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Abstract. Trie energy spectra of two interacting electrons in
a quantum dot confined by

a
parabolic potential in

an
applied magnetic field of arbitrary strength

are
obtained. The

shifted 1/N expansion method is used to solve the effective-mass Hamiltonian. Trie influence

of the electron-electron interaction
on

the ground-state energy and its significant effect
on the

energy level-crossings in states with different angular momenta is shown. Trie dependence of the

ground-state energy on trie magnetic field strength for various confinement energies is presented.
Comparisons show that our calculated spectra of the quantum dot states are m

good agreement
with different works.

1. Introduction

With recent progress in nanofabrication technology, it has been possible to confine electrons

in ali three spatial dimensions in semiconductor structures called quantum dots (QDS). In

such small structures the electrons are fully quantized into a discrete spectrum of energy
levels. The far infrared (FIR) experiments on gated and etched GaAs/AlGaAs and Insb

structures bave reported discrete states in these microstructures [1-3]. Trie growing interest

in this field is motivated by trie physical elfects and trie potential device applications of the

QDS, to which many expenmental [2, 3] and theoretical [4-18] works have been devoted. Trie

magnetic field dependence plays a useful role in identifying the absorption features. The effects

of the magnetic field on the state of the impurity (8] and excitons il1-15] confined in QD have

been extensively studied. Kumar, Laux and Stern [4] have self-consistently solved the Poisson

and Schrôdinger equations and obtained the electron states in
GaAs/AlGaAs for both cases:

in zero and for magnetic fields applied perpendicular to the heterojunctions. The results of

their work [4] indicated that the confinement potential can be approximated by a simple one-

parameter adjustable parabolic potential. Merkt, Huser and Wagner [Si have presented a study
of quantum dots in which both the magnetic field and the electron-electron interaction terms

were taken into account. Pfannkuche and Gerhardts [6] bave devoted a theoretical study to the

magretc-optical response to far-infrared radiation (FIR) of quantum-dot helium, accounting for

deviations from the parabolic confinement. More recently, De Groote, Hornos and Chaplik I?1

© Les Editions de Physique 1995



1028 JOURNAL DE PHYSIQUE I N°8

have investigated the thermodynamic properties of quantum dots taking into consideration

the spin effect, in addition to the electron-electron interaction and magnetic field terms. The

purpose of this study is to show trie effect of trie electron-electron interaction on trie spectra of

the quantum dot states with non-vanishing azimuthal quantum numbers and the transitions

in
the ground state of the system as the magnetic field strength increases.

In this work, we shall use the shifted 1IN expansion method to obtain an energy expression
for trie spectra of two confined electrons in a quantum dot by solving the effective-mass Hamil-

tonian including the following terms: trie electron-electron interaction, applied field and the

parabolic confinement potential. The work is organized as follows. In Section 2, we present
the Hamiltonian of the two interacting electrons, parabolically confined in the QD, subjected
to a magnetic field. The shifted 1IN expansion method is described in Section 3. Results and

conclusions are given in the final section.

2. Theory

Within the effective-mass approximation (EMA), trie Harniltonian for an interacting pair of

electrons confined in a quantum dot by parabolic potential of the form m*wor~ /2 in a magnetic
field applied parallel to the z-axis land perpendicular to trie plane where trie electrons are

restricted to move) in trie syrnrnetric gauge is written as follows,

~
~~ÎÎ

~ Î~~"~~~ ~
ÎÎ~~~Î

~
E

rÎ~
r~l'

Il)

where the twc-dimensional vectors ri and r2 describe the positions of trie first and the second

electron in the (x,y) plane, respectively. L] stands for the z-component of the orbital angular
momentum for each electron and toc =

eB/m*c, m* and E are the cyclotron frequency, effective

mass and dielectric constant of the medium, respectively. Trie frequency w depends on both

the magnetic field B and trie confinement frequency Mo and is given by

~
j

~°"
~°Î+( (2)

The natural units of length and energy to be used are trie effective Bohr radius a*
=

~(~
~

m

and effective Rydberg R*
=

~

~.
Trie dimensionless constant j =

~~
plays trie role of

2m*a* 2R*
an

effective magnetic field strength.

Upon introducing trie center-of-mass R
=

~~ ~ ~~ and the relative coordinates
r =

~~ ~~

,

the
và và

Hamiltonian I?i in equation (1) can be written as a sum of two separable parts that represent
the center-of-mass motion Hamiltonian,

~~
Î* ~~ ~ Î~"~~~ ~

ÎÎ~ ~~
~~~

and the relative motion Hamiltonian,

~~
Î* ~~ ~ Î~"~~~ ~ ~Î~~~ ~ ~~~
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Equation (3) describes the Hamiltonian of the harmonic oscillator with the well-known eigenen-
ergies,

Encm,~ncm = 12nc~n + lmc~nl + i) hW + ~j~ mc~n là)

labelled by the radial (nc~n =
o, 1, 2, ...) and azimuthal (mc~n

=
0, +1, +2, +3, ...) quantum

numbers. The problem is reduced to obtaining eigenenergies En~~~n of the relative motion

Hamiltonian. Trie energy states of the total Hamiltonian are labelled by the CM and relative

quantum numbers, (nc~nmc~n, n~m >. The coexistence of the electron-electron and the oscillator

terms make the exact analytic solution with the present special functions not possible.

3. The Shifted 1IN Expansion Method

The shifted 1IN expansion method, N being the spatial dimensions, is a pseudoperturbative
technique in the sense that it proposes a perturbation pararneter that is not directly related

to trie coupling constant [20-22]. Trie aspect of this rnethod has been dearly stated by Irnbo

et ai. [20,21] who had displayed step-by-step calculations relevant to this method. Following
their work, we present here only the analytic expressions which are required to determine trie

energy states.

Trie rnethod starts by writing the radial Schrôdinger equation, for an arbitrary cylindrically
syrnrnetric potential, in an N-dirnensional space as,

1-j
+

~~ ()) ~~
+ Vlrlj Wlrl

=
E~wlrl (GI

where k
=

N + 2m.

In order to get useful results from 1/k expansion, where k
=

k a and a is a suitable shift

parameter, trie large k-limit of trie potential must be suitably defined [16]. Since trie angular

momentum barrier term behaves like Î~
at large k,

so trie potential should behave similarly.
This will give rise to an effective potential which does not vary with Î at large values of k

resulting in a sensible zeroth-order dassical result. Hence, equation (6) in terms of trie shift

parameter becomes,

'~~~~~~

vjr)
= + ~w~r~ + mi

and Q is a scaling constant to be specified from equation (10). Trie shifted 1IN expansion
method consists in solving equation ii) systematically in terms of trie expansion parameter

1là. Trie leading contribution term to trie energy comes from

~~~~~~~ ÎÎ ~Î ~
~~Î~~~

~~~

where ro is trie minimum of trie effective potential, given by

2r(V'(ro)
=

Q (10)

It is convenient to shift the origin to ro by trie definition

x =

ki jr ro) /ro l~~~
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and expanding equation ii) about x =
0 in powers of x. Comparing trie coefficients of powers

of x in the series with the corresponding ones of trie sonne order in the Schrôdinger equation for

one-dimensional anharmonic oscillator, we determine the anharmonic oscillator frequency, the

energy eigenvalue and the scaling constant in terms of k, Q> ro and the potential derivatives.

Trie anharmonic frequency parameter is

vu j~ 1/2

°
"

3
+

~7j
~~ l12)

o

and the energy eigenvalues in powers
of1Ii (up to third order) read as

~"~"~ ~ ~~°~ ~
ÎO

~
~~

~Î~ ~~ '~~Î
~ ÎÎ( ~~~~

The explicit forms of ii and j2 are given in trie Appendix. Trie shirt parameter a, which

introduces an additional degree of freedom, is chosen so as to make the first term in the energy

series of order k to vanish, namely,

(n~
+ )) a

~~

~

~~
=

0. (14)
ro

By requiring an agreement between 1là expansion and the exact analytic results for the har-

monic and Coulomb potentials. From equation (14) we obtain

a=2-(2n~+1)a (là)

where n~ is trie radial quantum number related to the principal n and magnetic m quantum
numbers by trie relation n~ = n- (m( -1. Energies and lengths in equations (6-15) are expressed

in units of R* and a*, respectively.
For the twc-dimensional case, N

=
2, equation (10) takes the following form,

h
=

2 + 2m a =
Q~~~ (16)

Once ro (for a particular quantum state and confining frequency) is determined, trie task of

computing the energy is relatively simple.

4. Results and Conclusions

Dur results are presented in Figures 1-à and Tables I and II. The relative ground-state energy

(00 > of trie relative motion, for zero-magnetic field case, against the confinement length is

displayed in Figure 1. The present results (dotted line) clearly show an excellent agreement
with the nurnerical results of reference [Si (solid fine). In Figure 2, the first low-energy levels,

(00 >, (10 > and (20 > of the relative Hamiltonian are presented as a function of the effective

confinement frequency w, using parameters appropriate to Insb, where the dielectric constant

E= 17.88, electron effective mass m*
=

0.014me and confinement energy hwo
"

1-à rnev Iii.
The energy levels obviously show a linear dependence on the effective frequency. As the effective

frequency
w increases the confining energy term dominates the interaction energy terni and

thus the linear relationship between the energy and the frequency is maintained. This result

is consistent with reference Iii.
TO investigate trie elfiect of the electron-electron interaction on trie energy spectra of trie

quantum dot, we have plotted in Figure 3 the total ground-state energy (00; où > of the full
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Fig. l. The relative ground state energy (00 > for trie electrons

in a quantum dot
as a

function

1/2
of confinement length fo

= i
for zero magnetic field: reference [Si; (...) present~m

o~

calculations.

*-*~
~
*-*

~
~lJ

0 5 10 15 20 25 30 35 40

l4~

Fig. 2. The Iow-lying relative states (00 >, (10 > and (20 > for two electrons m a quantum dot

made of Insb
as a

function of confinement frequency w.

Harniltonian for independent and interacting electrons as a function of

the ratio wc/wo. The figure shows, as we expect, a significant energy enhancement when the

electron-electron coulombic interaction terni is tumed on. Furtherrnore, as trie magnetic field

increases, the electrons are further squeezed in the QD, resulting in an increase of the repulsive
electron-electron coulombic energy, and in effect the energy levels.

The energy level-crossings are shown in Figure 4. We bave displayed trie eigenenergies of



1032 JOURNAL DE PHYSIQUE I N°8

(0050>-STATE

0 05 15 2 25 3 35 4 45 5

uJc/~

Fig. 3. The total ground-state energy (00; 00 > for two-electrons in a quantum dot as a
function

of trie ratio w~/wo. For independent and interacting electrons.
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Fig. 4. Trie total eigenenergies of trie states (00j 0m >, m =
0, -1, -2,

..,

5, for two interacting
electrons parabolically confined in the quantum dot of size fo

=
3a*

as a function of the ratio w~/wo.

trie states (oo; om >; m =
o, -1, -2, -5, for two interacting electrons parabolically confined

in trie quantum dot of size la
"

3a* as a function of trie ratio toc /wo. As trie magnetic field

strength increases the energy of the state m =
o increases while the energy of the states

with non-vanishing quantum number
m decreases, thus leading to a sequence of different
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Table I. The roots ro determined by equation (16) for quantum dot states with non-vanishing
azimuthal quantum numbers (m) against the ratio toc /wo.

m

to/to~ -1 -2 -3 -4 -5

4.262 4.827 5.457 6.075 6.659 7.209

2 3.692 3.682 4.212 4.719 5.193 5.635

3 3.188 2.943 3.398 3.825 4.229 4.586

ground states, as reported in reference [16]. In trie interacting system, the interaction energy

is trie lower the higher trie angular momentum of the relative motion. This is caused by the

structure of the relative wave function
:

The larger the angular momentum trie larger trie

spatial extent and therefore, trie larger is the distance between the electrons iii]. To confirm

this numerically, we list in Table I trie roots ro of the potential for the interacting electrons

in the QD for states with different angular momentum. At particular values of the ratio

toc /wo, as trie azimuthal quantum number (m( increases, the root ro also increases and thus trie

electron-electron interaction Î-e jr)
=

2/ro, in the leading term of the energy serres expression,
decreases.

In Figure 5, we have shown the dependence of the ground-state energy on the magnetic field

strength for confinement energies: hwo
=

6 and 12 mev. For constant value of trie magnetic
field, trie larger trie confinement energy, trie greater the energy of the interacting electrons in

the QD. The spin effect can be included in trie Hamiltonian equation il) added to the centre-

of-mass part as a space-independent term, and equation (3) is still an analytically solvable

harmonic oscillator Hamiltonian iii.
We have compared, in Table II, our calculated results for the ground state energies (00 >

of the relative Hamiltonian at dilfierent confining frequencies with the results of Taut [18].
In a very recent work, Taut has reported a particular analytical solution of the Schrôdinger
equation for two interacting electrons in an externat harmonic potential. Trie Table shows

as
i/w increases trie difference between both results noticeably decreases until it becomes

m IA x
10~~ at 1/w

=
1419.47.

Quantum dots with more than two electrons cari also be studied. Trie Hamiltonian for ne-

interacting electrons, provided that trie electron-electron interaction term depends only on trie

~2
relative coordinates between electrons V((ri rj () =

,

and parabolically confined in the
~ Î~'31

quantum dot, is separable into a CM and a relative Hamiltonians. Trie parabolic potential
form V(ri)

=

miw(r)/2,1
=

1,2,3,
,

ne is trie only potential which leads to a separable
Hamiltonian. Trie CM motion part is described by trie one-partide Hamiltonian, equation

(3), with trie electron mass replaced by trie total mass M
=

nom* and trie electron charge
replaced by trie total charge Q

= nee. Trie relative Hamiltonian part, which involves only the

relative coordinates and momenta, bas a cylindrically symmetric potential and con be handled

by trie 1/N-expansion technique. When trie confining potential is quadratic, FIR spectroscopy
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Fig. 5. The relative ground-state energy (00 > against the magnetic field strength for two different

confinement energies.

is insensitive to trie interaction effects because of trie CM and relative motions. Trie radiation

dipole operator ~jeiri
=

QR, being a pure CM variable, then it does not couple to H~ which

i

contains all trie electron-electron interactions. Trie dipole operator then induces transitions

between trie states of trie CM but does not affect the states of the relative Hamiltonian.

Trie eigenenergies for the CM Harniltonian, equation là), does not change because toc in the

energy expression remains the same, namely,
~~

=

~~
Consequently, the FIR absorption

Mc m*c
experiments see only the feature of the single-electron energies. There are only two allowed

dipole transitions (lhm
=

+1) and the FIR resonance occurs at frequencies

w~=~+i~
il?)

Many different experiments on quantum dots have proved the validity of Kohn's theorem

and that trie observed resonance frequency of an electron system in a parabolic potential is

independent of electron-electron interactions and thus trie actual nurnber of electrons in the

well, as reported by Wixforth in a very recent review article [19].

In conclusion, we bave obtained trie energy spectra of two interacting electrons as a function

of confinement energies and rnagnetic field strength. The method bas shown good agreement
with trie numerical results of Merkt et ai. [Si, Taut [18] and Wagner et ai. [16]. Dur calculations

have also shown trie effect of the electron-electron interaction terni on trie ground state energy

and its significance on the energy level-crossings in states with different azimuthal quantum
numbers. The shifted 1IN expansion rnethod yields quick results without putting restrictions

on the Hamiltonian of the system.
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Table II. The ground-state energies (in atomic nuits) of the relative Hamiltonian calculated

by 1IN expansion ut dijferent frequencies, compared with the results of Taut f18j.

i/to i/N Expansion Taut

4 o.4220 o.6250

20 0.1305 0.1750

54.7386 0.0635 0.0822

lis.299 o.0375 o.0477

523.102 o.0131 o.o162

1054.54 0.0081 O.ÙIOÙ

1419.47 0.0067 0.0081
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Appendix A

The explicit forms of the parameters ii and j2 are given in the following. Here R* and a* are

used as unit of energy and length, respectively.

ii = ci e2 + 3c2e4 a~~ [e( + 6cieie3 + c4e() IA.1)

and

'Î2 "
T7 + T12 + T16 (~.~)

'~~~~~~

T7
=

Ti °~~ ÎT2 + T3 + T4 + T5 + ~Î ~~ ~~

T12
" ld

~ ÎTS + T9 + T10 + l~lll (~.~)

T16
"

O ~ ÎT13 + Ti4 + T151 ~~'~~

with

Ti
=

cid2 + 3c2d4 + c3d6 T2
=

ciel +12c2e2e4

T3
=

2eidi + 2c5e( T4
=

6cieid3 + 30c2eids
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T5
=

6cid3ei + 2c4e3d3 T6
=

10c6e3d5

T8
=

4e(e2 + 36cieie2e3 T9
=

8c4e2e(

Tio
"

24ce(e4 + 8c7eie3e4 Tii
"

12cse(e4

T13
=

8eie3 + 108cieie3 T14
=

48c4eie3

T15
=

30c9e3

Where c's, d's and e's
are parameters given as,

ci "
1 + 2n~ c4 =

II + 30n~ + 30n) c7 =
31 + 78n) + 78)

c2 =
1 + 2n~ + 2n) c5 "

21+ 59n~ + sIn) + 34n) cs "
57 + 189n~ + 225n) + 150n)

c3 =
3 + 8n~ + 6n) + 4n) c6 =

13 + 40n~ + 42n) + 28n) c9 =
31 + 109n~ +141n) + 94 + n)

~3 QÎ/2 ~~~ ~Z Q~/2

where j
=

1, 2, 3, 4 and
=

1, 2, 3, 4, 5, 6.

~~ =
j2 a) ~~ =

-MW
e~ =

-i W
2 Q

é~=
5 ~ w ô~ ~_

titi
4 Q 2

62
=

~@~
63

=
2(2 a) 64

=

Î~

ô~ =-3-É% ô~-7 +ÉÉ
2 Q 4 Q
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