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1 IntroductionUnlike non-real-time applications, tasks in a real-time application have deadline con-straints by which they must complete their computation. Failure to complete a computa-tion within its deadline may lead to a catastrophe. For example, in a surface ship radarapplication [8], an incoming missile must be identi�ed within 0.2 seconds of its detection. Ifnecessary, intercept missiles must be engaged within 5 seconds after detection, and launchedwithin 0.5 seconds within engagement. Failure to meet these timing constraints may resultin severe destruction of life and property. Other such applications include 
ight-controlsystems, life support systems, nuclear power plants, and industrial process-control systems.Due to the severity of the consequences, a distributed computing system is often ded-icated to the tasks in a real-time application. This system must be carefully designed toensure that all the constraints of the application are satis�ed. However, designing such acomputer system is a very di�cult problem. Several ongoing research projects are devel-oping algorithms/heuristics to facilitate the search and evaluation of various design alter-natives [2,7,4]. These heuristics often require an estimate of the number and the type ofprocessors and resources necessary to meet the constraints of the application. In this paper,we propose a method to compute a lower bound on the number of processors and resourcesof each type required by the application. These lower bounds can also serve as a baselinefor evaluating the e�ectiveness of various scheduling and synthesis heuristics.Prior work in lower bound analysis has focussed mainly on non-real-time applications.A typical concern in non-real-time applications is to determine a lower bound on the timerequired to complete a given application on a speci�ed number of processors and resources.For instance, in [6,9{11], lower bound analysis is used to characterize speedups that can beachieved in non-real-time parallel programs. This concern is usually not relevant to real-time applications, where the objective is to complete the tasks in the application withintheir respective deadlines; it is not necessary to complete the application in as short a timeas possible if all the deadline constraints are satis�ed. Therefore, in real-time applications,the problem is to determine the number of processors and resources required to meet theconstraints of the application.Pioneering work on determining the number of processors required for a given applicationwas done by Fernandez and Bussell [3]. They consider applications in which the task haveinteger execution times, precedence relationships, but, zero communication time with othertasks. Furthermore, all tasks are assumed to be non-preemptive and they all require the2



same type for processor for execution. For this class of applications, Fernandez and Bussellproposed a method for computing a lower bound on the number of processors required tocomplete the application within its critical time.More recently, Al-Mohummed [1] extended the algorithm by Fernandez and Bussell toapplications in which the communication requirements between the tasks is non-zero. Thisextension is signi�cant to our work because it deals with one more constraint commonlyfound in real-time applications. However, neither Al-Mohummed's algorithm nor any otherexisting algorithm deals with some of the other constraints crucial to real-time applications.In particular, none of the algorithms deal with deadline constraints. They also do notconsider applications in which the tasks can di�er on the type of processor on which they canexecute. Moreover, they do not consider applications in which the tasks require resourcesother than processors during execution.In contrast, in this paper, we consider applications in which the tasks have deadlineconstraints, release-time constraints, resource requirements, precedence relationships, andnon-zero communication time between a task and its predecessor. Furthermore, the taskscan di�er on the type of processors on which they can execute and they can be eitherpreemptive or non-preemptive. For such applications, we propose a technique to determinea lower bound on the number of processors and resources of each type. We also evaluate alower bound on the cost of a system which meets all the application constraints.The rest of the paper is organized as follows. In Section 2 the assumed model for theapplication and the distributed system are presented. A brief overview of the proposedlower bound analysis technique is presented in Section 3. The details of the various steps inthe lower bound analysis are described in Section 4, 5, 6, and 7. An example to illustratethe proposed technique is presented in Section 8. The paper concludes with Section 9.2 Problem FormulationGiven an application and a model for the distributed system, the problem is to deter-mine a lower bound on the number of resources of each type required by the application.Using these bounds, an additional problem is to determine a lower bound on the cost of adistributed system which can meet the constraints of the application. In the rest of thissection, we present the assumed models for the application and the distributed system.3



2.1 Application modelThe real-time applications considered in this paper can be modeled as a directed acyclicgraph in which the vertices represent the tasks and the edges represent the precedenceconstraints. The vertices can be further annotated to represent other constraints of thecorresponding task. More speci�cally, each vertex can be annotated with the computationtime, the release time, the deadline, and the resource requirements of the correspondingtask. The type of processor on which the task executes and whether or not the task ispreemptable can also be speci�ed for each vertex. The directed edges can be annotatedwith the amount of information (i.e., the size of the message) that is sent between thecorresponding pair of tasks.More formally, we use the following notation to represent the various parameters relatedto an application.S The set of tasks in the applicationPredi The set of immediate predecessors of task iSucci The set of immediate successors of task iCi The computation time of task ireli The release time of task iDi The deadline of task i�i The type of processor on which task i executesRi The set of resources required by task imji The size of the message sent from task j 2 Predi to task iRES The set of all resources required by the application, i.e.,RES = Si2S (Ri [ �i).2.2 Distributed system modelIn this paper, we consider two di�erent architectures of distributed systems. The archi-tectures di�er in the way in which the processors access resources in the system.Dedicated model. In the dedicated model, the distributed system is assumed to becomprised of nodes of several distinct node types, where each node type is characterized bya processor of a given type and a set of resources dedicated to the processor. The set ofdistinct node types from which the distributed system is to be constructed is an input tothe lower bound analysis. A task can execute on a node which has all the resources needed4
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P3 P3Figure 1: Example of distributed system architectures.by the task and has a processor that is appropriate for the task. Tasks assigned to twodi�erent nodes communicate by sending messages on the interconnection network betweenthe nodes. Tasks assigned to the same node do not send any message on the network tocommunicate with each other. The communication between a task and its resources isconsidered to be internal to the node. We assume that for each task there is at least onenode (of the appropriate type) which has all the resources it needs.For example, Figure 1(a) shows an example of a dedicated model for the distributedsystem. In this example system, there are seven nodes with �ve distinct types of nodes.Node N1 is comprised a processor of type P1 and a set of resources A and D. Likewise,Node N3 is comprised of a processor of type P2 and resource A. Nodes N1 and N2 are twounits of the same type. The interconnection network between the nodes is labeled ICN.Shared model. In the shared model, all resources in the system are accessible to allprocessors. However, a resource can be accessed by only one processor at any given time. Atask can be assigned to any processor of appropriate type since the processor can access theresources needed by the task. Tasks assigned to two di�erent processors communicate bysending a message on the interconnection network between the processors. Communicationbetween a processor and its resources is assumed to take place on a separate interconnectionnetwork between the processors and the resources.5



Figure 1(b) shows an example of a shared model distributed system. In this system,there are six processors which share the four units of resource S, two units of resourceD, and three units of resource A through an interconnection network labeled ICN1. Thecommunication between the processors takes place on the interconnection labeled ICN2.The di�erences in the shading of the circles indicate that the corresponding processors areof di�erent types.Cost model. In the shared model, there is a cost associated with each type of resourceand processor that can be used in the system. The total cost of a distributed system is thesum of the costs of the individual costs in the system. In the dedicated model, we associatea cost with each distinct node type. The total cost of a dedicated model distributed systemis assumed to the sum of the costs of the nodes in the system. In the shared as well as thededicated models, the cost of the interconnection networks are ignored. This is reasonablebecause the cost of the resources like sensors and actuators often dominate the cost of thetotal system.The notations used in this paper related to the distributed system model are as follows.� The set of all node types available for use in the dedicated model�n The set of resources in a node of type nCostR(r) The cost of a resource or a processor of type rCostN(n) The total cost of a node of type n.3 Overview of Lower Bound AnalysisRecall that, the problem is to determine a lower bound, LBr, on the number of units ofeach processor/resource r 2 RES. An additional problem is to determine a lower bound onthe cost of a system which meets the application constraints. The proposed approach forthis lower bound analysis involves the following four steps.1. Compute the earliest start time (EST) and the latest completion time (LCT) of eachtask in the application.2. Partition the application tasks into a sequence of smaller subsets such that each subsetcan be treated independently with respect to lower bound analysis.3. Compute a lower bound on the number of units of each processor/resource requiredby the application. 6



4. Compute a lower bound on the cost of a distributed computing system which canmeet the constraints of the application.Our algorithm for the �rst step is based on the ideas in [1]. However, unlike the algorithmin [1], our algorithm handles constraints such as resource requirements, release times, anddeadlines. The proposed algorithm for the second step is similar to the scheme by Jain andRajaraman [5]. However, unlike their scheme, the proposed algorithm deals with tasks witharbitrary execution times and non-zero communication times. Our analysis for the thirdstep can deal with both preemptive and non-preemptive tasks. In contrast, the analysisin [1,3] are only for non-preemptive tasks. Finally, lower bound analysis of system costshave not been addressed in literature. This analysis is particularly useful in speeding upthe search process in automated synthesis of distributed real-time systems.In the following sections, we discuss each of these steps in more detail.4 Evaluation of EST and LCTThe evaluation of LCT and EST of the tasks in the application is simple if there are nocommunication requirements between the tasks. Otherwise, the evaluation is substantiallymore involved. One possible approach for dealing with the communication requirementsis proposed in [1]. In this paper, we modify that approach to deal with the additionalconstraints.De�nition 1: In the shared model, a set of tasks fi1; i2; : : : ; ikg are said to be mergeableif they can all execute on a processor of the same type, i.e.,�i1 = �i2 : : := �ik :De�nition 2: In the dedicated model, a set of tasks fi1; i2; : : : ; ikg are said to bemergeableif there exists a node type which can execute all the tasks in the set, i.e.,(i) �i1 = �i2 : : : = �ik , and(ii) there exists a node type n with a processor of type �i1 and with resources �n �[kl=1Ril .Basically, a set of tasks are said to be mergeable if the tasks can be executed on the sameprocessor/node in the given system model. This notion is not considered in [1] because, in7



[1], all tasks are assumed to be executable on the same type of processor and the resourceconstraints are not considered.4.1 Evaluation of LCTConsider the evaluation of Li, the LCT of a task i 2 S. If i has no immediate successors,then Li is equal to its deadline. Otherwise, Li is recursively computed as follows.Assume that the LCT of the immediate successors of i has already been computed. Ifi and one of its immediate successors j are assigned to di�erent processors/nodes, then themessage from i must reach j by time Lj � Cj so that j can complete its execution by timeLj . Therefore, i must complete its execution and send a message to j by time Lj�Cj�mij .We refer to Lj �Cj �mij as the latest message send time of i with respect to j and denoteit by lmsj .Now let A � Succi be a set of mergeable successors of i such that A [ fig is alsomergeable. Consider the e�ect of assigning the tasks in A to the same processor/node as iand the remaining immediate successors to processors/nodes other than that of i. Then, thetasks in Amust be scheduled sequentially after i on the same processor/node as i. Let lst(A)denote the latest start time for a schedule of the tasks in A on a single processor subjectto their LCT constraints. Task i must clearly complete by time lst(A). By de�nition, taski must also complete before its deadline Di. Finally, task i must complete su�ciently earlyto send messages to tasks j 2 (Succi�A) by time lmsj . Combining these observations, thelatest completion time for task i given that it is merged with tasks in A islcti(A) = min�Di; minSucci�A lmsj ; lst(A)� : (4:1)In this equation, the only term we have not speci�ed is lst(A). This term can be computedas follows. Without loss of generality, let A � fi1; i2; : : : ikg be such that the LCT of i1is greater than or equal to that of i2, which in turn, is greater than or equal to that ofi3, and so on. Generate a schedule by sequentially considering the task in the order i1, i2,: : : , ik. Consider the scheduling of task ij . At this time, tasks i1, : : : , ij�1 have alreadybeen scheduled. Let ej�1 be the start time of ij�1 in this schedule. Schedule ij such thatit completes at minfej�1; Lijg, where Lij is the latest completion time of ij . The lst(A) isthen the start time of the task ik in the resulting schedule.Equation 4.1 speci�es the latest completion time of i if it were to be merged with the8



1. If Succi = ;, set Li = Di and exit.2. InitializeL0i = minfDi;minfj2Succi�MSig lmsjg, G0i = ;, k = 13. while (k � jMSij) f(a) T k = argminfj2MS�Gk�1i g lmsj(b) if (Gk�1i [ fT kg is mergeable), Gki = Gk�1i [ fT kgelse goto step 4.(c) Lki = minnL0i ; minj2MSi�Gki lmsj ; lst(Gk)o(d) if (Lki � Lk�1i ) goto step 4else k = k + 1g4. Li = Lk�1i , Gi = Gk�1i .Figure 2: Proposed algorithm for evaluating LCT of task i.tasks in a set A. The problem, therefore, is to �nd a set A� which results in the largestlatest completion time for i, i.e.,lcti(A�) = maxA[figmergeable lcti(A) = Li:An e�cient method for �nding such an A� is shown in Figure 2.The basic idea of the algorithm can be explained as follows. If a immediate successorj is merged with i, then i need not send a message to j, thus, saving the time required tosend the message. As a result, the completion time of i can be potentially delayed if i andj are merged. On the other hand, if i and j are merged, then they must be sequentiallyscheduled on the same processor/node. This tends to push the completion of i to an earliertime. Depending on the situation, one of these two factors dominates over the other. If the�rst factor dominates, then it is bene�cial to merge i and j. Otherwise, it is better to assigni and j to two di�erent processors/nodes. The algorithm basically evaluates this tradeo�in a systematic fashion. It terminates as soon as it determines that the completion time ofi cannot be increased any further by merging more tasks with i.9



More speci�cally, let MSi = fj : j 2 Succi and j mergeable with ig be the set of imme-diate successors which are individually mergeable with i. The algorithm considers mergingof tasks in MSi with i in the increasing order of their latest message send time. Let us sup-pose that k�1 tasks have already been merged with i; let Gk�1i denote the set of these k�1tasks. We consider the merging of the kth task, denoted by T k. If the tasks in Gk�1i [ fT kgare not mergeable, then the merging process terminates with A� = Gk�1i because the LCTof i cannot be increased any beyond lmsT k . Otherwise, we evaluate the e�ect of mergingT k. We compute the latest completion time of i assuming that T k is also merged withGk�1i , i.e., we use Equation 4.1 with A � Gk�1i [ fT kg. If the resulting latest completiontime is less than the latest completion time before merging T k, then the process stops withA� = Gk�1i . Otherwise, T k is merged with Gk�1i and the next task in order is considered.Theorem 1 below proves the correctness of the algorithm in Figure 2. That is, it showsthat the value returned by the algorithm is an upper bound on the latest completion timeof the corresponding task.Theorem 1: For each task i 2 S, the value returned by the algorithm in Figure 2 is anupper bound on the latest completion time of i.Proof: Consider a task i. Let L be latest completion time of i returned by the algorithm.Also, let G be the corresponding set of successors of i which are merged with i in thealgorithm. Let �G = Succi �G. We now show that if task i completes later than L then atleast one application task will miss its deadline.From the algorithm, we know thatL = minfDi; lst(G);minj2 �G lmsjg and (4.2)lmsj � L 8j 2 G (4.3)Consider a G0 6= G. Let �G0 = Succi � G0. Let L0 be the latest completion time of i ifthe tasks in G0 are merged with i. Then,L0 = minfDi; lst(G0);minj2 �G0 lmsjg: (4:4)We must prove that L0 � L. 10



Case 1: G 6� G0Consider a task T 2 �G0 \ G. Hence, from Equations 4.4 and 4.3, L0 � lmsT � L.Case 2: G � G0Let T = argminj2 �G lmsj , i.e., T is the value of j which corresponds to the minimum lmsj .Now consider two cases.Case 2a: T 2 G0.Since T 2 G0, T is mergeable with G. Therefore, it follows from the algorithm thatlst(G [ fTg) � L. The result then follows becauseL0 � lst(G0) (from Equation 4.4)� lst(G[ fTg) (since G [ fTg � G0)� L:Case 2b: T 62 G0.From Equation 4.2 and the de�nition of T , L = minfDi; lst(G); lmsTg. Similarly, fromEquation 4.4 and the de�nition of T , L0 = minfDi; lst(G0); lmsT g. Since G � G0, lst(G0) �lst(G). From these three observations, we can conclude that L0 � L.From Cases 1, 2a, 2b, we can conclude that the subset G identi�ed by the algorithmresults in the largest latest completion time for i. Hence, the algorithm evaluates an upperbound on the latest completion time of each task in the application. 24.2 Evaluation of ESTConsider the evaluation of Ei, the EST of a task i 2 S. If i has no immediate pre-decessors, then Ei is equal to its release time. Otherwise, Ei is recursively computed asfollows.Assume that the EST of the immediate predecessors of i has already been computed. Ifi and one of its immediate predecessors j are assigned to di�erent processors/nodes, thenthe message from j will reach i by time Ej + Cj +mji. We refer to Ej + Cj +mji as theearliest message receive time of i with respect to j and denote it by emrj .Now let A � Predi be a set of mergeable predecessors of i such that A [ fig is alsomergeable. Consider the e�ect of assigning the tasks in A to the same processor/node as iand the remaining immediate predecessors to processors/nodes other than that of i. Then,the tasks in A must be scheduled sequentially before i on the same processor/node as i.11



1. If Predi = ;, set Ei = reli and exit.2. Initialize E0i = maxfreli;maxfj2Predi�MPig emrjg, M0i = ;, k = 13. while (k � jMPij) f(a) T k = argmaxfj2MP�Mk�1i g emrj(b) if (Mk�1i [ fT kg is mergeable), Mki =Mk�1i [ fT kgelse goto step 4.(c) Eki = maxnrel0i ; maxj2MPi�Mki emrj ; ect(Mk)o(d) if (Eki � Ek�1i ) goto step 4else k = k + 1g4. Ei = Ek�1i , Mi =Mk�1i .Figure 3: Proposed algorithm for evaluating EST of task i.Let ect(A) denote the earliest completion time for a schedule of the tasks in A on a singleprocessor subject to their EST constraints. Task i can potentially start by time ect(A). Byde�nition, task i cannot start before its release time reli. Finally, task i cannot start beforeit receives messages from tasks j 2 (Predi � A), i.e., before time emrj . Combining theseobservations, the earliest start time for task i given that it is merged with tasks in A isesti(A) = max�reli; maxPredi�A emrj ; ect(A)� : (4:5)In this equation, the only term we have not speci�ed is ect(A). This term can be computedas follows. Without loss of generality, let A � fi1; i2; : : : ikg be such that the EST of i1is less than or equal to that of i2, which in turn, is less than or equal to that of i3, andso on. Generate a schedule by sequentially considering the task in the order i1, i2, : : : ,ik. Consider the scheduling of task ij . At this time, tasks i1, : : : , ij�1 have already beenscheduled. Let cj�1 be the completion time of ij�1 in this schedule. Schedule ij such thatit starts at maxfcj�1; Eijg, where Eij is the earliest start time of ij . The ect(A) is then thecompletion time of the task ik in the resulting schedule.Equation 4.5 speci�es the earliest start time of i if it were to be merged with the tasks12



in a set A. The problem, therefore, is to �nd a set A� which results in the smallest earlieststart time for i, i.e., esti(A�) = minA[figmergeableesti(A) = Ei:An e�cient method for �nding such an A� is shown in Figure 3.The basic idea of the algorithm can be explained as follows. If a immediate predecessorj is merged with i, then i need not receive a message to j, thus, saving the time requiredto send the message. As a result, the start time of i can be potentially reduced if i andj are merged. On the other hand, if i and j are merged, then they must be sequentiallyscheduled on the same processor/node. This tends to push the start of i to a later time.Depending on the situation, one of these two factors dominates over the other. If the �rstfactor dominates, then it is bene�cial to merge i and j. Otherwise, it is better to assign iand j to two di�erent processors/nodes. The algorithm basically evaluates this tradeo� ina systematic fashion. It terminates as soon as it determines that the start time of i cannotbe decreased any further by merging more tasks with i.More speci�cally, let MPi = fj : j 2 Predi and j mergeable with ig be the set of im-mediate predecessors which are individually mergeable with i. The algorithm considersmerging of tasks in MPi with i in the decreasing order of their earliest message receivetimes. Let us suppose that k � 1 tasks have already been merged with i; let Mk�1i denotethe set of these k � 1 tasks. We consider the merging of the kth task, denoted by T k. Ifthe tasks in Mk�1i [ fT kg are not mergeable, then the merging process terminates withA� = Mk�1i . Otherwise, we evaluate the e�ect of merging T k. We compute the earlieststart time of i assuming that T k is also merged with Mk�1i , i.e., we use Equation 4.5 withA �Mk�1i [ fT kg. If the resulting earliest start time is greater than the earliest start timebefore merging T k, then the process stops with A� =Mk�1i . Otherwise, T k is merged withMk�1i and the next task in order is considered.Theorem 2 below proves the correctness of the algorithm in Figure 3. That is, it showsthat the value returned by the algorithm is a lower bound on the earliest start time of thecorresponding task. The proof of the theorem is similar to the proof of Theorem 1 and isincluded in the appendix.Theorem 2: For each task i 2 S the value returned by the algorithm in Figure 3 is alower bound on the earliest start time of i. 13



1. Rename tasks in STr from 1 to jSTrj in the increasing order of their ESTs. That is,i 2 STr, j 2 STr, and i < j implies Ei < Ej.2. Initialize k = 1, and Pr1 = f1g.3. For i = 2 to jSTrjIf Ei < maxj2Prk Lj thenPrk = Prk [ figElse k = k + 1; Prk = ;EndifEndforFigure 4: Proposed procedure for partitioning the application tasks.5 Partitioning of Application TasksTo reduce the complexity of the lower bound analysis (cf. Section 6), it is bene�cialto partition the application tasks into smaller subsets which can be treated independently.This partitioning must be carried out with respect to each processor/resource r 2 RES. Inparticular, let STr � fi : i 2 S; r 2 Rig be the set of tasks which need resource r. Partitionthe task in STr into a sequence of smaller subsets Pr1 � Pr2 � � � � � Prm such that thelatest completion time of every task in subset Prl is less than the earliest start time of everytask in any subset Prk, k > l.More formally, Pr1, Pr2, : : : , Prm are such that: (i) STr = Sml=1 Prl, (ii) Prk \ Prl = ;for all k 6= l, and (iii) maxi2Prk Li � minj2Prl Ej, for all l > k.An algorithm to identify such a sequence is formally described in Figure 4. Basically,the algorithm considers the tasks in the increasing order of their earliest start times. Atan intermediate step, the task under consideration (say i) is added to a subset Prk ifEi � maxfj2PrkgLj . Otherwise, a new subset Pr(k+1) is created and task i is added to it.14



6 Resource Lower Bound AnalysisIn this section, we describe the proposed method for computing a lower bound on thenumber of units of a processor/resource r 2 RES required by the application. We beginwith the following de�nitions.De�nition 3: The overlap of a task i 2 S in an interval [t1; t2], t1 < t2, denoted by	(i; t1; t2), is the minimum time that must be allocated to i in [t1; t2] to meet the constraintsof the application.De�nition 4: For any real number x, let�(x) = ( x x � 00 x � 0 and �(x) = ( 1 x > 00 x � 0.Theorem 3: The overlap of a preemptive task i 2 S with the interval [t1; t2], t1 < t2, is	(i; t1; t2) = �(Li � t1) � �(t2 �Ei) �min8>>><>>>: Ci;�(Ci � (t1 � Ei));�(Ci � (Li � t2));�(Ci � (Li � t2)� (t1 �Ei)) 9>>>=>>>; (6:1)Proof: To prove the theorem, we individually consider the �ve cases illustrated inFigure 5. In each case, we show that the right hand side (RHS) of Equation 6.1 evaluatesto the minimum overlap of a preemptive task.Case 1: Li � t1 or t2 � Ei (see Figure 5(a)).In this case, the execution of task i cannot overlap with the interval [t1; t2]. Hence,	(i; t1; t2) = 0. Note that, the RHS of Equation 6.2 also evaluates to zero because�(Li � t1) � �(t2 �Ei) = 0.Case 2: t1 � Ei � Li � t2 (see Figure 5(b)).In this case, task i must completely execute in the interval [t1; t2]. Therefore, 	(i; t1; t2) =Ci. Evaluating RHS of Equation 6.2,RHS = 1 �min fCi; Ci + (Ei � t1); Ci + (t2 � Li); �(Ci + (t2 � t1)� (Li � Ei))g= min fCi; Ci + (Ei � t1); Ci + (t2 � Li); Ci + (t2 � t1)� (Li �Ei)g= Ci= 	(i; t1; t2): 15
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Case 5: Ei � t1 � t2 � Li (see Figure 5(e)).Since i is preemptive, i must (partially) execute in [t1; t2] only ifCi > (t1 � Ei) + (Li � t2):This is because if Ci � (t1�Ei)+(Li�t2), then i can �rst execute in [Ei; t1], get preempted,and then complete its execution in [t2; Li]. Therefore,	(i; t1; t2) = �(Ci � (t1 � Ei)� (Li � t2)):Evaluating RHS of Equation 6.1,RHS = 1 �min fCi; �(Ci � (t1 �Ei)); �(Ci � (Li � t2)); �(Ci � (t1 �Ei)� (Li � t2))g= min f �(Ci � (t1 �Ei)); �(Ci � (Li � t2)); �(Ci � (t1 �Ei)� (Li � t2))g(since t1 � Ei, Li � t2)= �(Ci � (t1 � Ei)� (Li � t2))= 	(i; t1; t2):2The overlap of a non-preemptive task is given by Theorem 4. The proof of the theoremis similar to that of Theorem 3 and is included in the appendix.Theorem 4: The overlap of a non-preemptive task i 2 S in the interval [t1; t2], t1 � t2, is	(i; t1; t2) = �(Li � t1) � �(t2 �Ei) �min8>>><>>>: Ci;�(Ci � (t1 � Ei));�(Ci � (Li � t2));(t2 � t1): 9>>>=>>>; (6:2)Using either Theorem 3 or Theorem 4, we can determine the minimum computation timerequired from resource r 2 RES for task i in any given interval [t1; t2]. Then, the minimumcomputation time required from resource r for the entire application in the interval [t1; t2]is �(r; t1; t2) = Xi2STr 	(i; t1; t2):Therefore, a lower bound on the number of resource units of r required for the entireapplication is LBr = & max�s(r)�t1�t2��f (r)��(r; t1; t2)t2 � t1 �' ; r 2 RES; (6:3)17



where �s(r) = mini2STrfEig and �f(r) = maxi2STrfLig.The exact evaluation of Equation 6.3 is computationally infeasible because we need toconsider an in�nite number of intervals. To make it computationally feasible, we can �nd asequence of points a0, a1, : : : , aN such that �s(r) = a0 < a1 < a2 � � �< aN�1 < aN = �f (r).One can then estimate the right hand side of Equation 6.3 by evaluating only over theintervals generated by al, 1 � l � N , i.e.,LB0r = � max1�l<k�N ��(r; al; ak)ak � al �� :Note that, LB0r is a weaker bound than LBr because LBr � LB0r.The above method is O(N2) because all possible intervals generated by the N pointsare considered. However, if the application is partitioned into a sequence of smaller subsetsPr1 � Pr2 � � � � � Prm, then it is not necessary to consider all the N2 intervals. Thisreduction is characterized by the following lemma and theorem.Lemma 1: For 1 � i � n, ai � 0, bi > 0,Pni=1 aiPni=1 bi � max1�i�n�aibi � :Proof: Follows from algebraic manipulations. 2Theorem 5: Let Pr1 � Pr2 � � � � � Prm be the partition of the tasks in STr identi�ed bythe algorithm in Figure 4. Also, let sk = minfEi : i 2 Prkg and fk = maxfLi : i 2 Prkg for1 � k � m. Further, let 
(r) = f[sk; fk] : 1 � k � mg:Then, max�s(r)�t1�t2��f (r)��(r; t1; t2)t2 � t1 � = maxf[sk ;fk]2
(r)g( maxfsk�t1�t2�fkg��(r; t1; t2)t2 � t1 �) (6:4)Proof: An interval [t1; t2] � [�s(r); �f(r)] can be classi�ed into one of the following threedistinct types, (see Figure 6). 18
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Thus, from Lemma 1 and further simpli�cations, we get�(r; t1; t2)t2 � t1 � max��(r;maxft1; skg; fk)fk �maxft1; skg ; maxk+1�i�n�1 �(r; si; fi)(fi � si) ; �(r; sn;minft2; fng)minft2; fng � sn �� maxk�j�n( maxsj��1��2�fj ��(r; �1; �2)�2 � �1 �)� max1�j�m( maxsj��1��2�fj ��(r; �1; �2)�2 � �1 �)� RHS of Equation 6.4:Since the above result is true for each interval [t1; t2] of type 2, we can conclude thatLB2r � RHSofEquation 6:4. The theorem follows from Cases 1 and 2.Case 3: [t1; t2] of Type 3�(r; t1; t2) = �(r;maxft1; skg;minft2; fkg):From the above equation, it follows thatLB3r = max[t1;t2] of Type 3 �(r; t1; t2)t2 � t1= max[t1;t2] of Type 3 �(r;maxft1; skg;minft2; fkg)t2 � t1= RHS of Equation 6.4:The theorem follows from Cases 1, 2, and 3 and from Equation 6.5. 2The above theorem implies that the Prj , 1 � j � m, generated by algorithm in Figure 4can be treated independently and the �nal lower bound is simply a maximum of the resultsobtained for each partition.7 Lower Bound on System CostIn this section, we present our approach for evaluating a lower bound on the the cost ofthe system which can meet all the constraints of the application. As stated earlier, in theshared model, the cost of the system is assumed to be sum of the costs of the processorsand resources. In the dedicated model, the cost is assumed to be sum of the individual nodecosts. 20



In the shared model, a lower bound on the cost of the system is directly obtained usingthe lower bound on the number of units of each resource r 2 RES. That is, system costShared System Cost � Xr2RESCostR(r) � LBr: (7:1)In the dedicated model, the lower bound analysis is more involved because tasks canonly be assigned to nodes which have all the resources they need. Furthermore, the analysisin Section 6 does not provide a lower bound on the number of units of each node typerequired by the application. Therefore, we need to estimate the required number of unitsof each node type using the lower bounds for the processors and the resources required bythe application.Let xn denote the number of units of a node type n required to meet the constraints ofthe application. Also, let 
nr be the number of units of r 2 RES in a node of type n. Thecost of the system is then given byDedicated System Cost � Xn2�CostN(n) � xn: (7:2)From the lower bound analysis, we know that at least LBr units of each resource mustbe present in the system. Therefore, the values of xn must satisfy the following constraint.Xn2� xn � 
nr � LBr; 8r 2 RES:In addition, for each task, the system must have at least one node on which the task canexecute. Hence, if �i is the set of node types on which task i 2 S can execute, thenXn2�i xn � 1; 8i 2 S:A lower bound on the cost of a dedicated system can thus be determined by solving thefollowing optimization problem.Minimize Xn2�xn � CostN(n)Subject to: Xn2� xn � 
nr � LBr; 8r 2 RES21
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Figure 7: Example of a real-time application.Xn2�i xn � 1; 8i 2 S:In the above problem, xn is an integer for each n 2 �. If we relax this requirement, theresulting cost will also be a lower bound. However, the bound will be weaker than the oneobtained if we solve it as an integer programming problem.8 Illustrative ExampleIn this section, we present a simple example to illustrate the steps involved in theevaluation of the lower bounds. Consider the example in Figure 7. The �gure shows 15tasks numbered 1{15. Each task is annotated with its computation time and its resourcerequirement. Tasks 1, 2, 3, 7, 11 are also annotated with their release times. The releasetime of the other tasks is assumed to be 0. Tasks 12{15 are annotated with their deadlines.The deadline of other tasks is assumed to be 36. All tasks are non-preemptive. There are twotypes of processors, P1 and P2, and one type of resource, r1, required for the application,i.e., RES = fP1; P2; r1g. In addition, we are also given the following node types for thededicated model, � = ffP1; r1g; fP1g; fP2gg. In this example, a set of tasks which aremergeable in the shared model are also mergeable in the dedicated model. In the followingwe consider the four steps of the algorithm. 22



Table 1: EST and LSTTask i Ei Mi Li Gi1 0 { 3 f4g2 0 { 6 {3 3 { 6 {4 3 f1g 8 {5 6 f2g 15 f9g6 11 { 15 {7 10 { 16 {8 18 { 23 {9 16 f5g 19 f14,13g10 22 { 30 f15g11 20 { 35 f15g12 30 { 30 {13 19 f9g 30 {14 19 f9g 30 {15 30 f10,11g 36 {Step 1: Evaluation of LCT and EST (refer to Figures 2 and 3)The values of Ei and Li are shown in Table 1. The table also shows Mi, the set of pre-decessors merged with task i in evaluating Ei. Similarly, the table also shows Gi, the setof successors merged with i in evaluating Li. A \{" is used to indicate that no tasks aremerged with i.Consider the evaluation of L9. The values of lmsj ; j 2 Succ9 are lms15 = L15 � C15 �m9;15 = 36 � 6 � 4 = 26, lms14 = 30 � 5 � 7 = 18, and lms13 = 30 � 6 � 5 = 19. If notasks are merged with task 9, then, its LCT will be 18. To increase its LCT, the algorithm�rst evaluates the e�ect of merging tasks 14 and 9; task 14 is chosen because it has theleast latest message send time. If these two tasks are merged, the LCT of task 9 willbecome L19 = minflst(f14g); lms13; lms15g = minf25; 19; 26g = 19. Since this is greaterthan 18, tasks 14 and 9 will be merged together. Next, task 13 is considered for merging.Merging task 13 with f9; 14g will result in L29 = minflst(f14; 13g); lms15g = minf19; 26g.The algorithm stops here because L29 = L19, and thus merging more tasks will only decreasethe LCT of task 9. Thus, L9 = 19.As another example, consider the evaluation of L5. Note that, at this time, L9 and L8have already been evaluated. In this case, lms9 = 19�3�9 = 7 and lms8 = 23�5�3 = 15.Therefore, task 9 is �rst considered for merging. This results in L15 = minflst(f9g; lms8) =15. Next, task 8 is considered for merging. However, task 8 cannot be merged with task 523



because it requires a di�erent type of processor to execute. The algorithm, therefore, stopshere with L5 = 15.Step 2: Partitioning (refer to Figure 4)With respect to P1, P2, and r1, the partitions generated by the algorithm in Figure 4are STP1 = f1; 2; 3; 4; 5g � f9g � f10; 11; 13; 14g;� f12; 15g, STP2 = f6; 7g � f8g, andSTr1 = f1; 2g � f5g � f10; 13; 14g � f15g.Step 3: Lower bound evaluation (refer to Theorem 5)As a result of the partitioning in Step 2, LBP1 is evaluated over the intervals [0, 15], [16,19], [19, 30], and [30, 36]. Likewise, LBP2 is evaluated over [10, 16] and [18, 23] and LBr1is evaluated over [0, 6], [6, 15], [19, 30], and [30, 36].In each interval, we must select few points and evaluate the lower bound over theintervals generated by these points. Suppose the selected points are those generated byESTs and the LCTs which lie in the interval. For example, consider the intervals generatedby f0, 3, 6, 8, 16g in the interval [0; 15] for evaluation LBP1 . Here, d�(P1;0;3)3 e = d63e = 2,d�(P1;3;6)3 e = d93e = 3, d�(P1;3;8)5 e =e115 = 3. and so on. By taking the maximum over allsuch intervals we get, LBP1 = 3, LBP2 = 2, and LBr1 = 2.Step 4: Cost evaluation (refer to Section 7)For the shared model, a lower bound on the cost of the system isShared System Cost = 3 � CostR(P1) + 2 � CostR(P2) + +2 �CostR(r1)For the dedicated model, let x1 be the units of node of type fP1; r1g, x2 be the units ofnode of type fP1g, and x3 be the units of node of type fP2g. We can obtain a lower boundon the cost of the dedicated model by solving the following optimization problem.Minimize x1 � CostN(1) + x2 � CostN(2) + x3 �CostN(3)subject to x1 + x2 � 3;x1 � 2; andx3 � 2:The solution to this problem is, x1 = 2; x2 = 1; x3 = 2. Hence,Dedicated System Cost = 2 � CostN(1) + CostN(2) + 2 � CostN(3)24



9 ConclusionsGiven a real-time application and a model for the distributed computing system, weproposed a technique to estimate the number of processors and resources of each typerequired to meet the constraints of the application. We proved that this estimate is alower bound on the number of processors and resources necessary to meet the applicationconstraints. Using these bounds, we also proposed a scheme to determine a lower bound onthe cost of a distributed system which meets all the application constraints.The key feature of the proposed analysis technique is that it can handle several di�erenttypes of constraints commonly found in real-time applications. In particular, it can deal withreal-time constraints such as deadlines and release times and non-real-time constraints likeprecedence relationships between tasks, communication needs, and resource requirements.In addition, the application tasks can be heterogeneous in the sense that they may di�eron the type of processor which can execute them. Furthermore, each task can be eitherpreemptive or non-preemptive. To the best of our knowledge, none of the existing techniquescan deal with applications which have all these constraints.The paper also considers two possible architectures of distributed computing systems.In one architecture, the resources in the system are shared by all processors, whereas inthe other, each processor has its own set of dedicated resources. A designer can applythe proposed technique to these architectures and choose the one that is best suited forthe application. For instance, a designer can modify the set of resources dedicated to aprocessor and quickly estimate its e�ect on the overall system cost. As a result, designerscan explore more alternatives and obtain a better system for their application.References[1] M. A. Al-Mohummed, \Lower bound on the number of processors and time for schedul-ing precedence graphs with communication costs," IEEE Transactions on SoftwareEngineering, vol. 16, no. 12, pp. 1390{1401, December 1990.[2] R. Alqadi and P. Ramanathan, \Architectural synthesis of mission-critical comput-ing systems," in Proceedings Complex Systems Engineering Synthesis and AssessmentTechnology Workshop, pp. 185{192. Naval Surface Warfare Center, Silver Spring, Mary-land, July 1993.[3] E. B. Fernandez and B. Bussell, \Bounds on the number of processors and time formultiprocessor optimal schedules," IEEE Transactions on Computers, vol. C-22, no. 8,pp. 745{751, August 1973. 25



[4] S. Howell, C. M. Nguyen, and P. Q. Hwang, \System design structuring and alloca-tion optimization," in Proceedings of the 1991 Systems Design Synthesis TechnologyWorkshop, pp. 117{128, September 1991.[5] K. K. Jain and V. Rajaraman, \Lower and upper bounds on time for multiprocessoroptimal schedules," IEEE Transactions on Parallel and Distributed Systems, vol. 5, no.8, pp. 879{886, August 1994.[6] B. P. Lester, \A system for computing the speedup of parallel programs," in Proceedingsof International Conference on Parallel Processing, pp. 145{152, August 1986.[7] J. W. S. Liu, J.-R. Redondo, Z. Deng, T.-S. Tia, R. Bettati, A. Silberman, M. S.an R. Ha, andW.-K. Shih, \PERTS: A prototyping environment for real-time systems,"Technical report UIUCDCS-R-93-1802, University of Illinois, Urbana, Illinois, May1993.[8] J. J. Molini, S. K. Maimon, and P. H. Watson, \Real-time system scenarios," in Pro-ceedings of Real-Time Systems Symposium, pp. 214{225, December 1990.[9] C. Polychronopoulos and U. Banerjee, \Speedup bounds and processors allocation forparallel programs on multiprocessors," in Proceedings of International Conference onParallel Processing, pp. 961{968, August 1986.[10] K. So et al., \A speedup analyzer for parallel programs," in Proceedings of InternationalConference on Parallel Processing, pp. 653{661, August 1987.[11] X.-H. Sun and L. M. Ni, \Another view on parallel speedup," in Proceedings of the 3rdSupercomputing Conference, pp. 324{333, 1990.APPENDIXA. Proof of Theorem 2Proof: Consider a task i. Let E be earliest start time of i returned by the algorithm.Also, let M be the corresponding set of predecessors of i which are merged with i in thealgorithm. Let �M = Predi �M . We now show that if task i cannot start earlier than E.From the algorithm, we know thatE = maxfreli; ect(M); maxj2 �M emrjg and (.1)emrj � E 8j 2M (.2)Consider a M 0 6=M . Let �M 0 = Predi�M 0. Let E 0 be the earliest start time of i if onlythe tasks in M 0 are merged with i. Then,E 0 = maxfreli; ect(M 0); maxj2 �M 0 emrjg: (:3)26



We must prove that E 0 � E.Case 1: M 6�M 0Consider a task T 2 �M 0 \M . Hence, from Equations .3 and .2, E 0 � emrT � E.Case 2: M �M 0Let T = argmaxj2 �M emrj , i.e., T is the value of j which corresponds to the maximum emrj .Now consider two cases.Case 2a: T 2M 0.Since T 2 M 0, T is mergeable with M . Therefore, it follows from the algorithm thatect(M [ fTg) � E. The result then follows becauseE 0 � ect(M 0) (from Equation .3)� ect(M [ fTg) (since M [ fTg �M 0)� E:Case 2b: T 62M 0.From Equation .1 and the de�nition of T ,E = maxfreli; ect(M); emrTg: (:4)Similarly, from Equation .3 and the de�nition of T ,E 0 = maxfreli; ect(M 0); emrT g: (:5)Since M � M 0, ect(M 0) � ect(M). Therefore, from Equations .4 and .5, we can concludethat E 0 � E.From Cases 1, 2a, 2b, we can conclude that the subset M identi�ed by the algorithmresults in the smallest earliest start time for i. Hence, the algorithm evaluates a lower boundon the earliest start time of each task in the application. 2B. Proof of Theorem 4Proof: To prove the theorem, we individually consider the �ve cases illustrated inFigure 5. In each case, we show that the right hand side (RHS) of Equation 6.2 evaluatesto the minimum overlap.Case 1: Li � t1 or t2 � Ei (see Figure 5(a)).In this case, the execution of task i cannot overlap with the interval [t1; t2]. Hence,27



	(i; t1; t2) = 0. Note that, the RHS of Equation 6.2 also evaluates to zero because�(Li � t1) � �(t2 �Ei) = 0.Case 2: t1 � Ei � Li � t2 (see Figure 5(b)).In this case, task i must completely execute in the interval [t1; t2]. Therefore, 	(i; t1; t2) =Ci. Evaluating RHS of Equation 6.2,RHS = 1 �min ffCi; Ci + (Ei � t1); Ci + (t2 � Li); (t2 � t1)g= Ci= 	(i; t1; t2):Case 3: Ei � t1 � Li � t2 (see Figure 5(c)).To minimize the overlap with the interval [t1; t2], task i should be executed as early aspossible. Thus, the overlap of i is non-zero only if Ci > (t1 � Ei). Hence, 	(i; t1; t2) =�(Ci � (t1 � Ei)). Evaluating RHS of Equation 6.2,RHS = 1 �min fCi; �(Ci � (t1 �Ei)); �(Ci� (Li � t2)); (t2 � t1)g= min fCi; �(Ci � (t1 �Ei)); (t2 � t1)g (since t2 � Li)= min f�(Ci � (t1 �Ei)); (t2 � t1)g (since t1 � Ei)= �(Ci � (t1 �Ei))(since �(Ci � (t1 � Ei)) � (Li � t1) � (t2 � t1))= 	(i; t1; t2):Case 4: t1 � Ei � t2 � Li (see Figure 5(d)).To minimize the overlap with the interval [t1; t2], task i should be executed as late aspossible. Thus, the overlap of i is non-zero only if Ci > (Li � t2). Hence, 	(i; t1; t2) =�(Ci � (Li � t2)). Evaluating RHS of Equation 6.2,RHS = 1 �min fCi; �(Ci � (t1 � Ei)); �(Ci � (Li � t2)); (t2 � t1)g= min fCi; �(Ci � (Li � t2)); (t2 � t1)g (since t1 � Ei)= min f�(Ci � (Li � t2)); (t2 � t1)g (since Li � t2)= �(Ci � (Li � t2))(since �(Ci � (L� i� t2)) � (t2 �Ei) � (t2 � t1))= 	(i; t1; t2):Case 5: Ei � t1 � t2 � Li (see Figure 5(e)).Minimum overlap occurs in one of the following two cases; i is executed as early as possible28



or i is executed as late as possible. That is, 	(i; t1; t2) = minf�(Ci � (t1 � Ei)); �(Ci �(Li � t2)); (t2� t1)g.Evaluating RHS of Equation 6.2,RHS = 1 �min f�(Ci � (t1 �Ei)); �(Ci� (Li � t2)); (t2 � t1)g (since t1 � Ei and Li � t2)= 	(i; t1; t2): 2
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