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ABSTRACT

The energy spectrum of two interacting electrons, confined in a parabolic quantum dot,
presented in a magnetic field, is obtained by using the shifted 1/D expansion method. The
effects of electron—electron interaction and quantum dot size on the energy levels are
studied. Interesting features of the quantum dot spectra such as the energy level crossings
and the removal of the degeneracy are explained. Based on comparisons, our calculated
results are in very good agreement with numerical ones.
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ELECTRONIC SPECTRA OF TWO INTERACTING ELECTRONS CONFINED IN A
QUANTUM DOT IN A MAGNETIC FIELD

1. INTRODUCTION

Quasi-zero-dimensional systems, such as quantum dots (QDs), have been the subject of intense research in recent
years, owing to the nanofabrication techniques that make possible the realization of systems of very small dimensions
comparable to the de Broglie wavelength of carriers. In such small structures the electrons are fully quantized into a
discrete spectrum of energy levels. The confinement in the z-direction, which is the growth direction, is assumed to be
stronger than in the xy-plane, so that the dot can be viewed as a two-dimensional disk. Different experimental [1-7] and
theoretical [8—20] methods have been used to investigate the energy spectrum and correlation effects of the interacting
electrons confined in quantum dots under the effect of an applied magnetic field. One of the most interesting features of
the electron correlation is the change of the spin and angular momentum structures in the ground state of those systems
in the presence of the magnetic field. The singlet—triplet transitions which occur in the two-electron parabolic quantum
dot, as a simple case but not trivial one, have recently received great attention [14—17].

In this work we shall study the spectroscopic properties of a quantum dot by using different approach, namely, the
shifted 1/D expansion method where D is the number of spatial dimensions. We proceed in two steps: first, we used the
shifted 1/D expansion method to produce an analytical expression for two interacting electrons confined in a quantum
dot in the presence of a magnetic field of arbitrary strength. Second, we focus on the effects of electron—electron
interaction and quantum dot size on the spectra in addition to the spin and angular momentum transitions. We give
explanation to these salient features, which occur in the spectra by making use of the energy expression we have
obtained. The rest of this work is outlined as follows. In Section 2 we have presented the Hamiltonian theory for two
interacting electrons parabolically confined in quantum dot. We have described, in Section 3, the shifted 1/D expansion
technique. The final section is devoted to results and discussions.

2. MODEL

The effective-mass Hamiltonian for two interacting electrons, parabolically confined in a quantum dot, in the presence
of a perpendicular magnetic field applied parallel to the z-axis is given as:

2 2 2
—h 2 1 * 9 h(D . e *
H:Z[ =V, +=m wir? +— L |4 ———+g uBBZSi‘Z (1)
=1 2m 2 2 8|r2 - rl\ i
where L and S, stand for the z-components of the orbital angular momentum and spin of each electron,
f eB
Py = _— s BTl and € are the Bohr magneton, Lande factor, the cyclotron frequency, and the dielectric
2m, m,.

constant of the medium, respectively.

The frequency w, depends on the magnetic field B and the confinement frequency I'; = @, , and is given as:

a2
F'=o=|w; +— : @
4
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and the relative coordinates r= , the Hamiltonian in

2 3
Equation (1) decoupled to the cm motion Hamiltonian:

n’ 1l o ho,.
Hg=- _*Vi+—m m2R2+——-(—Lf (3)

2m 2 2

- n
Upon introducing the center of mass (cm) R = L
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and the relative motion Hamiltonian:

n* 1 ho, €
+—m T gl S -L, +— . )
2m” 2 2 2r

H =

r

Equation (3) describes the Hamiltonian of the harmonic oscillator with well-known eigenenergies:

Ell(:m,ln(,m = (2ncm * Im

hw,
cm' + l)h(,l) t—m, )
2
labeled by the radial n,, =0,1,2,... and the azimuthal m,_, =0,%£1,+2,... quantum numbers. Antisymmetrization of the
two-electron wave function requires that even m states are singlets and m states are triplets with the Zeeman spin energy
term E,,, = g g BS, and the total spin S, =[1-(-1)" ]/2 each representing a good quantum number for the system.
The total energy states of the Hamiltonian, E=E & (R sMepm )+ E, (n,,m)+ E,;,(S,) are labeled by the cm and relative
quantum numbers | n,,m,,,n,,m >. Quantitatively, the spin Zeeman energy term will not change significantly the
spectra of the QD while the spin oscillations make the spectra very rich. The problem is reduced to obtaning
the eigenenergies E, , of the relative motion Hamiltonian. The eigenenergies are obtained by the help of 1/D

expansion method [21-24]. In D spatial dimensions the radial Schrodinger equation for the effective potential

2 1 a}
V(r)=—+—*r? + m—< becomes,
r 4 2

2 —2[1_(1 aq[l_@—a)]
-2 + k k +V(r) y(r)=E, ,w(r) (6)

dr? 4r? (0]

where k = D +2m—a and a is the shift parameter. Q is a scaling constant to be determined later from Equation 11. In
order to get useful results from 1/ k expansion, the large k limit of the potentlal must be suitably defined [21]. Since the
angular momentum barrier term in Equation 6 behaves like k?* at large k , the potential should therefore behave
similarly. This will give rise to an effective potential, which does not vary with k at large values of k resulting in a
sensible zeroth-order classical result. Following the previous work of the shifted 1/D expansion method [21-24], we give
here only the energy expression which is needed to calculate the spectra of H,. The energy expression reads as,

K 1{(1—a)(3—a) ] o,
—_—t |t |[+=—

_ (0
Enr,m - En,,m + 4 2 5 - (7)
rO rO 4 kro
«/E 1 Q)
E,(;?,)m =—+—(1)2r02 +m—= (8)
n 4 2
a=2-(2n, +1)o ©)
” 1/2
- V(1)
w=|3+ 0 - (10)
|4 (ro)

and the root is determined through the relation:
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QrRV () =2+ 2m|-a=0"* . (11)

The explicit forms of the parameters o, and o, are given in the appendix in the terms of n,, o, rg, and a. Once ry, for
particular quantum states | n,, m > and confining frequency , is calculated, the task of computing the energy using
Equation 7 is relatively simple.

3. RESULTS AND CONCLUSIONS

Our numerical results are computed for a QD made of GaAs|AlGaAs and are presented in Figures 1 and 2 and Tables
1-5. We compared our calculated results with the work of Zhu et al. [15] upon replacing the quantities: ®,,®,,® with
[;,Y,and T, respectively. Zhu et al. [15] had used the method of series expansion to calculate the one-electron and
two-electron spectra in QDs and to investigate the singlet-spin-triplet oscillations as the magnetic field strength changes.
In Figure 1 we have shown the energies of the states |0,m;00,5>, m = 0, -1, -2,..., -9 for two interacting electrons
parabolically confined in the quantum dot of characteristic confinement frequency I'; =0.2 as a function of y. As y
increases, the energy of the state m = 0 increases while the energies of the states with non-vanishing quantum number m
decreases, thus leading to a sequence of different ground states. The transition in the m-quantum number is a companied
by a flip in the spin of the state to keep the wave function of the electron state totally antisymmetric in accordance with
Pauli exclusion principle. The transition phenomena can be understood from the competition between Coulomb and
magneto-confinement energies which appear in Equation (8). The major contribution (~50%) to the relative energy is

21

due to this term: E© =2 4 " 12,2 L . The roots r, are calculated for all the quantum states |0,m>, m = 0,~1,-2,...
n,,m 0 my 0 q
o
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Figure 1. The total eigenenergies of the states | 0,m; 00,s > for two interacting electrons, parabolically confined in a quantum dot
of confining frequency Ty = 0.2R* and g* = —0.44.
For GaAs a* = 10nm and R* = 5.8 meV, ( singlet states; - - - triplet states).
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at different values of y and various values of these roots are given in Table 1. These roots ry show dependence on m, both
numerically (Table 1) and analytically (Equation 2). As clearly seen from Table 1, the root ry increases as |m| decreases
(V]
and thus the electron—electron interaction energy E e—e(ry,m)= ‘/% (m) decreases showing a dependence on the
0

V] 1
angular quantum number. On the other hand, the magneto-confinement energy term E ¢ (r,,m) = —I“zro2 increases. This

Table 1. The Values of the Roots r, Calculated for Quantum

Relative States at I'; = 0.5 and for Various Values of y.

o
A
|0,-1> 10,-5>
0.022 5.130 7.618
0.056 5.056 7.517
0.111 4.827 7.209
0.156 4.591 6.889
0.200 4.344 6.551
0.222 4.222 6.384
0.334 3.682 6.635
0.445 3.263 5.044
0.556 2.943 4.586

5.0 0 v T T T T | |

4.00

 J
& 300
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0.00 0.40 0.80 1.20
Y

Figure 2. The total eigenenergies of the states | 0,m; 00,s > for two interacting electrons, parabolically confined in quantum dots
of confining frequency Ty = 0.5R* and g* = -0.44. (---m = -1, m=-2).
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coulomb-confinement competition removes the level degeneracy, which appears in the spectra of independent electrons.
We have given, in Table 2, the energies of the states: b and c; d and e for non-interacting and interacting electron cases.
It is obvious that the electron—electron interaction energy, and its dependence on the quantum number m through r,

Voo = 2 splits each pairs of degenerate states in two independent states with higher and lower energies. For
ro(m)

example: the states b and ¢ with equal energies 0.697 R* at y=T; =0.2 are now splitted in two different states with

1.126 and 1.294 R* upon including the Coulomb interacting energy. The amount of the electron—electron energies of two

interacting electrons confined in quantum dot calculated at I'=0.4 are compared, in Table 3, with the results of

Zhu et al. [15]. For particular relative state |0,m> and fixed confinement frequency T, , the roots r, decreases as we

r 4
increase the magnetic field y, and so the coulomb electron interaction energy ~ 1 | for this state, enhances. Increasing

To
the magnetic field further, the electron—electron interaction energy enhances and thus the electron jumps to next state
with higher angular momentum |m|, equivalently larger ry. By doing this the electron—electron energy in the new states
tends to decrease. As a result of this electron jumping, the transition occurs and the ground state of the interacting
electron, confined in a quantum dot, changes its angular momentum (m) and spin (S) quantum numbers. These
transitions appear as kinks in the energy addition spectra of the QD. Indeed, these transitions had been observed
experimentally by Ashoori et al. [5] using single—electron spectroscopy (SES) technique.

To study the effect of varying the confinement frequency I'; on the spectra we have plotted, in Figure 2 and also
listed in Table 4, the energies of the states m =0,-1,-2,...,—5 as a function of confinement frequency I'; = 0.5. Figures 1
and 2 clearly show the influence of the confinement frequency on the level ordering to these quantum dot spectra. In
addition to these qualitative agreement, we have compared in Table 5, our computed quantum dot spectra with those of
Zhu et al. [15], calculated at y=1. We have also obtained good agreement when we compared our results with those
calculated by exact diagonalization methods as reported in various works [7, 8, 10, 11].

In conclusion, we have used the shifted 1/D expansion method to study the spectral properties of the quantum dot. The
shifted 1/D expansion method has advantages over methods such as perturbation and numerical calculations. While the
1/D expansion method is valid for all the ranges of magnetic field strength B, the perturbation theory is limited only to a
weak magnetic field range. Pure numerical calculations are computationally intensive and hard to follow in the physics

Table 2. The Energies (in R") of the Quantum Dot States b, ¢, d, and e Calculated
atI';=0.2 and y = 0.2 with and Without Coulomb Interactions.

| n, m; ngp, meg, s> Excluding Interaction Including Interaction
5:10,1; 00; 0 > 0.697 1.126
c:|00;0,1;0> 0.697 1.294
d:102;0,0; 0 > 0.796 1.139
e:|01;0,1; 1> 0.796 1.225

Table 3. The Electron—Electron Energies, Defined as the Difference Between
Interacting and Non-interacting Electron Energies in the Quantum Dot System,
Calculated for Various Relative States at I'; = 0.4.

|Om> Zhu et al. [15] 1/D

|00> 0.7494 0.732
[01> 0.5066 0.425
[02> 0.3998 0.400
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Table 4. The Energies of the State | 0,-1; 0,0; 1 > Calculated at I, = 0.2 and 0.5 for
Various Values of y.

ry,=02 r,=05

Y energy Y Energy
0.022 1.013 0.05 2.046
0.056 1.002 0.125 2.018
0.111 1.002 0.250 2.050
0.156 1.065 0.375 2.160
0.200 1.126 0.5 2.326
0.222 1.62 0.75 2.754
0.334 1.324 1.0 3.248
0.445 1.613 1.25 3.774

Table 5. The Energies of the States | n,,m; n_,,,m,,, s > Calculated at y = 1 by Present
Work (1/D Method) and Numerical Results [15].

| nm; n M, s > Zhu et al. [15] Present work (1/D method)
[01;00; 1> 3.8278 3.7953
[02;00;0> 4.6436 4.6432
|03;00;1> 5.5174 5.5136
[02;01;0> 5.6436 5.6432
|04;00;0> 6.4693 6.4782
[12;00;0> 6.5956 6.5844
|02;10;0> 6.6436 6.6432

of the problem. We study the effect of electron—electron interaction and confinement frequency on the energy levels of
the quantum dot spectra. We give an explanation for the energy level crossings and for the removal of the level
degeneracy. Based on calculated results, the shifted 1/D expansion method is an effective technique of producing and
understanding the spectral properties of the two-electron quantum dot presented in a magnetic field of arbitrary strength.
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APPENDIX

The parameters o, and o, , appeared in Equation 7 are given as follows:

o, =[+2n, e, +30+2n, +2n2)e, |- w2 + 6(1+2n,) erey +(11+30m, +30n2) €2]
oy = (1+2n,) dy +3(+2n, +2n2) d, +5(3+8n, +6n% +4n?) d,

(1+2n,) e5 + 12(1+ 2n, + 2n,2) eye, +2ed, + 2(21 +59n, +51n? + 34n3) el
—o7l +6(1+2n,) ed; +30(1+2n, +2n2) e,ds +6(1+2n,) eyd, +

2(11+30n, +30n?) e;d; +10(13+40n, +42n% +28n3) e,d;

dele, +36(1+2n,) eeye, + 8(1 1+30n, + 30n,2) eses +24(1+n,) ele,

+ @
+8(31+78n, +78n2) eese, +12(57 +189n, +225n2 +150n3 ) eZe,

~ w7 [8e} +108(1+2n, ) eZe2+48(11+30n, +30n2) e;el +30(31+109n, +141n? +94n3) e ]

with
5;
e; = and d; = —
o’ w//?
wherej=1,2,3,4,i=1,2,3,4,5,6.
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The definition of €; and §; quantities are:

g =2-a) g, =-3(2-a)/2
v (r
g5 =-1+1VO(r,)/60 €4 3V ) ()
4 240
8, =—(1-a)(3-a)/2 8, =3(1-a)(3-a)/4
8;=2(2-a) 8,=-52-a)/2.

January 2001 The Arabian Journal for Science and Engineering, Volume 26, Number I1A. 41




	2023.pdf (p.1)
	2024.pdf (p.2)
	2025.pdf (p.3)
	2026.pdf (p.4)
	2027.pdf (p.5)
	2028.pdf (p.6)
	2029.pdf (p.7)
	2030.pdf (p.8)
	2031.pdf (p.9)

