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ABSTRACT 

The electromagnetic linear momentum and the energy balance in an infinite solenoid with a time-dependant current are 
examined. We show that the electromagnetic linear momentum density and its associated force density are balanced by 
the hidden momentum density and its associated hidden force density respectively. We also show that exactly half the 
energy delivered by the power supply appears as stored magnetic energy inside the solenoid. The other half is lost 
against the induced electromotive force that appears in the windings of the solenoid during the time through which the 
current is building up towards its final value. This energy loss, which is found in other analogue situations, is necessary 
to transfer the system from an initial non-equilibrium state to a final equilibrium one. 
 
Keywords: Electromagnetic Linear Momentum, Energy Balance, Hidden Momentum 

1. Introduction 

The electromagnetic Poynting vector has long been of 
considerable interest over the years [1–9]. This is so be-
cause it is directly related to the electromagnetic (EM) 
energy flux and the electromagnetic linear momentum. In 
recent years, the role of EM linear momentum in total 
momentum balance has attracted the attention of many 
authors [10–16]. Furthermore, the EM energy flux car-
ried by the Poynting vector has been the subject of many 
workers in the context of energy conservation in elec-
tromagnetic systems [17–21]. In recent years, it was 
shown that when a charged capacitor is connected to an-
other uncharged identical one, exactly half the stored 
energy disappears after the equilibrium state is achieved. 
This also happens when a capacitor is charged by a bat-
tery, where only half the supplied energy is stored in the 
capacitor. This pedagogical problem has been a topic of 
interest by several authors [22–27]. When dealing with 
energy conservation in EM systems, one has to consider 
all the possible channels through which energy is trans-
ported through as the system transforms from an initial 
non-equilibrium to a final equilibrium state. For example, 
it was shown [23] that when charging a capacitor half the 
work done by the power source is stored in the capacitor 
while the other half is carried by the Poynting vector 
which crosses the surface of the connecting wires. The 
purpose of this paper is to shed some light on the dy-

namics of the electromagnetic momentum and the energy 
needed when an electromagnetic system transforms from 
non-equilibrium to equilibrium states. This gives a fruit-
ful and an illustrative example to students in electrody-
namics course and helps them for a deep understanding 
of basic concepts in the subject. To that end, we consider 
an infinitely long solenoid which is fed by a current that 
varies linearly in time for a time period T after which it 
reaches its final constant value. The paper is organized as 
follows: In Section 2, we consider the electromagnetic 
momentum. In Section 3, we examine electromagnetic 
energy. Section 4 is devoted for conclusions.  

2. Electromagnetic Momentum for an Ideal 
Solenoid 

We consider an infinitely long solenoid (ideal) of radius 
R and with number of turns per unit length n. The pur-
pose is to examine the dynamics of the linear momentum 
balance during a time period, say T, through which the 
current is linearly increasing towards its final constant 
value, say I0. Our system is assumed to be force-free 
which means that the total linear momentum (mechanical 
momentum and electromagnetic momentum) is constant, 
which could be taken to be zero. Therefore, we assume 
that the battery connected to the solenoid gives a 
time-dependent current  given by: )(tI
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Faraday’s law of induction suggests an induced elec-
tric field whose value satisfies its integral form 
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where E


is the induced electric field and  is the mag-

netic flux inside the solenoid. 
Choosing a circular loop of radius r inside the solenoid, 
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)())(() 2( 0
22 tI

dt

d
nrtBr

dt

d
rE      (3) 

and thus 










0      

           ˆ
2)(

00 


r
T

nI
rE



Tt

Tt



0

     (4) 

The Poynting vector inside the solenoid, during the 
time T, is given by 

rrt
T

nI
BES ˆ   

 2

 
    

1
2

2
0

2
0

0







        (5) 

and therefore the electromagnetic linear momentum den-
sity is 
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The total electromagnetic linear momentum, totalP


, 

can be computed as follows: writing , 

we get 
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since the   integral vanishes. Equation (6) gives a 

force density  
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which gives a vanishing total force once the integration 
over   is carried out. This force density is needed to 

bend the current in its circular loops that, due to induc-
tive inertia, otherwise would move in a straight line. As 
we will see in a moment, the reaction force density (hid-
den force density as we will see shortly) to the above 

force density causes the radius of the circular loop to 
increase. So our result shows that during the period T, 
through which the current is increasing, the total elec-
tromagnetic momentum and the total force are both zeros 
but yet they have non-vanishing density values that are 
directed towards the axis of the solenoid. This result 
needs explanation since initially (for ) the system 
has no momentum density. We show below that the elec-
tromagnetic linear momentum density is exactly bal-
anced by hidden momentum density that arises during 
the time period T. Assuming the solenoid has a radius R 
with its axis aligned along the z-axis and the current 

flows counterclockwise (+  direction), then following 

Babson et al. [28], the hidden momentum (which is of 
relativistic origin) is given by 
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where m


is the magnetic dipole moment of the current 

loop(s) and E


is the electric field. Now, for a length  
of the solenoid, the number of turns is  and thus the 

magnetic dipole moment . Using 

Equation (4) for the induced electric field, with 
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where we used . Therefore, the hidden mo-

mentum density is 
0
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which exactly cancels the electromagnetic linear mo-
mentum density at the loops of the solenoid, as can be 
seen from Equation (6) with Rr  . Back to the force 
density given in Equation (8), this force density is related 
to the pressure gradient. As it was shown in [28], the 
relativistic relation between the force density and the 
pressure gradient is 

Pf  2 


                      (12) 

where is the usual Lorentz factor. It is interesting to 

note that the time derivative of the hidden momentum 
density (given in Equation (11)) gives the so-called the 
hidden force density which is exactly the negative of the 
force density evaluated at the surface of the sole-
noid,

2

Rr  ( see Equation (8)). Therefore, at any time t 
during the time period T, the electromagnetic force den-
sity is exactly canceled by the hidden force density.  

2. Energy Considerations 

The purpose of this section is to examine energy balance 
which is involved in the process of establishing a current 
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in an infinite solenoid. It is well-known that the stored 
magnetic energy in a length  of an infinite solenoid 
that carries a current 
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where we used Equation (1) and the self-inductance 

, for a length  of the solenoid. When the 

current reaches its final value , at , the stored 

magnetic energy becomes 
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The question to be answered is how much work is 
needed to be done by the power supply in order to store 
the magnetic energy given in Equation (14). During the 
time – period T, the electromagnetic power per unit area 
that crosses the surface of the solenoid is given by the 

Poynting vector S


evaluated at the solenoid's surface. 
Thus using Equation (5) with Rr  , we get 
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The electromagnetic energy that is transmitted 

inside a length  of the solenoid is 
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which has the same magnitude as the stored magnetic 
energy given in Equation (14). Therefore, the energy that 
was carried by the Poynting vector has been stored as 
magnetic energy inside the solenoid. To see other forms 
of energy involved in the process of establishing the cur-
rent in the solenoid, the time-dependence of the magnetic 
field gives an induced electromotive force ( ).This in-
duced electromotive force is given by Faraday's law, 
namely 
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The power done by this induced electromotive force is 
thus 
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and therefore, the work done is 
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The above Equation clearly shows that the work done 
by the power supply against the induced electromotive 
force (which is the negative of Equation (19)) is exactly 
equal to the stored magnetic energy given by Equation 
(14). Therefore, the total energy delivered by the power 
supply is twice the stored magnetic energy. It should be 
emphasized that the work done against the induced elec-
tromotive force is necessary for the current to reach its 
final equilibrium value. So our result shows that the 
stored magnetic energy (which is exactly half the work 
done by the power supply) comes from the Poynting 
vector that crosses the surface of the solenoid. The other 
half of the work done is the price that one must pay in 
order to achieve a final equilibrium state for the current. 
This other half of the work done finds its way as work 
done against the induced electromotive force in the 
windings of the solenoid.  

This is exactly analogue to the case of charging a ca-
pacitor by a power supply, in which it was shown [23] 
that the stored electric energy in the capacitor comes 
from the energy carried by the Poynting vector that 
crosses the plates of the capacitor, and this energy is ex-
actly half the energy delivered by the power supply. 
While the other half is carried by the Poynting vector that 
crosses the connecting wires. Another analogue case is 
the two capacitor problem: When a charged capacitor is 
connected to an uncharged one with the same capaci-
tance, exactly half the stored energy disappears after the 
charge transfer is completed. In these analogue cases, it 
was noted in earlier work that if the presence of nonzero 
resistance in the circuit is assumed, the amount of Joule 
heat loss in the resistor becomes exactly the same as the 
missing energy [29]. Others [25,27,30] used supercon-
ducting wires and have tried different mechanisms to 
explain this energy loss and they arrived at the same 
conclusion. Another example in mechanics: if a particle 
collides, in a completely inelastic collision, with another 
stationary particle of the same mass then exactly half the 
initial kinetic energy will be lost in the collision. Our 
solenoid problem is another one, but here the energy loss 
is due to the work done against the induced electromotive 
force. Therefore, regardless of the nature of the mecha-
nism, the amount of the energy loss should always be 
exactly half the supplied energy of the power supply. It 
must be emphasized that this energy loss, in all the above 
cases and possible similar ones, is necessary (or the price 
that one must pay) to transform the system from an initial 
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non-equilibrium state to a final equilibrium one [23,26]. 
We must note that our results do not change if one 
chooses a different function for the current, in which case 
the reader can easily verify this. 

4. Conclusions 

We considered an infinite solenoid which is fed by a 
current that increases linearly in time over a time period 
T, after which the current reaches its final value. Our 
results showed that during that period, the electromag-
netic linear momentum density is exactly balanced by the 
hidden momentum density. In other words, the electro-
magnetic force density is exactly balanced be the hidden 
force density. This keeps the total linear momentum den-
sity and the total force density zeros at any time during 
that period.  Which is consistent with the situation be-
fore the current is turned on. It was also shown that the 
stored magnetic energy inside the solenoid is exactly half 
the energy delivered by the power supply.  This stored 
magnetic energy is just the energy which is carried by the 
Poynting vector that crosses the surface of the solenoid. 
The other half is consumed against the induced electro-
motive force which is needed to transfer the system to a 
final equilibrium state. The system we considered is 
analogue to other systems: In the process of charging a 
capacitor by a power supply, half the energy delivered by 
the power supply appears as electric energy in side the 
capacitor. In the two capacitor problem, half the initial 
energy is lost (when the capacitances of the two capaci-
tors are the same). In mechanics, the completely 
in-elastic collision is another example, in which half the 
initial kinetic energy is lost when an incident particle 
collides with another stationary similar particle. In our 
present solenoid problem and in all the above mentioned 
systems, the missing energy is necessary in order to 
transfer the system from an initial non-equilibrium state 
to a final equilibrium state. 
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