Nv ¼ 0 ð3Þ
and the momentum equation
vrv ¼ k=mðu� vÞ ð4Þ
where u and v are the fluid and dust macroscopic velocity vectors, p is the

pressure, l is the viscosity coefficient, q is the density, N is the particle number

density, m is the mass of a single dust particle, g is the permeability and k is the

drag coefficient on the dust particle in the porous medium.

The fluid-phase momentum equation (2) is valid in a variety of settings and

in different types of porous media. We will discuss the following cases that

illustrate the variety of settings and the different types that this equations is

valid in [3,6–9].
(i) When the inertial effects are negligible or insignificant, that is, the flow is

fully developed with no macroscopic stream-wise fluid-phase velocity gradient,

Eq. (2) becomes
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�rp þ lr2u� l
g
u ¼ 0 ð5Þ
Eq. (5) is known as Brinkman�s equation which is postulated to be valid in

situations where the porosity of the medium is close to unity.

(ii) When the macroscopic boundary effects are not important, that is when

the macroscopic cross-stream fluid-phase velocity gradients are absent, Eq. (2)

yields
quru ¼ �rp � l
g
u ð6Þ
Eq. (6) is known as Darcy–Lapwood (DL) model and it is valid when the

porous medium possesses a sparse structure that is the flow is through a sparse

distribution of particles fixed in space.

(iii) When the inertial effects and viscous shearing effects are neglected, that

is, both of the macroscopic stream-wise and cross-stream fluid-phase velocity

gradients are absent, Eq. (2) yields
�rp � l
g
u ¼ 0 ð7Þ
Eq. (7) is Darcy�s law which describes the motion of a single-phase fluid flow
through porous media.

(iv) When the porous medium is naturally occurring, the fluid-phase mo-

mentum equation reduces to a Forchheimer�s equation that is postulated to

govern the single-phase fluid flow, the resistance to the fluid offered by the

porous matrix is governed by an equation of the form.
�rp ¼ auþ bujuj ð8Þ
where a ¼ l=qg, b ¼ Cd=
ffiffiffi
g

p
, and Cd is the Forchheimer drag coefficient and b

is referred to as the inertial parameter.

The dust-phase momentum equation (4) serves in all of the different types of

porous media which take the above discussed cases so the macroscopic cross-

stream velocity gradients are absent while the stream-wise velocity gradients
are always present. In the presence of an impermeable boundary as a solid wall

or otherwise, the dust particles settle on the macroscopic boundary and set into

motion other particles that are already settled, while others reflect back into the

flow field and assume a streamwise velocity gradients. Consequently, the

macroscopic convective term uru always survives.
3. Flow through a naturally occurring porous channel

In this section, the two-dimensional flow of an incompressible dusty fluid

through naturally occurring porous channel into a point-sink is considered.

The source–sink model which is a popular setting for irrigation problems,
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might be thought of here as a means for solid-waste disposal. The model at

thus shed some light on the behavior of the solid particles in the flow field as
they are dispersed in a porous layer. The determinate nature of the model

equations is illustrated by numerically studying the flow at hand.

The flow setting under consideration is governed by the coupled set of Eqs.

(1), (3), (4) and (8).

We introduce the dimensionless macroscopic streamfunctions W1ðx; yÞ, and

W2ðx; yÞ and macroscopic vorticities f1ðx; yÞ and f2ðx; yÞ in terms of the di-

mensionless horizontal and vertical components of velocity defined by
u1 ¼ W1y ; v1 ¼ �W1x

u2 ¼ W2y ; v2 ¼ �W2x
And the dimensionless vorticities are defined by
f1 ¼ v1x � u1y

f2 ¼ v2x � u2y
The stream function vorticity equations governing the flow at hand in each

of the coupled set of Eqs. (1) and (8) for the fluid-phase, and Eqs. (3) and (4)

for the dust-phase are obtained by taking the curl of each of the momentum

equations and the subsequent use of the equations of continuity and are given
by the following set of equations [8]:

The fluid-phase equations:
r2W1 ¼ �f1 ð9Þ
and
f1

gRe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

1x þ W2
1y

q
þ f1Cdffiffiffi

g
p W2

1x

n
þ W2

1y

o

¼ Cdffiffiffi
g

p W2
1xW1xx

n
þ 2W1xW1yW1xy þ W2

1yW1yy

o
ð10Þ
and the dust-phase equations:
r2W2 ¼ �f2 ð11Þ
and
W2yf2x � W2xf2y ¼
K
M

½f1 � f2
 ð12Þ
The flow variables have been rendered dimensionless with respect to a

characteristic velocity U1 and a characteristic length L using the following
dimensionless equations:

X ¼ x=L, Y ¼ y=L, ~UU ¼~uu=U1, f ¼ f�L=U1, K ¼ k=L2, W ¼ W�=LU1 and

the Reynolds number is defined as Re ¼ qU1L=l.
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4. Numerical example

Consider the flow of dusty fluid in a straight porous channel, bounded below

and above by impermeable walls. Associated with this flow are boundary

conditions and entry conditions to the channel. Any appropriate boundary

conditions must be compatible with the type of medium, the governing model

equations and the type of the impermeable bounding walls.

Suitable boundary conditions for the flow at hand, in the shown configu-

ration, are as follows:

W1 ¼ W2 ¼ 0 along the walls ab and bc
W1 ¼ W2 ¼ 1 along the upper wall dc
W1 ¼ W2 ¼ y 06 y6 1 along the ad

The fluid-phase and the dust-phase velocities are quantities to be determined

on the impermeable walls. In addition no explicit boundary conditions are

available for the vorticities of the phases involved. Thus, f1 and f2 are updated

on the boundary in terms of the streamfunction values at internal grid points

using standard first-order accurate schemes. On the boundary in terms of the
streamfunction values at internal grid points using standard first-order accu-

rate schemes.

Numerical integration is therefore accomplished by solving Eqs. (9) and (10)

iteratively using successive over-relaxation techniques.

Results have been obtained for various values of permeability, Forchheimer

drag coefficient and Reynolds number. The test cases considered are perme-

ability k ¼ 1, 0.1, 0.01 and 0.00001, drag coefficient Cd ¼ 0:5, 0.55, 0.75 and for

the Reynolds number Re ¼ 0:5, 0.65, 0.85 and 1.
Solutions were obtained using a step size H ¼ DX ¼ DY ¼ 0:01 for the

computational domain ½0; 1
 
 ½0; 1
. The numerical scheme presented in [2,9] is

used for solving Eq. (9) and it is given by
Wðnþ1Þ
ði;jÞ ¼WðnÞ

ði;jÞ þ
x
4

Wðnþ1Þ
ði�1;jÞ

�
þWðnÞ

ðiþ1;jÞ þWðnþ1Þ
ði;j�1Þ þWðnÞ

ði;jþ1Þ �4WðnÞ
ði;jÞ �H 2fði;jÞ

�

ð13Þ
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The iterated result converges for 16x < 2, and it converges most rapidly

where x is assigned the optimum value
x ¼ 4

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � cos P

m

� �
þ cos P

n

� �	 
q 2
ð14Þ
where nXm is the grid dimension. The stream function may take an arbitrary

additive constant, in order to start the iteration, a constant value of 0.5 is

guessed fore the stream function at all interior points. The absolute value of the

difference between this and the previous value of W1 at the same point is cal-
culated and is added to the value of a variable called ERROR, whose starting

value at the beginning of an iteration is zero. At the end of one iteration, when

the values of W1 at all interior points have been updated, the value of ERROR

is compared with ERRMAX. If ERROR is less than or equal to ERRMAX,

then calculate the value of ZETA 1. Whose starting value at the beginning of

iteration is zero, the absolute value of the difference between this and the

previous value of ZETA 1. At the same point is calculated and is added to

ERROR. At the end of one iteration, when the values of ZETA 1 At all interior
points have been reached, so the iterating process can be stopped. Otherwise,

the iteration counter ITER is increased by 1 and a new iteration is started. In

our program we let ERRMAX¼ 0.1
 10�5.

After convergence, the fluid and dust velocity components are calculated in

terms of W1 by backward difference schemes. The fluid-phase vorticity is then

calculated using a finite difference form of Eq. (9). The same techniques is

applied to the coupled Eqs. (11) and (12) after the value of f1 has been de-

termined.
5. Discussion of the results

The numerical results illustrate the effect of the variation of the dust pa-
rameters on the fluid phase velocities. Figs. 1 and 4 illustrate the effect of the

permeability on the horizontal velocity component along the vertical centerline

and the boundary lower of the channel respectively. They demonstrate the

increase of this velocity component with increasing permeability in the lower

region of the channel. In the upper regions, the effect of the sink becomes more

noticeable in attracting the fluid faster for lower values of permeability.

Fig. 5 illustrates the effect of the Forchheimer drag coefficient on the fluid-

phase horizontal velocity component along the boundary lower of the channel.
It demonstrates the decrease in this velocity component with increasing coef-

ficient in the lower regions of the channel.



Fig. 1. Horizontal velocity component along the vertical center line of the channel for different

permeability and Cd ¼ 0:5, Re ¼ 1.

Fig. 2. Horizontal velocity component along the vertical center line of the channel for different

Forchheimer drag coefficient and K ¼ 10�2, Re ¼ 1.
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Fig. 4. Horizontal velocity component along the lower boundary of the channel for different

permeability and Cd ¼ 0:75, Re ¼ 1.

Fig. 3. Horizontal velocity component along the vertical center line of the channel for different

Reynolds number and K ¼ 10�2, Ce ¼ 0:75.
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Figs. 3 and 6 illustrate the effect of the Reynolds number on the fluid-phase

horizontal velocity component along the vertical centerline and the boundary



Fig. 5. Horizontal velocity component along the lower boundary of the channel for different

Forchheimer drag coefficient and K ¼ 10�2, Re ¼ 1.

Fig. 6. Horizontal velocity component along the lower boundary of the channel for different

Reynolds number and K ¼ 10�2, Cd ¼ 0:75.
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lower of the channel. The demonstrate the decrease in this velocity component

with increasing Reynolds number in the lower regions of the channel.
Fig. 7 describes the effect of the permeability on the horizontal velocity

component along the horizontal centerline of the channel. It demon-

strates the increase of this velocity component with increasing perme-

ability.

Figs. 2 and 8 illustrate the effect of the Forchheimer drag coefficient on the

fluid-phase vertical and horizontal velocity component along the vertical and

horizontal centerlines of the channel respectively. These results demonstrate

the increase in this velocity component with increasing Forchheimer drag co-
efficient Cd.

Fig. 9 demonstrates the effect of the Reynolds number on the fluid-phase

horizontal velocity component along the horizontal centerline of the channel.

It demonstrates the decrease in this velocity component with increasing Rey-

nolds number.

The increase of the velocity component in the lower part of the channel, and

its decrease in the upper part as Cd increases sheds some light on the appro-

priate value of Cd. Although a critical value of Cd has not been determined in th
is study, the above behavior indicates that the critical value of Cd is approxi-

mately.
Fig. 7. Horizontal velocity component along the horizontal center line of the channel for different

permeability and Cd ¼ 0:75, Re ¼ 1.



Fig. 8. Horizontal velocity component along the horizontal center line of the channel for different

Forchheimer drag coefficient and K ¼ 10�2, Re ¼ 1.

Fig. 9. Horizontal velocity component along the horizontal center line of the channel for different

Reynolds number and K ¼ 10�2, Cd ¼ 0:75.
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