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The shifted I/N¥ expansion method has been used to study the relative Hamiltonian of two interacting &y
electrons confined in a quantum dot. The eigenenergy spectra are obtained for any arbitrary ratio of Coulomb

to confinement energies. Interesting features of the quantum dot spectra, such as the energy-level crossings and

the removal of the degeneracy, are explained. Comparisons show that our results are in very good agreement i
with recent published ones calculated by exact and WKB methods. E i

L. INTRODUCTION

Quasi-zero-dimensional systems, such as quantum ‘dots
(QD’s), have been the subject of intense research in recent
years, owing to the nanofabrication techniques that make
possible the realization of systems of very small dimensions
comparable to the de Broglie wavelength of carriers. In such
small structures the electrons are fully quantized into a dis-
crete spectrum of .energy levels. Different experimental'~!!
and theoretical'>"*® methods have been devoted to investi-
gate the energy spectrum and correlation effects of the inter-
acting electrons confined in quantum dots under the effect of
applied magnetic field. One of the most interesting features
of the electrons confined in a quantum dot is the energy-level
crossings. Once the crossings occur the spin and angular mo-
mentum quantum numbers of the ground state of the quan-
tum dot changes. These spin transitions appear as a kink in
the addition energy spectra of the electfns confined in a
quantum dot. Indeed these kinks have also been experimen-
tally confirmed in the addition energy u(N,) spectra of the
quantum dot using the single-electron spectroscopy® and
gated transport spectroscopy methods.!! The addition energy
level p£(N,), as usual, is the energy required to add one more
electron to the QD, raising it from an (N,—1)-electron
ground state to an (N,)-electron ground state; u(N,)
=EG(Ne)_EG(Ne— 1)

In this work we shall use the 1/N expansion method to
focus on the quantum dot confining two interacting electrons
as a simple, but not trivial case. First we calculate the spectra
of two interacting electrons confined in a parabolic quantum
dot and, second, we give physical analysis to the crossing
phenomena. which occur in the quantum dot spectra. We
then compare our computed QD spectra in addition to the
spin  singlet-triplet transition -with different theoretical
works?! and relate our results with experimental®”!%!!
works. The shifted 1/V expansion method has an advantage
over methods such as perturbations and pure numerical cal-
culations. While the 1/N expansion technique'is valid for all
the ranges of A, the perturbation theory is limited to a weak
range of A only. Purely numerical calculations are-computa-

-~ tionally intensive and hard to follow in the physics of the

~ problem. : :
"~ The rest of this work is outlined as follows. In Sec. II, we
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have presented the Hamiltonian theory for two interacting
electrons parabolically confined in a quantum dot. We de- .
scribe in Sec. III the shifted 1/N expansion technique, and
the final section is devoted to results and conclusions.

II. THE HAMILTONIAN THEORY

The effective-mass Hamiltonian for two interacting elec-
trons, confined by a harmonic potential of characteristic
length /o= (%/m* wq)'? in the xy plane, can be decoupled to
center-of-mass and relative motion as follows: ¥

2

1
H,=—7L"+ E,u,wor *

For the center of mass M =2m*, Q=2e, P=p,+p, and 3
its coordinate r.,= (r; +r;)/2. Similarly, for the relative panji
we have reduced mass u=m*/2, g=e/2, P=(p;—p,)/2 %%
its eoordinate r=r;—r,. sl

Notice that the effects of the spin and an applied unifo:

e

in the Hamiltonian, where w,=eB/m*c is the cyclotron fres,
quency, and adding the spin energy term E,=g* uzBS, with
S,=[1-(—1)")/2 to the total energy of the QD spectra.Z
The relative Hamiltonian [Eq. (2)] can be written as b

g
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By making the substitution

$(r)=r~"2x(r)em?
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. where m=0, =1, £2... is the azimuthal quantum number.
The eigenenergies for the center-of-mass motion can be
exactly obtained as

Eq=2Nn+|Mpl+1)wyg,

Nem=0,12,..., Mgnp=0%+1%*2,.... (5)

. The problem is reduced to solving the Hamiltonian of the
- relative motion, Eq. (2). By making the substitution r
- =V2lox, we write Eq. (2) as

d*x(x) . N mi-}
W—+ g—x"— ———5— | x(x)=0 (6)
with
e=E/(hwy)/2 and \=v2iy/a*, (7)

where \ is a tuning parameter and it measures the ratio of the
Coulomb interaction to the harmonic confinement,

Vil :
N=—=2VR*hw, ®)

with an effective Bohr radius a*=#%e/m*e?.

The parameter A =v2//a* can be adjusted experimentally
by varying the magnetic field strength B through the cyclo-
tron frequency w,=eB/m*c. The change in w, results in a
change of both the effective frequency Q=(w}+ w?/4)\?
and the effective characteristic length [=(A/m*Q)'2. In this
case, both energies, the single-electron magnetoconfinement
energy E,=(2n+|m|+1)Q+mw/2 and the many-body
electron-electron interaction energy E.~e*/el, will change
also. <

Since Eq. (6), representing the problem of relative motion
confined in a harmonic potential coupled with a Coulomb
potential V(x)=x?+\/x, cannot be solved exactly by any
analytical methods, it is clear that we are going to resort to
approximation methods.

» III. CALCULATION METHOD

The shifted 1/N expansion method, N being the spatial
dimension, is a pseudoperturbative technique in the sense
that it proposes a perturbation parameter that is not related to
the coupling constant.?’-%°

The method starts by writing the radial Schrodinger equa-
tion, for an arbitrary cylindrical symmetric potential, in
N-dimensional space, as

d* E{1-(1—-a)k][1-(3—-a)k] V
-S4 £ a),4r]£ (3—a) ]+ g) “r)
=g, mi(r), ‘ )
where

‘ A
V(r)=r2+7 (10)

and k=N+2m—a, ais a shift parameter, and Q is a scaling
constant to be determined. The shifted 1/N expansion
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method consists of solving Eq. (9) in terms of the expansion

parameter 1/k. It is convenient to shift the origin to ry by the
definition

(1D

and to expand Eq. (9) about y =0 in powers of y. Comparing
the coefficients of powers of y in the series with the corre-
sponding ones of the same order in the Schrodinger equation
for a one-dimensional anharmonic oscillator, we determine
the anharmonic oscillator frequency, the energy eigenvalue,
the scaling constant, and the shift parameter in terms of &, rq

and the potential derivatives. The anharmonic frequency pa-
rameter is

y=kY(r—ry)lr,

roV*(ro)|'?

V'(ro)

the energy eigenvalues in powers of 1/k (up to third order)
read

(12)

m=[3+

N, B 1](l-a)3-a)
e,lr_,,,=-—+r5+—-—; t -—,—[E——’——Zﬁ——-*a,J —Ciz;-,
ro 4ry rg 4 l:"r(‘)
(13)
a=2-(2n,+1)a, (14)

2R3V (rg)=2+2m—a=0Q", (15)

where a; and «, parameters are expressed in terms of Q, @,
and n,, and given in the Appendix. The roots rq (for par-
ticular quantum state and confining frequency) can be deter-
mined through Egs. (14) and (15), and thus the task of com-
puting the energy from Eq. (13) is relatively easy, n, is the
radial quantum number related to the principle (n) and mag-
netic (m) quantum number by the relation n,=n—|m|—1.

5.3

IV. RESULTS AND CONCLUSIONS

Our calculated results for QD’s of two interacting elec-
trons are presented in Figs. 1 and 2 and Tables I and II. We
have considered QD’s made of GaAs/Al,-.Ga As, with
electron effective mass m™*=0.067m, and dielectric constant
12.5. Table I compares the energy spectra of two indepen-
dent (A=0) and interacting (\=1 and 10). The comparison
between both cases clearly shows that the energy levels are
enhanced by including the electron-electron (e-e) interaction
Coulomb energy. For example, the energy of the quantum-
dot state |0,2) increases significantly from 6 for A=0 to
6.6536 and 11.7860 for A=1 and 10, respectively. Thus the
e-e interaction term is very significant and its effects on the
QD spectra manifest themselves in two ways: it removes the
level degeneracy of the quantum-dot states and it also leads
to the crossing between these QD levels. Both effects can be
attributed to the new dependence of the Coulomb interaction
energy on the quantum number (m), as we are going to show,
‘and to the ratio of Coulomb to harmonic confinement ener-
gies A. IO 2T

These level crossings are the salient features of the QD
spectra, which has-been studied-and analyzed to a great ex-
tent. In this discussion we shall work along this direction
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FIG. 1. The Coulomb interaction energy A/rq as a function of
roots rg com:spond.ing to the quantum states |0m>,m=0,+1,
+2,...,+10 for (a) A\=1 and (b))\—-IO

using the shifted 1/N expansion method. To explam both
features, particular attention is paid to the dominant term:
V(ro)=M\/ro+rz. This term contributes ~50% to the total
energy of the quantum dot state. The energy of any quantum-
dot state with different quantum numbers |n;,m) and various
A can be computed using the energy series expression given
in Eq. (13). This effective potential term, namely, V(ry)
=Nro+ rg, represents clearly a Coulomb and harmonic os-
cillator potentials. For a purely hydrogen atom the energy
expectation value of the Coulomb potential is independent of
the quantum number m. This is different from the expecta-
tion value of parabolic potential energy that shows a clear
dependence on m. Now the effective two-electron Hamil-
tonian theory includes two potentials, the harmonic oscillator

. .and the.Coulomb-petentals, which are in competition with

eaclt other. This is"équivalent to saying that a harmonic os-

* cillator force tries to-push the electron to the center of the

quantum dot while a Coulomb force tries to repel the elec-
tron towards the. edge of the QD. The potential competition

changes the dependence of the Coulomb e-¢ interaction en-
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FIG. 2. The eigenenergies of the quantum dot spectra produced
by 1/N expansion method (@@®®) compared with the results of :
exact method (—) given in Ref. 21 for (a) n=0, A=2 and (b) =
m=5, A=10. g

ergy on the quantum number m. This present behavior for the *%
Coulomb potential energy receives detailed analysis in our ’%
study.

»Jo investigate the dependence relation of the Coulomba’-g"
term ~ 1/ry on m and \ through our method, we have calcu-‘w
lated, first, the harmonic frequency & using Eq. (12) and.fw
second, obtained the shifted parameter a through Eg. (14).%
Substituting both quantities in Eq. (15), we give the relation™
between the ry, m, and \ variables,

o

[2(r§~Xro)]¥2=2|m| +

2

4 2(r3=1\) G

3+ —7°—— (16) %

( 0) ks

is clear that finding the roots rg through Eq. (16) ana-"%
lyticallyin terms of m and \-is not attainable. Thus, we seek

numerical solution and produce the roots ry for different m" %

states and \ values as given in Fig. 1. We observe that the ;g

roots rq, for fixed \, increase as m increases and thus the = %

Coulomb energy ~ 1/r, tends to decrease. On the other hand,®
the confinement energy ~ rg is enhanced by increasing the
quantum number m. These behaviors for Coulomb and con- 3
fining potential terms are in agreement with the results’ “of 3
Maksym’s and Chakraborty’s work.'? In Ref. ll,xhey fou f""

number (J) increases, while the ‘confining energy (smgl__é
ergy) ‘increases as J'increasesalso. The reductioh'-inv:
electron-electron interaction energy, a_s"}\l ro, does not
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TABLE L. The energies of two interacting electrons in a quantum dot calculated by exact (Ref. 21) and
/N expansion methods for A=1 and 10. Energies are expressed in units of % wq/2.

- A=0 A=1 A=10

< [n. m) Eri |n, m) Exact VN In, m) Exact 1IN
§ o, 0) 2 0,00  3.4952 34234 [0,0) 104816 104398
3 o, 1) 4 IO, 1) 4.8553 4.8524 o, 1) 10.8495 10.8341
0, 2), |1, 0 6 |0, 2) 6.6538 6.6535 o, 2) 11.7903 11.7860
1, 0 7.2340 7.2339 10, 3) 13.0720 13.0717
[0, 3), |1, 1) 8 |0, 3) 8.5485 8.5484 |1, 0 14.0379 14.0380
_ |1, 1) 8.7594 8.7197 11, 1) 14.4622 14.4621
o, 4), |1, 2, |2, 0) 10 ]0,4) 104814 104814  [0,4) 145546 145544
11, 2) 10.6024 10.6023 1, 2) 154916 154915
|2, 0) 11.0848 10.0848 0, 5) 16.1628 16.1629
0, 5), |1, 3), 2, 1) 12 0,5) 124340 124340 |1,3) 168431  16.8431
1, 3) 12.5154 12,5153 2, 0) 17.6671 17.6670
[2, 1) 12.6961 12.6962 0, 6) 17.6671 17.8541

sume completely the enhancement in the confinement energy
as ry. This net competition energy between the Coulomb and
confinement energies, which actually both constitute the
dominant term E(© = )x/r0+r3 in the energy series, removes
the degeneracy of the quantum dot levels and also leads to
the level crossings. For example, the states |4), |1,2), and
[2.0). which are degenerate for independent (A=0) with
eigenenergy 10, are now split into three states with different
energies 10.4814, 10.6023, and 10.0848, respectively, for the
interacting case A=1. The electron-electron interaction in

TABLE II. The energies of the quantum dot spectra calculated
by 1/N expansion method for (a) n=0, A=2 and &) m=5, \
=10. -

(a)

€om

4.5421
5.6500
7.2865
9.0862
10.9564
12.8638
14.7936
16.7380

N L AW - O | ]

(b)

B

€ns

16.1629
20.0086
23.8586
27.7146
31.5795
35.4545
39.3390
43.2324
47.1347
51.0437
54.9601

O 00 AW ph W - O

—
(=]

this way removes the level degeneracy of the quantum dot
spectra. In addition to this degeneracy lifting the electron-
electron interaction energy changes the ordering of the quan-
tum dot levels from |0,0), 10,1}, ]0,2), |1,0), [0,3), |1,1}, [0.4),
[1,2), 2,03, 10,5), |1,3), |2.1) for A=0 to [0,0), [0.1), |0.2),
0,3), |1,0), [1,1), [0,4), |1,2), J0.5), |1.3), |2,0), [0.6) for A
= 10. Particularly, the states |1,0), |0,3) for A = | change their
order to [0,3), |1,0), for A =10 and the level crossing occurs.
The same thing happens for |1,2), [2,0), |0,5), |1,3), which
changes to |1,2), |0,5), |1,3), |2,0). For finite large values of
\, the electron-electron interaction energy becomes more
pronounced and the energy of the states with small m values,
thus small ry and large N/ry, from lower energy levels, sig-
nificantly enhances and catches the states with large m val-
ues. This means a large ry and small A/rp, from the higher-
energy level. Our observation here agrees with Ref. 21. In
Lthis way the’ dependence of Coulomb energy on m and A

"through rq V,..(rg,m,\), explains the energy level cross-

ings and the removal of the level degeneracy. As we men-
tioned earlier, these transitions in the angular momentum (m)
and spin (s) of the ground state for the interacting electrons
confined in the quantum dot appear as kinks in the electron
addition energy spectra. Indeed these transitions have been
predicted theoretically'? and also confirmed
experimentally®”!! by different groups using quantum dots
made from GaAs|Al, _,Ga As.

In addition to this qualitative explanation of the spectral
properties of the quantum dot, we have tested the accuracy of
the shifted 1/NV expansion method against different numerical
methods. In Figs. 2(a) and 2(b) and Table II, we have com-
pared the energies, for different quantum states and various
values .of \, computed by 1/N expansion method against the
recently published results produced by Wontzel-Kramers-
Brillouin (-Jeffreys) W.K.B.-double-parabola and exact nu-
merical methods. The comparison clearly shows that the 1/N
expansion method gives very accurate results compared with
WKB and exact numerical methods. Almost perfect results
are obtained for quantum-dot states with large quantum num-
bers, namely, n, and m. Since large values of s,-and m-mean- ~
that k=2N+m —a is also large, the energy series expression
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given in Eq. (13) converges very rapidly in terms of 1/k
expansion. For example, the energies of the state |0.0) calcu-
lated by 1/N and exact methods, respectively, are 3.4234 and
3.4952 for A=1 and 10.4398 and 10.4816 for A= 10. On the
other hand, the energies of the state |0,5) calculated with
both methods, 12.4340 for A\ =1 and 16.8431, are exactly the
same for the state =10.

In conclusion, we have studied the spectral properties of
two interacting electrons in a quantum dot using the /N
expansion method. With the dominant simple energy term
V(rg)=N/ r0+ré, we are able to explain the level crossings

J

=[(1+2n,)es+3(1+2n,+2n° o o ko 1[el-P-ﬁ (1+

ary=(1+2n,)d,+3(1+2n,+2n2)d,+5(3+8n,+6n>+4n>)ds—

MOHAMMAD,EL-SAID

- and the removal of the degeneracy as two interesting fe

tures, which are theoretically predicted and also experi
tally confirmed in the spectra of the quantum dot. In addi
to this explanation, the shifted 1/N expansion techniqu
gives very accurate numerical results compared with WKB%
and exact methods.

APPENDIX

The parameters «; and «, appeared in Eq. (13) and are®
given as follows:

n,)ees+(11+30n,+30n)el],

i
3
2
#
3
e
P

o (1 +2n,)e§+ 12(142n,+2n2)eqe,+2¢,d,

+2(21+59n,+51n2 +34n)e2+ 6(1+2n,)e ds+30(1 +2n,+2n)e ds+6(1+2n,)esd, +2(11+30n,+30n)e;ds 5

+10(13+40n,+42n2+28n2)e;ds ]+ @ 2 [4ele, +36(1+2n,)e 6265+ 8(11+30n,+30n))eses +24(1 +n,)ele,

+8(31+78n,+78nl)e ese,+ 12(57+ 189n,+ 22512+ 150n) )ee,]— w ~3[8ed + 108(1 +2n,)ele]

+48(11+30n,+30n2)e e3+30(31+ 109n,+ 141n7 +94n?)e}]

with e;=¢;/w/” and d,= 6,/w/", where j=1, 2,3, 4,
The definition of &; and &; quantities are

g=(2-a),

e3=—1+rgV®(rg)/6Q,

® 5,=—(1-a)(3-a)2,

8=2(2—a),

8s=—3+ryVr;)/1200,

i=1,2,3.4.5,6.

,==302=a)2,

8,=3(1—a)(3—a)/4,
5,=—-502—a).

T Be=1+riVO(ro)1200. -

raVi®(ry)
240
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