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Abstract The spectra of two-electron quantum dot in a magnetic fleld of arbitrary strength
is studied by using the shifted 1/N expansion method. The comparisons show that our results
are in good agreement with the results of fixed-phase quantum Monte Carlo method and exact
ones [Bolton, Phys. Rev. B54 (1996) 4780].
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With recent progress in nanofabrication technology, it has been possible to confine electrons
in all three spatial dimensions in semiconductor structures called quantum dots (QDs). In such
small structures the electrons are fully quantized into a discrete spectrum of energy levels. The
confinement in z-direction, which is the growth direction, is assumed to be stronger than that
in the zy-plane, so that the dots can be viewed as two-dimensional disks. The growing interest
in this fleld is motivated by the physical effects and the potential device applications, both
as electronic memories as well as optoelectronic devices to which many experimentall!~7! and
theoretical®=27] works have been devoted. The spectra of few-electron quantum dot presented
in a magnetic field has been intensively studied using different methods.

In this work we have used the shifted 1/N expansion method to produce an energy ex-
pression and then obtain the spectra of the quantum dot consisting of two electrons. We have
shown the crossover of two levels in the calculated spectra. Making use of this energy ex-
pression, we have explained this effect as a competition between electron-electron interaction,
many-body effect, and the magneto-confinement energy terms. We have compared our results
with the results of fixed-phase Monte Carlo method, very recently produced by Bolton, and
exact ones.[7]

We have considered electrons of effective masses m* moving in the zy-plane and confined
by a parabolic potential (1/2)m*wor?, r? = 22 + 2, with a characteristic frequency wy. The
Hamiltonian of two interacting electrons in the presence of a perpendicular magnetic ﬁeld
applied parallel to z-axis is then

1 hwe .
&= Z[ 2m* Z‘§m'w§r?+ 3 LZ]+m+Q usBZSI,-, (1)

where L and S - stand for the z-components of the orbital angular momentum and spin for
each electron, us = eh/2m,, g*, w. = eB/m*c and ¢ are the Bohr magneton, Lande factor, the
cyclotron frequency and the dielectric constant of the medium, respectively. The frequency w
depends on both the magnetic field B and the confinement frequency wy and is given by
1/2
w= (Wo + —Z) ) (2)
Upon introducing the center-of-mass R = (7} + 73)/v/2 and the relative coordinate 7 = (Fy —

7)/V/'2, the Hamiltonian in Eq. (1) is decoupled to center-of-mass motion Hamiltonian
2
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and the relative mot1on Hamxltoma.n
H i 2.m‘22+hwch+ e? (4)
o —uw’T —0L] :
Tome 't T T -




322 ; Mohammad El-Said

Equation (3) describes the Hamiltonian of the harmonic oscillator with the well-known eigen-
energies
hw,

B rmem = (2nem + [Mem| + 1)w + Tmcm (5)
labeled by the radial (nem = 0,1,2,- - ) and the azimuthal (mem = 0,£1, £2,£3, - - -) quantum
numbers. Antisymmetric two-electron wavefunction requires that even m are‘singlets and odd
m triplets with the Zeeman energy term Egpin = guyBS: and total spin S, = [1 — (-1)™]/2
represents a good quantum number for the system. The total energy states of the Hamiltonian,
E = Eg(nem,Mem) + Er(nr,m) + Egpin(S;), are labeled by the cm and relative quantum
numbers, |¢m, Mem; e, m). The problem is reduced to obtaining eigen-energies E,, m, of the
relative motion Hamiltonian.

The eigen-energies are obtained by the help of the shifted 1/N expansion method. In NV
spatial dimensions the radial Schrodinger equation for the effective potential V(r) = v/2/r +
(1/4)w?r? becomes

d?> (k+a-1)(k+a-3)
[_W i 4r?
where k = N +2m—a and a is the shift parameter. Following the previous works of the shifted
1/N expansion method,[17:28-30] we give here only the energy expression which is needed to
produce and explain the spectra of H,.. The energy expression reads as

+ V()] ¥(r) = B2 (), (6)

V2t Winie we kK 17(1-a)3-a) Yo
En,.,m-—-';o--i-zw T0+m?+E+%[———Z——+’)’1]+W, )
a=2-202n,.+ 1), (8)
E o roV"(r)71/2
w_p+‘mmJ (9)
and the root is determined through the relation
(2r3V'(r))/? =24 2m —a. (10)

The explicit forms of the parameters v; and 7, are given in the Appendix in terms of
n,., @, to and a. Once ¢, for particular quantum state In}, m) and confining frequency w, is
determined, the task of computing the energy is relatively simple.

In this work, we have considered QDs made of GaAs/AlGaAs. We have presented our -
results in Fig. 1 and in Tables 1-3. To show the energy level crossings, we have displayed
in Fig. la, the energies of the states |0,0; 0,m), m = 0,-1,-3,---,—7, for two interacting
electrons parabolically confined in the quantum dot with confining energy hAwy = 3 meV, as
a function of the magnetic field strength B and for g* = 0. As the magnetic field increases
the energy of the state m = 0 enhances while the energy of the states with non-vanishing
azimuthal quantum number m decreases, thus leading to a sequence.of different ground-states.
These results are in agreement with the finding of Bolton which was shown in Fig. 1.7
The level crossings, which appear in the spectra, can be understood from the dependence of
the Coulomb and kinetic energy quantities, for particular value of the ratio w./wp, on the
azimuthal quantum number |m|. The dominant contribution to the relative energy E, . of

the system is coming from the first term, namely, V(ro) = v/2/ro + (1/4)w?rZ. The roots
T0, which are evaluated for quantum states |0,0; 0,m), m = 0,—1,-3,---,—7 at different

values of B are shown in Table 1. As clearly seen from the table, the root 7o increases as |m/|
increases and in the result the electron-electron interaction term decreases. On the other hand,
the magneto-confining term increases. As a result of this competition, the spin and orbital
angular momenta of the ground-state of the interacting system change with increasing of the
magnetic field. The spin singlet-triplet transition occurs at B ~ 1.8 T. Remarkably, these
transitions have been observed experimentally.’] In Table 2, we have listed the energies for
quantum states |0,0;0,m), m = 0,—1,-3,---,—7, calculated at different values of magnetic
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Fig. 1. The eigen-energies of the states |0, 0; 0, m),m=0,-1,-2,---, =7 for two interacting
electrons, of confining energy Awo = 3 meV and g* = 0.0 for (a) present work and (b) Bolton

(Ref. [27]).

Table 1. The values of the roots 7o calculated for the quantum states |0,0; 0,m), m =
0,-1,-3,-5,—T7, at Aiwp = 3 meV and for different values of magnetic field strength B.

B (T) e
0 -1 -3 -5 -7

0 2.4763 2.9872 3.9530 4.7639 5.46353
1 2.4248 2.9295 3.8805 4.6780 5.3671
2 2.2672 2.7863 3.6998 4.4631 5.1222
3 21357 2.6041 3.4691 4.1884 4.8085
4 1.9761 2.4232 3.2386 3.9136 .4.4947
5 1.8207 2.2559 3.0246 3.6580 4.2026
6 1.7024 2.1098 2.8366 3.4331 3.9455
7 1.5917 1.9819 2.6714 3.2353 3.7191
8 1.4978 1.8730 2.5299 3.0656 3.5248
9 1.4157 1.7770 2.4052 2.9160 3.3535
10 1.3437 1.6926 2.2950 2.7835 32017
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Table 2. The energies of the states |0,0; 0,m), m =0,—1,-3, -5, -7, for fiwo =3 meV,
calculated at different values of magnetic field strength B. The energies are given in meV,
(m* = 0.067mo, € = 12.9).

B (T) -
0 -1 -3 -5 =T

0 11.505 12.372 17.201 22.751 28.497
1 11.833 11.954 15.359 19.498 23.838
2 12.726 12.212 14.525 17.621 20.910
3 14.054 13.009 14.520 16.863 19.431
4 15.643 14.136 15.030 16.821 18.854
5 17.420 15.507 15.919 17.297 18.936
6 19.291 17.015 17.043 18.108 19.451
b 21.239 18.631 18.341 19.159 20.271
8 23.191 20.274 19.704 20.308 21.224
9 25.178 21.977 21.172 21.607 22.371
10 27.187 23.716 22.701 22.990 23.625

Table 3. The energies of the states |0,0;0,m), m =0, -1, =3, =5, =7, for Awo = 1.6 meV,
calculated at different values of magnetic field strength B. The energies are given in meV,
(m* = 0.067Tmo, € = 12.9).

T m

B (1) 0 —1 -3 -5 -7
0 6.610 7.214 9.588 12.463 15.476
1 7.749 7.128 8.211 9.828 11.593
2 9.310 8.142 8.451 9.374 10.467
3 11.240 9.609 9.389 9.875 10.555
4 13.337 11.329 10.775 11.022 11.486

We have also compared the results produced by the 1/N expansion method, displayed in
Table 3, against the fixed-phase quantum Monte Carlo method and exact ones, as shown in
Fig. 3 of Ref. [27], for Awo = 1.6 meV. The values of the magnetic filed, B., at which the first
spin singlet-triplet transition occurs for fiwg = 3 and 1.6 meV are 1.8 and 0.8 T, respectively.
Hence the magnetic field B, increases as the confining frequency Awg increases. This result is
consistent with the work of Pfannkuche et al.(%]

In conclusion, we have used the shifted 1/N expansion method to calculate and interpret
the spectra of two interacting electrons confined in a parabolic quantum dot. We have shown,
using this method, that the transition in the angular momentum of the system is due to an
electron-electron interaction effect. Based on the results, the shifted 1/N expansion method
is an effective technique to produce and understand the spectra of two-electron quantum dot
presented in an applied magnetic field of arbitrary strength.

Appendix
The explicit forms of the parameters 7; and 7. are given in the following. Here R* and

a* are used as units of energy and length, respectively. The complete discussion of the 1 /N
method can be found in Refs (17] and [28]-[30].

v1 = c1eg + 3c2e4 — c'u_l{ef + 6creres + 04‘33] (A1)
and
Yo =T7 + T12 + Tis, (A2)
where
T7=T1-—L7)_1[T2+T3 + T4+ Ts +T5], (A3)
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Tio = Q—z[Tg + Ty +Tyo + Tn] ) (Ad)
Tie = @ [T13 + Tiq + Tis) (A5)
with
T1 = c1dy + 3cody + c3ds T = cleg + 12¢cqe0e4
T3 = 2e1dy + 2cse?, Ty = 6cieid; + 30cae1ds
Ts5 = 6c1dse; + 2cqe3ds Ts = 10csezds ,
Ts = 4ef62 + 36¢ciereqzez, Ty = 8c4ege§ .
Tip = 24clefe4 + 8crerezey T, = 12086394 .
T3 = 8ejez + 108cie;e; T4 = 48cqe1 3,
Ti5 = 30cye3,
where c’s, d’s and e’s are parameters given as
ca=1+2n,, cs = 13 +40n, + 42n2 + 28n3 |
c2 =1+ 2n, + 2n2, c7 = 31+ 78n2 + 78n3
c3 = 3+ 8n, +6n2 +4n?, cg = 57 + 189n, + 225n2 + 150n2
¢4 = 11 + 30n, + 30n2, ¢y =31+ 1090, + 141n2 + 94n3
¢s = 21 + 59n, + 51n? + 34n3
e; = 0%5, j=1to4,

2r5V'(r0) = Q,

and
& .
di:-i/’)’ 1=1to6,
oil2
32-a roV2
61:(2_0‘)) 62:—(2 )) 63:—1— OQ )
_5 roV?2 5 = (1-a)(3—-a) s _3(1—0.)(3—(1)
64_4_'_ Q ’ 1, == 2 ) oy == 4 )
5(2~g 3 V2
63:2(2—(1), 54:—-(—2—)) 65:—-5—— OQ ;
2
(56=Z+T0\/—.
4 Q
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