Submitted to Distributed Computing Systems Symposium, Oct 1994

Analysis of Resource Lower Bounds in Real-Time

Applications

Raed Algadi Parameswaran Ramanathan

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
Madison, WI 53706-1691
parmesh@ece.wisc.edu, (608) 263-0557

ABSTRACT

Tasks in a real-time application usually have several stringent timing, resource, and commu-
nication requirements. Designing a distributed computing system which can meet all these
requirements is a challenging problem. In this paper, we alleviate this problem by proposing
a technique to determine a lower bound on the number of processors and resources required
to meet the constraints of the application. We also extend the technique to estimate the
cost of a system which meets all the application constraints.

The proposed technique deals with most constraints found in real-time applications
including deadlines, release times, resource requirements, precedence relationships, and
non-zero communication times. It also derives these bounds for two different models of
distributed systems; the shared model in which the resources are shared by all processors
and the dedicated model in which each processor has a set of resources dedicated to it.

The results in this paper can be used to reduce the search times for computer-aided
synthesis of distributed real-time systems. They can also serve as a baseline for evaluating
scheduling algorithms for real-time applications.

Index Terms: Real-time applications, Lower bound analysis, Resource requirements, Dis-
tributed computing system.

The work reported here is supported in part by the National Science Foundation grant MIP-9213716.

1 Introduction

Unlike non-real-time applications, tasks in a real-time application have deadline con-
straints by which they must complete their computation. Failure to complete a computa-
tion within its deadline may lead to a catastrophe. For example, in a surface ship radar
application [8], an incoming missile must be identified within 0.2 seconds of its detection. If
necessary, intercept missiles must be engaged within 5 seconds after detection, and launched
within 0.5 seconds within engagement. Failure to meet these timing constraints may result
in severe destruction of life and property. Other such applications include flight-control

systems, life support systems, nuclear power plants, and industrial process-control systems.

Due to the severity of the consequences, a distributed computing system is often ded-
icated to the tasks in a real-time application. This system must be carefully designed to
ensure that all the constraints of the application are satisfied. However, designing such a
computer system is a very difficult problem. Several ongoing research projects are devel-
oping algorithms/heuristics to facilitate the search and evaluation of various design alter-
natives [2,7,4]. These heuristics often require an estimate of the number and the type of
processors and resources necessary to meet the constraints of the application. In this paper,
we propose a method to compute a lower bound on the number of processors and resources
of each type required by the application. These lower bounds can also serve as a baseline

for evaluating the effectiveness of various scheduling and synthesis heuristics.

Prior work in lower bound analysis has focussed mainly on non-real-time applications.
A typical concern in non-real-time applications is to determine a lower bound on the time
required to complete a given application on a specified number of processors and resources.
For instance, in [6,9-11], lower bound analysis is used to characterize speedups that can be
achieved in non-real-time parallel programs. This concern is usually not relevant to real-
time applications, where the objective is to complete the tasks in the application within
their respective deadlines; it is not necessary to complete the application in as short a time
as possible if all the deadline constraints are satisfied. Therefore, in real-time applications,
the problem is to determine the number of processors and resources required to meet the

constraints of the application.

Pioneering work on determining the number of processors required for a given application
was done by Fernandez and Bussell [3]. They consider applications in which the task have
integer execution times, precedence relationships, but, zero communication time with other

tasks. Furthermore, all tasks are assumed to be non-preemptive and they all require the

same type for processor for execution. For this class of applications, Fernandez and Bussell
proposed a method for computing a lower bound on the number of processors required to

complete the application within its critical time.

More recently, Al-Mohummed [1] extended the algorithm by Fernandez and Bussell to
applications in which the communication requirements between the tasks is non-zero. This
extension is significant to our work because it deals with one more constraint commonly
found in real-time applications. However, neither Al-Mohummed’s algorithm nor any other
existing algorithm deals with some of the other constraints crucial to real-time applications.
In particular, none of the algorithms deal with deadline constraints. They also do not
consider applications in which the tasks can differ on the type of processor on which they can
execute. Moreover, they do not consider applications in which the tasks require resources

other than processors during execution.

In contrast, in this paper, we consider applications in which the tasks have deadline
constraints, release-time constraints, resource requirements, precedence relationships, and
non-zero communication time between a task and its predecessor. Furthermore, the tasks
can differ on the type of processors on which they can execute and they can be either
preemptive or non-preemptive. For such applications, we propose a technique to determine
a lower bound on the number of processors and resources of each type. We also evaluate a

lower bound on the cost of a system which meets all the application constraints.

The rest of the paper is organized as follows. In Section 2 the assumed model for the
application and the distributed system are presented. A brief overview of the proposed
lower bound analysis technique is presented in Section 3. The details of the various steps in
the lower bound analysis are described in Section 4, 5, 6, and 7. An example to illustrate

the proposed technique is presented in Section 8. The paper concludes with Section 9.

2 Problem Formulation

Given an application and a model for the distributed system, the problem is to deter-
mine a lower bound on the number of resources of each type required by the application.
Using these bounds, an additional problem is to determine a lower bound on the cost of a
distributed system which can meet the constraints of the application. In the rest of this

section, we present the assumed models for the application and the distributed system.

2.1 Application model

The real-time applications considered in this paper can be modeled as a directed acyclic
graph in which the vertices represent the tasks and the edges represent the precedence
constraints. The vertices can be further annotated to represent other constraints of the
corresponding task. More specifically, each vertex can be annotated with the computation
time, the release time, the deadline, and the resource requirements of the corresponding
task. The type of processor on which the task executes and whether or not the task is
preemptable can also be specified for each vertex. The directed edges can be annotated
with the amount of information (i.e., the size of the message) that is sent between the

corresponding pair of tasks.

More formally, we use the following notation to represent the various parameters related

to an application.

S The set of tasks in the application
Pred; The set of immediate predecessors of task ¢

Succ; The set of immediate successors of task 2

C; The computation time of task ¢

rel; The release time of task ¢

D; The deadline of task ¢

d; The type of processor on which task 2 executes

R; The set of resources required by task ¢

mj; The size of the message sent from task j € Pred; to task ¢

RES The set of all resources required by the application, i.e.,

2.2 Distributed system model

In this paper, we consider two different architectures of distributed systems. The archi-

tectures differ in the way in which the processors access resources in the system.

Dedicated model. In the dedicated model, the distributed system is assumed to be
comprised of nodes of several distinct node types, where each node type is characterized by
a processor of a given type and a set of resources dedicated to the processor. The set of
distinct node types from which the distributed system is to be constructed is an input to

the lower bound analysis. A task can execute on a node which has all the resources needed

330D P ppe

ICN 1
ICN 2
(a) Dedicated Model (b) Shared Model

Figure 1: Example of distributed system architectures.

by the task and has a processor that is appropriate for the task. Tasks assigned to two
different nodes communicate by sending messages on the interconnection network between
the nodes. Tasks assigned to the same node do not send any message on the network to
communicate with each other. The communication between a task and its resources is
considered to be internal to the node. We assume that for each task there is at least one

node (of the appropriate type) which has all the resources it needs.

For example, Figure 1(a) shows an example of a dedicated model for the distributed
system. In this example system, there are seven nodes with five distinct types of nodes.
Node N1 is comprised a processor of type P1 and a set of resources A and D. Likewise,
Node N3 is comprised of a processor of type P2 and resource A. Nodes N1 and N2 are two

units of the same type. The interconnection network between the nodes is labeled ICN.

Shared model. In the shared model, all resources in the system are accessible to all
processors. However, a resource can be accessed by only one processor at any given time. A
task can be assigned to any processor of appropriate type since the processor can access the
resources needed by the task. Tasks assigned to two different processors communicate by
sending a message on the interconnection network between the processors. Communication
between a processor and its resources is assumed to take place on a separate interconnection

network between the processors and the resources.

Figure 1(b) shows an example of a shared model distributed system. In this system,
there are six processors which share the four units of resource S, two units of resource
D, and three units of resource A through an interconnection network labeled ICN1. The
communication between the processors takes place on the interconnection labeled TCN2.
The differences in the shading of the circles indicate that the corresponding processors are

of different types.

Cost model. In the shared model, there is a cost associated with each type of resource
and processor that can be used in the system. The total cost of a distributed system is the
sum of the costs of the individual costs in the system. In the dedicated model, we associate
a cost with each distinct node type. The total cost of a dedicated model distributed system
is assumed to the sum of the costs of the nodes in the system. In the shared as well as the
dedicated models, the cost of the interconnection networks are ignored. This is reasonable
because the cost of the resources like sensors and actuators often dominate the cost of the

total system.

The notations used in this paper related to the distributed system model are as follows.

A The set of all node types available for use in the dedicated model
An The set of resources in a node of type n

CostR(r) The cost of a resource or a processor of type r

CostN(n) The total cost of a node of type n.

3 Overview of Lower Bound Analysis

Recall that, the problem is to determine a lower bound, L B,, on the number of units of
each processor/resource r € RES. An additional problem is to determine a lower bound on
the cost of a system which meets the application constraints. The proposed approach for

this lower bound analysis involves the following four steps.

1. Compute the earliest start time (EST) and the latest completion time (LCT) of each

task in the application.

2. Partition the application tasks into a sequence of smaller subsets such that each subset

can be treated independently with respect to lower bound analysis.

3. Compute a lower bound on the number of units of each processor/resource required

by the application.

4. Compute a lower bound on the cost of a distributed computing system which can

meet the constraints of the application.

Our algorithm for the first step is based on the ideas in [1]. However, unlike the algorithm
in [1], our algorithm handles constraints such as resource requirements, release times, and
deadlines. The proposed algorithm for the second step is similar to the scheme by Jain and
Rajaraman [5]. However, unlike their scheme, the proposed algorithm deals with tasks with
arbitrary execution times and non-zero communication times. Our analysis for the third
step can deal with both preemptive and non-preemptive tasks. In contrast, the analysis
in [1,3] are only for non-preemptive tasks. Finally, lower bound analysis of system costs
have not been addressed in literature. This analysis is particularly useful in speeding up

the search process in automated synthesis of distributed real-time systems.

In the following sections, we discuss each of these steps in more detail.

4 Evaluation of EST and LCT

The evaluation of LCT and EST of the tasks in the application is simple if there are no
communication requirements between the tasks. Otherwise, the evaluation is substantially
more involved. One possible approach for dealing with the communication requirements
is proposed in [1]. In this paper, we modify that approach to deal with the additional

constraints.

Definition 1: In the shared model, a set of tasks {iy,i,...,i;} are said to be mergeable

if they can all execute on a processor of the same type, i.e.,
Giy = Piy -+ = Py

Definition 2: In the dedicated model, a set of tasks {iy,i2,...,7x} are said to be mergeable

if there exists a node type which can execute all the tasks in the set, i.e.,

(i) ¢y = @iy ... = ¢;,, and
(ii) there exists a node type n with a processor of type ¢;, and with resources A, D

UleRil .

Basically, a set of tasks are said to be mergeable if the tasks can be executed on the same

processor/node in the given system model. This notion is not considered in [1] because, in

[1], all tasks are assumed to be executable on the same type of processor and the resource

constraints are not considered.

4.1 Evaluation of LCT

Consider the evaluation of L;, the LCT of a task z € §. If 2 has no immediate successors,

then [, is equal to its deadline. Otherwise, L; is recursively computed as follows.

Assume that the LCT of the immediate successors of ¢ has already been computed. If
i and one of its immediate successors j are assigned to different processors/nodes, then the
message from ¢ must reach j by time L; — C; so that j can complete its execution by time
L;. Therefore, 7 must complete its execution and send a message to j by time L; —C; —my;.
We refer to L; — C'; — m;; as the latest message send time of ¢ with respect to j and denote

it by lms;.

Now let A C Succ; be a set of mergeable successors of 7 such that A U {¢} is also
mergeable. Consider the effect of assigning the tasks in A to the same processor/node as i
and the remaining immediate successors to processors/nodes other than that of . Then, the
tasks in A must be scheduled sequentially after ¢ on the same processor/node as 7. Let Ist(A)
denote the latest start time for a schedule of the tasks in A on a single processor subject
to their LCT constraints. Task ¢ must clearly complete by time Ist(A). By definition, task
: must also complete before its deadline D;. Finally, task ¢ must complete sufficiently early
to send messages to tasks j € (Succ; — A) by time lms;. Combining these observations, the

latest completion time for task ¢ given that it is merged with tasks in A is

let;(A) = min {Di, urg(l}n lms;, lst(A)}. (4.1)
In this equation, the only term we have not specified is Ist(A). This term can be computed
as follows. Without loss of generality, let A = {iy,is,...1} be such that the LCT of 4,
is greater than or equal to that of 3, which in turn, is greater than or equal to that of
3, and so on. Generate a schedule by sequentially considering the task in the order iy, 4o,

.., 1;. Consider the scheduling of task ;. At this time, tasks 41, ..., 7;_1 have already
been scheduled. Let e;_; be the start time of ¢;_; in this schedule. Schedule ¢; such that
it completes at min{e; 1, L;, }, where L, is the latest completion time of ¢;. The Ist(A) is

then the start time of the task ¢; in the resulting schedule.

Equation 4.1 specifies the latest completion time of ¢ if it were to be merged with the

1. If Succ; = 0, set L; = D; and exit.

2. Initialize

L} = min{ Dy, minjeguce, —ars;y Ims;), G =0, k=1

3. while (k < |M5S;|) {
(a) TF = argming g i1y lms;

(b) if (GF~1U{T*} is mergeable), GF = G¥1u {T*}
else goto step 4.

(¢) L¥ = min {L?, min ;e prs. gk lms;, lst(Gk)}

(d) if (LF < IF1) goto step 4
else k=Lt4+1

¥
4. L; = Lf_l, G; = Gf_l.

Figure 2: Proposed algorithm for evaluating LCT of task .

tasks in a set A. The problem, therefore, is to find a set A* which results in the largest
latest completion time for 7, i.e.,

let;(A*¥) = let;(A) = L;.
¢ () AU{i%lrrln%I)“(geable ¢ ()

An efficient method for finding such an A* is shown in Figure 2.

The basic idea of the algorithm can be explained as follows. If a immediate successor
j is merged with ¢, then ¢ need not send a message to j, thus, saving the time required to
send the message. As a result, the completion time of ¢ can be potentially delayed if ¢ and
j are merged. On the other hand, if z and j are merged, then they must be sequentially
scheduled on the same processor/node. This tends to push the completion of i to an earlier
time. Depending on the situation, one of these two factors dominates over the other. If the
first factor dominates, then it is beneficial to merge ¢ and 7. Otherwise, it is better to assign
i and j to two different processors/nodes. The algorithm basically evaluates this tradeoff
in a systematic fashion. It terminates as soon as it determines that the completion time of

¢ cannot be increased any further by merging more tasks with q.

More specifically, let M S; = {j : j € Succ; and j mergeable with i} be the set of imme-
diate successors which are individually mergeable with ¢. The algorithm considers merging

of tasks in M S; with 7 in the increasing order of their latest message send time. Let us sup-
pose that £ —1 tasks have already been merged with ¢; let Gf_l denote the set of these k—1
tasks. We consider the merging of the k" task, denoted by T*. If the tasks in Gf_l u{T*}

are not mergeable, then the merging process terminates with A* = Gf_l because the LCT
of ¢ cannot be increased any beyond Imspx. Otherwise, we evaluate the effect of merging
T*. We compute the latest completion time of ¢ assuming that 7% is also merged with
Gf_l, i.e., we use Equation 4.1 with A = Gf_l U {T*}. If the resulting latest completion
time is less than the latest completion time before merging T%, then the process stops with

A = Gf_l. Otherwise, T% is merged with Gf_l and the next task in order is considered.

Theorem 1 below proves the correctness of the algorithm in Figure 2. That is, it shows
that the value returned by the algorithm is an upper bound on the latest completion time

of the corresponding task.

Theorem 1: For each task ¢ € §, the value returned by the algorithm in Figure 2 is an

upper bound on the latest completion time of i.

Proof: Consider a task ¢. Let L be latest completion time of ¢ returned by the algorithm.
Also, let G be the corresponding set of successors of ¢ which are merged with 7 in the
algorithm. Let G = Succ; — G. We now show that if task 7 completes later than L then at

least one application task will miss its deadline.

From the algorithm, we know that
L = min{D;,Ist(G), minlms;} and (4.2)
jeG

Ims; < L VjedG (4.3)

Consider a G/ # G. Let G' = Succ; — G'. Let L' be the latest completion time of ¢ if
the tasks in G’ are merged with i. Then,

L' = min{D;,1st(G"), min Ims;, }. (4.4)
jeq

We must prove that L' < L.

10

Case 1: G ¢ &'
Consider a task T € G’ N G. Hence, from Equations 4.4 and 4.3, L' < lmst < L.

Case 2: G C ¢
Let T'= argmin ¢ Ims;, i.e., T' is the value of j which corresponds to the minimum Ims;.

Now consider two cases.
Case 2a: T € ('

Since T € G', T is mergeable with G. Therefore, it follows from the algorithm that
Ist(GU{T}) < L. The result then follows because

L' < 1st(G') (from Equation 4.4)
< Ist(GUAT}) (since GU{T} C &)
< L.

Case 2b: T ¢ G'.
From Equation 4.2 and the definition of 7', L = min{D;,Ist(G),lmsr}. Similarly, from
Equation 4.4 and the definition of T, L' = min{D;,1st(G"),Imsr}. Since G C &', Ist(G”') <

Ist(G). From these three observations, we can conclude that L' < L.

From Cases 1, 2a, 2b, we can conclude that the subset & identified by the algorithm
results in the largest latest completion time for ¢. Hence, the algorithm evaluates an upper

bound on the latest completion time of each task in the application. a

4.2 Evaluation of EST

Consider the evaluation of F;, the EST of a task ¢ € §. If « has no immediate pre-
decessors, then F; is equal to its release time. Otherwise, F; is recursively computed as

follows.

Assume that the EST of the immediate predecessors of ¢ has already been computed. If
i and one of its immediate predecessors j are assigned to different processors/nodes, then
the message from j will reach ¢ by time F; + C; + mj;. We refer to E; + C; + m;; as the

earliest message receive time of ¢ with respect to j and denote it by emr;.

Now let A C Pred; be a set of mergeable predecessors of ¢ such that A U {i} is also
mergeable. Consider the effect of assigning the tasks in A to the same processor/node as i
and the remaining immediate predecessors to processors/nodes other than that of 7. Then,

the tasks in A must be scheduled sequentially before i on the same processor/node as i.

11

1. If Pred; = 0, set E; = rel; and exit.
2. Initialize E? = max{rel;, Max(;cpred;—Mp,} €MT; }, MP =0, k=1

3. while (kK < |MP;|) {

k _— .
(a) T% = ATGMAX ey rp_ppk-1y OINT;

1 ST U 18 mergeable), f=M""U
by if (MFYU{T*}) i geable), MF = MF1u{T*
else goto step 4.

(¢) EF = max {rel?, MaX;enyp, 7k €T, ect(Mk)}
(d) if (EF > EF') goto step 4
else k=Lt4+1

}
4. B; = EFY M = ML

Figure 3: Proposed algorithm for evaluating EST of task .

Let ect(A) denote the earliest completion time for a schedule of the tasks in A on a single
processor subject to their EST constraints. Task ¢ can potentially start by time ect(A). By
definition, task ¢ cannot start before its release time rel;. Finally, task 7 cannot start before
it receives messages from tasks j € (Pred; — A), i.e., before time emr;. Combining these
observations, the earliest start time for task ¢ given that it is merged with tasks in A is
est;(A) = max {reli, pnax emr;, ect(A)} . (4.5)
In this equation, the only term we have not specified is ect(A). This term can be computed
as follows. Without loss of generality, let A = {iy,1iy,...ix} be such that the EST of 7,
is less than or equal to that of ¢3, which in turn, is less than or equal to that of i3, and
so on. Generate a schedule by sequentially considering the task in the order 1, i, ...,
tr. Consider the scheduling of task 7;. At this time, tasks ¢, ..., ¢;_1 have already been
scheduled. Let ¢;_; be the completion time of ¢;_; in this schedule. Schedule ¢; such that
it starts at max{c;_1, F;, }, where F; is the earliest start time of i;. The ect(A) is then the

completion time of the task i; in the resulting schedule.

Equation 4.5 specifies the earliest start time of ¢ if it were to be merged with the tasks

12

in a set A. The problem, therefore, is to find a set A* which results in the smallest earliest
start time for ¢, i.e.,

eSti(A*) - AU{i}IflnieIl}geableeSti(A) - EZ

An efficient method for finding such an A* is shown in Figure 3.

The basic idea of the algorithm can be explained as follows. If a immediate predecessor
J is merged with ¢, then ¢ need not receive a message to j, thus, saving the time required
to send the message. As a result, the start time of ¢ can be potentially reduced if ¢z and
j are merged. On the other hand, if z and j are merged, then they must be sequentially
scheduled on the same processor/node. This tends to push the start of ¢ to a later time.
Depending on the situation, one of these two factors dominates over the other. If the first
factor dominates, then it is beneficial to merge ¢ and j. Otherwise, it is better to assign ¢
and j to two different processors/nodes. The algorithm basically evaluates this tradeoff in
a systematic fashion. It terminates as soon as it determines that the start time of ¢ cannot

be decreased any further by merging more tasks with q.

More specifically, let M P; = {j:j € Pred; and j mergeable with i} be the set of im-
mediate predecessors which are individually mergeable with <. The algorithm considers

merging of tasks in M F; with ¢ in the decreasing order of their earliest message receive
times. Let us suppose that k& — 1 tasks have already been merged with ¢; let Mf_l denote
the set of these k — 1 tasks. We consider the merging of the k* task, denoted by T%. If
the tasks in Mf_l U {T*} are not mergeable, then the merging process terminates with
A* = Mf_l. Otherwise, we evaluate the effect of merging 7. We compute the earliest
start time of ¢ assuming that 7% is also merged with Mf_l, i.e., we use Equation 4.5 with
A= Mf_l U {T*}. If the resulting earliest start time is greater than the earliest start time
before merging T%, then the process stops with A* = Mf_l. Otherwise, T% is merged with
Mf_l and the next task in order is considered.

Theorem 2 below proves the correctness of the algorithm in Figure 3. That is, it shows
that the value returned by the algorithm is a lower bound on the earliest start time of the

corresponding task. The proof of the theorem is similar to the proof of Theorem 1 and is

included in the appendix.

Theorem 2: For each task ¢ € & the value returned by the algorithm in Figure 3 is a

lower bound on the earliest start time of <.

13

1. Rename tasks in ST, from 1 to [ST,| in the increasing order of their ESTs. That is,
1€ ST, j€ ST, and 7 < j implies E; < F;.

2. Initialize k = 1, and P,; = {1}.
3. For i = 2 to |5T}|

If F; < max;ep,, L; then
P = P U {i}
Else
k=k+1; Pp=0
Endif

Endfor

Figure 4: Proposed procedure for partitioning the application tasks.

5 Partitioning of Application Tasks

To reduce the complexity of the lower bound analysis (cf. Section 6), it is beneficial
to partition the application tasks into smaller subsets which can be treated independently.
This partitioning must be carried out with respect to each processor/resource r € RES. In
particular, let ST, = {i: 1 € §,r € R;} be the set of tasks which need resource r. Partition
the task in ST, into a sequence of smaller subsets P,y < P,y < --- < P,,, such that the
latest completion time of every task in subset P,; is less than the earliest start time of every

task in any subset P, k > [.
More formally, P.y, P2, ..., Py arve such that: (i) ST, = U2y Pr, (i) Pox N Py =0
for all k # [, and (iii) max;ep,, L; < minjep, I, for all [> k.

An algorithm to identify such a sequence is formally described in Figure 4. Basically,
the algorithm considers the tasks in the increasing order of their earliest start times. At
an intermediate step, the task under consideration (say 7) is added to a subset P, if

E; <max;ep,y Lj. Otherwise, a new subset P ;) is created and task ¢ is added to it.

14

6 Resource Lower Bound Analysis

In this section, we describe the proposed method for computing a lower bound on the
number of units of a processor/resource r € RES required by the application. We begin

with the following definitions.

Definition 3: The overlap of a task i € § in an interval [t1,%5], t; < t2, denoted by
U (i, t1,12), is the minimum time that must be allocated to ¢ in [t1,?2] to meet the constraints

of the application.

Definition 4: For any real number z, let
r o
a(z) = { 0 @

Theorem 3: The overlap of a preemptive task ¢ € 5 with the interval [t1,13], 1 < 12, is

0 1 >0
o and “(x)_{o z < 0.

IN IV

Civ
V(i t1,12) = p(Li — t1) - p(ts — E;) - min Zgg B E%‘_ZB (6.1)
A C; = (Li = 1) — (11 — E))

Proof: To prove the theorem, we individually consider the five cases illustrated in
Figure 5. In each case, we show that the right hand side (RHS) of Equation 6.1 evaluates

to the minimum overlap of a preemptive task.

Case 1: L; <ty or ty < F; (see Figure 5(a)).
In this case, the execution of task ¢ cannot overlap with the interval [t;,?5]. Hence,

U(i,t1,72) = 0. Note that, the RHS of Equation 6.2 also evaluates to zero because
p(Li = t1) - pu(ty — E;) = 0.

Case 2: t; < F; < L; <3 (see Figure 5(b)).
In this case, task ¢ must completely execute in the interval [t1,t2]. Therefore, W(i,#1,%2) =

C;. Evaluating RHS of Equation 6.2,
RHS = 1-min{C;, Ci+(Fi—t1), Ci+(ta—L;), ao(Ci+ (ta—t1)—(L;i— E))}
= min{C;, Ci+(E—-t), Cit(ta—Li), Ci+(ta—t)—(Li— E)}
=
= V(i t1,12).

15

|—| | | |—| | —
\ \ \ \
tl t2 t1 t2
(a) Case 1 (b) Case 2
E L. E L
I | I
I I | | e
\ w \ \
t, t, t, t,
(c) Case 3 (d) Case 4
E L
L I
= —
t, t,
(e) Case 5

Figure 5: All possible overlap cases between [F;, L;] and [t1, t2].

Case 3: F; <t < L; <13 (see Figure 5(c)).

To minimize the overlap with the interval [ty,%;], task i should be executed as early as
possible. Thus, the overlap of ¢ is non-zero only if C; > (t; — F;). Hence, V(i ,t1,t2) =
a(C; — (t1 — E;)). Evaluating RHS of Equation 6.1,

RHS = 1-min{C;, a(C; —(t1 — E})), a(C; = (L; —t3)), a(C; — (L; —t2) — (t1 — Ep))}
= min{a(C; — (t1 — Fy)),a(C; — (t1 — E;) — (L; — t2))} (since t; > F;, t3 > L)
= o(C; — (t; — E;))(since ty > L;)
= W(i,ty,12).

Case 4: t < E; <ty < L; (see Figure 5(d)).

To minimize the overlap with the interval [t1,?5], task ¢ should be executed as late as
possible. Thus, the overlap of 7 is non-zero only if C; > (L; — t3). Hence, V(i t1,t2) =
a(C; — (L; — t3)). Evaluating RHS of Equation 6.1,

RHS = 1-min{C;, a(C; —(t1 — E))), a(C; = (L; —t3), a(C; = (L; —t2) — (t1 — Fy))}
= min{a(C; — (L; — t2)),a(C; — (L; — t2) — (t1 — E;))} (since t1 < Ey, o < L)
= a(C;— (L; —13))(since t < F;
= W(i,ty,t2).

(
)

16

Case 5: E; <t; <ty < L; (see Figure 5(e)).

Since ¢ is preemptive, ¢ must (partially) execute in [t1, 3] only if
Ci > (tl — Ez) + (Lz — tg).

This is because if C; < (1 — F;)+(L; —t2), then 7 can first execute in [F;, 1], get preempted,

and then complete its execution in [tg, L;]. Therefore,
\Il(i,tl,tz) = Oé(CZ - (tl - Ez) - (Lz - tz))
Evaluating RHS of Equation 6.1,

RHS = 1 -min {C“ Oz(CZ — (tl — Ez)), Oz(CZ — (Li — tg)), Oz(CZ — (tl — EZ) — (Li — tg))}
= min{ Oz(CZ — (tl — Ez)), Oz(CZ — (Li — tg)), Oz(CZ — (tl — EZ) — (Li — tg))}
(since t; > F;, L; > 13)
= oCi = (hh = By) = (Li — 12))
= V(i t1,13).0

The overlap of a non-preemptive task is given by Theorem 4. The proof of the theorem

is similar to that of Theorem 3 and is included in the appendix.

Theorem 4: The overlap of a non-preemptive task i € S in the interval [t1,t2], t1 < to, is

Civ

U(e,ty,t) = p(Li —tq) - p(ty — E;) - min (6.2)

Using either Theorem 3 or Theorem 4, we can determine the minimum computation time
required from resource r € RES for task ¢ in any given interval [ty,¢;]. Then, the minimum
computation time required from resource r for the entire application in the interval [ty, 5]
is

@(T,tl,tg)z Z \Il(i,tl,tz).
1€STy

Therefore, a lower bound on the number of resource units of r required for the entire
application is

LB, = max {7®(T’tl’t2)} , € RES, (6.3)
Te(r)<t1<ta<rp(r) ly =1y

17

where 74(r) = min;es, { £} and 74(r) = max;est, {L:}-

The exact evaluation of Equation 6.3 is computationally infeasible because we need to
consider an infinite number of intervals. To make it computationally feasible, we can find a
sequence of points ag, a1, ..., ay such that 7,(r) = ap < a1 < ag--- < any_1 < ay = T4(7).
One can then estimate the right hand side of Equation 6.3 by evaluating only over the
intervals generated by a;, 1 <I < N, i.e.,

LB;:[max {MH

1<I<k<N ap — ap

Note that, LB is a weaker bound than LB, because LB, > LB!.

The above method is O(N?) because all possible intervals generated by the N points
are considered. However, if the application is partitioned into a sequence of smaller subsets
Py < Py < -+ < P, then it is not necessary to consider all the N? intervals. This

reduction is characterized by the following lemma and theorem.

Lemma 1: For 1 <i<mn,a; >0,b >0,

i @ {ai }
= — < max §{— .
Z?:l b; ~ 1<i<n L b;

Proof: Follows from algebraic manipulations. a

Theorem 5: Let Py < Py < --- < P,, be the partition of the tasks in ST, identified by
the algorithm in Figure 4. Also, let sy = min{F; : i € P} and fr, = max{L;:i € P,;} for
1 < k < m. Further, let

Qr) = {[sk, fu] : 1 <k <m}.

Then,

ax {M} C e ax {M} (6.4)
Ts(r)<t1<ta<7p(r) la—1 {lsw Se]€(r)} | {sk<ta<ta< fi} ty —t

Proof: Aninterval [t1,%3] C [75(7), T#(r)] can be classified into one of the following three
distinct types, (see Figure 6).

18

1 S k S forg —=——— S fa
t t
1 2
ORI
Figure 6: Interval types
o Type 1: Jk, such that fi <t <ty < sp41
o Type 2: Jk, such that s <11 < sp41 < 19, and
o Type 3: Jk, such that fr_1 <11 <ty < Spy1
Then,
O(r,tq,1
max {M} = maX{LB}, LBZ, LB;’} , (6.5)
ms(r)<ti<ta<rp(r) U l2 — 1y
where,
: O(r,tq,t
LB = max {M}, 1<5<3.
[t1,t2] of Type j 1o — 11

Case 1: [ty,13] is of Type 1.
In this case, there are no tasks which can execute in [t1,?2]. Hence, O(r,t1,t2) = 0 and

LB! =0. Since LB? > 0, it follows that LB} < LB}.

Case 2: [ty,13] is of type 2.
Let k = argmin{f; : f; > t1} and let n = argmin{s; : s; < t3}. Then,

i=n—1

O(r, ty,12) = O(r,max{tr,s;}, fi) + > O(r, i, fi) + O(r, s, min{ta, f,}). (6.6)
i=k+1

Since, (tg —t1) > (fr — max{ty, sx})+ Ziﬁ;%(fz — 8i) + (min{tz, fn} — s), it follows that,

O(rt1.tz) _ O(rmax{ty,si} fi) + SIZpt O(r,si, f) + O(r, s mints, £,})
ty —t1 (fr — max{ty,sp})+ ZiiZH(fz —s;) + min{ta, fn} —)

19

Thus, from Lemma 1 and further simplifications, we get

®(T7t17t2) {@(T,maX{tl,Sk},fk) ®(T7 Sivfi) ®(T7 Snvmin{t%.fn})}
—— < max , X ; -
ty — 1 fo — max{t1, sk} “k+1<i<n—1 (fi—s;) min{ty, f,} — s

O(r,m1,72)
max max —_—
k<j<n | s;<m1<m<f; T2 7

O(r,m, T
< max - O(r, 1, m)
1<j<m | 5;<n1 <m<f; T2— T

< RHS of Equation 6.4.

IN

Since the above result is true for each interval [ti,?3] of type 2, we can conclude that

LB? < RHSofEquation 6.4. The theorem follows from Cases 1 and 2.

Case 3: [ty,t3] of Type 3

®(T7 1, t2) = ®(T7 max{tlv Sk}v min{t% fk})
From the above equation, it follows that
O(r,ty,1
LB? = max Olr. 1)
[t1,t2] of Type 3 &2 — {1

_ elnmaxihsdmint. f)
[t1,t2] of Type 3 1o — 11

RHS of Equation 6.4.

The theorem follows from Cases 1, 2, and 3 and from Equation 6.5. a

The above theorem implies that the P,;, 1 < 7 < m, generated by algorithm in Figure 4
can be treated independently and the final lower bound is simply a maximum of the results

obtained for each partition.

7 Lower Bound on System Cost

In this section, we present our approach for evaluating a lower bound on the the cost of
the system which can meet all the constraints of the application. As stated earlier, in the
shared model, the cost of the system is assumed to be sum of the costs of the processors
and resources. In the dedicated model, the cost is assumed to be sum of the individual node

costs.

20

In the shared model, a lower bound on the cost of the system is directly obtained using

the lower bound on the number of units of each resource » € RES. That is, system cost

Shared System Cost > Z CostR(r) - LB,. (7.1)
rERES

In the dedicated model, the lower bound analysis is more involved because tasks can
only be assigned to nodes which have all the resources they need. Furthermore, the analysis
in Section 6 does not provide a lower bound on the number of units of each node type
required by the application. Therefore, we need to estimate the required number of units
of each node type using the lower bounds for the processors and the resources required by

the application.

Let z,, denote the number of units of a node type n required to meet the constraints of
the application. Also, let 7,, be the number of units of » € RES in a node of type n. The

cost of the system is then given by

Dedicated System Cost > Z CostN(n) - z,. (7.2)
neA

From the lower bound analysis, we know that at least LB, units of each resource must

be present in the system. Therefore, the values of z,, must satisfy the following constraint.

> @ Ynr > LB,, Vr € RES.
neA

In addition, for each task, the system must have at least one node on which the task can

execute. Hence, if 7; is the set of node types on which task ¢ € § can execute, then

anZL Vi e S.

nenN;

A lower bound on the cost of a dedicated system can thus be determined by solving the

following optimization problem.

Minimize Z z, - CostN(n)
neA

Subject to:

Z TpYnr > LB, ¥Yr € RES
neA

21

Figure 7: Example of a real-time application.

Z x, > 1, Vied.

nen;
In the above problem, z, is an integer for each n € A. If we relax this requirement, the
resulting cost will also be a lower bound. However, the bound will be weaker than the one

obtained if we solve it as an integer programming problem.

8 Illustrative Example

In this section, we present a simple example to illustrate the steps involved in the
evaluation of the lower bounds. Consider the example in Figure 7. The figure shows 15
tasks numbered 1-15. Each task is annotated with its computation time and its resource
requirement. Tasks 1, 2, 3, 7, 11 are also annotated with their release times. The release
time of the other tasks is assumed to be 0. Tasks 12-15 are annotated with their deadlines.
The deadline of other tasks is assumed to be 36. All tasks are non-preemptive. There are two
types of processors, P, and P,, and one type of resource, rq, required for the application,
ie., RES = { Py, P,,7}. In addition, we are also given the following node types for the
dedicated model, A = {{Py,r}, {P1}, {P2}}. In this example, a set of tasks which are
mergeable in the shared model are also mergeable in the dedicated model. In the following

we consider the four steps of the algorithm.

22

Table 1: EST and LST
[Taski [Bs | My | Li| Gi |

I o —1 3 7y
2 0 16 -
3 3 16 -
A 3 [s -
5 6 21115 9}
6 || 11 — 15 -
7 10 — 116 -
8 || 18 — 123 -
9 [16 (5} [19 | {14,13}
10 || 22 — 130 {15}
11 || 20 — 135 {15}
12 [30 — 130 -
13 19 {97 [30 -
14 [19 {9} [30 -
15 |[30 | {10,11} | 36 -

Step 1: Evaluation of LCT and EST (refer to Figures 2 and 3)

The values of F; and L; are shown in Table 1. The table also shows M;, the set of pre-
decessors merged with task 7 in evaluating F;. Similarly, the table also shows G, the set
of successors merged with 7 in evaluating L;. A “-” is used to indicate that no tasks are

merged with 1.

Consider the evaluation of Lg. The values of lms;,j € Succg are Imsys = L5 — C5 —
mgis = 36 — 6 —4 = 26, Ims14 = 30 -5 -7 =18, and Imsy;3 = 30 -6 — 5 = 19. If no
tasks are merged with task 9, then, its LCT will be 18. To increase its LCT, the algorithm
first evaluates the effect of merging tasks 14 and 9; task 14 is chosen because it has the
least latest message send time. If these two tasks are merged, the LCT of task 9 will
become L} = min{lst({14}),lms;3,lms15} = min{25,19,26} = 19. Since this is greater
than 18, tasks 14 and 9 will be merged together. Next, task 13 is considered for merging.
Merging task 13 with {9,14} will result in L2 = min{lst({14,13}),lms;5} = min{19,26}.
The algorithm stops here because L2 = Ll and thus merging more tasks will only decrease

the LCT of task 9. Thus, Lg = 19.

As another example, consider the evaluation of Ls. Note that, at this time, Lg and Lg
have already been evaluated. In this case, Imsg = 19—3—-9 = 7 and lmsg = 23—-5—3 = 15.
Therefore, task 9 is first considered for merging. This results in L} = min{lst({9},lmss) =

15. Next, task 8 is considered for merging. However, task 8 cannot be merged with task 5

23

because it requires a different type of processor to execute. The algorithm, therefore, stops

here with Ly = 15.

Step 2: Partitioning (refer to Figure 4)

With respect to Py, P», and ry, the partitions generated by the algorithm in Figure 4
are STp, = {1,2,3,4,5} < {9} < {10,11,13,14},< {12,15}, STp, = {6,7} < {8}, and
ST, ={1,2} < {5} <{10,13,14} < {15}.

Step 3: Lower bound evaluation (refer to Theorem 5)

As a result of the partitioning in Step 2, LBp, is evaluated over the intervals [0, 15], [16,

19], [19, 30], and [30, 36]. Likewise, L Bp, is evaluated over [10, 16] and [18, 23] and LB,,
is evaluated over [0, 6], [6, 15], [19, 30], and [30, 36].

In each interval, we must select few points and evaluate the lower bound over the
intervals generated by these points. Suppose the selected points are those generated by

ESTs and the LCTs which lie in the interval. For example, consider the intervals generated
. . . (P, ,0,
by {0, 3, 6, 8, 16} in the interval [0, 15] for evaluation LBp,. Here, [413—()32} = [%} =2,

[MW = [9] = 3, [ww =]& = 3. and so on. By taking the maximum over all

such intervals we get, LBp =3, LBp, =2, and LB, =2.

Step 4: Cost evaluation (refer to Section 7)

For the shared model, a lower bound on the cost of the system is

Shared System Cost = 3- CostR(P1) + 2+ CostR(F;) + +2 - CostR(r1)

For the dedicated model, let 1 be the units of node of type {Py, 7}, 2 be the units of
node of type {P;}, and x5 be the units of node of type {P,}. We can obtain a lower bound

on the cost of the dedicated model by solving the following optimization problem.
Minimize ;- CostN(1) 4 z3 - CostN(2) 4+ 23 - CostN(3)

subject to

v
w

T+ X2

1 > 2, and

v
N\

3
The solution to this problem is, 1 = 2,29 = 1,23 = 2. Hence,

Dedicated System Cost = 2 - CostN(1) + CostN(2)+ 2- CostN(3)

24

9 Conclusions

Given a real-time application and a model for the distributed computing system, we
proposed a technique to estimate the number of processors and resources of each type
required to meet the constraints of the application. We proved that this estimate is a
lower bound on the number of processors and resources necessary to meet the application
constraints. Using these bounds, we also proposed a scheme to determine a lower bound on

the cost of a distributed system which meets all the application constraints.

The key feature of the proposed analysis technique is that it can handle several different
types of constraints commonly found in real-time applications. In particular, it can deal with
real-time constraints such as deadlines and release times and non-real-time constraints like
precedence relationships between tasks, communication needs, and resource requirements.
In addition, the application tasks can be heterogeneous in the sense that they may differ
on the type of processor which can execute them. Furthermore, each task can be either
preemptive or non-preemptive. To the best of our knowledge, none of the existing techniques

can deal with applications which have all these constraints.

The paper also considers two possible architectures of distributed computing systems.
In one architecture, the resources in the system are shared by all processors, whereas in
the other, each processor has its own set of dedicated resources. A designer can apply
the proposed technique to these architectures and choose the one that is best suited for
the application. For instance, a designer can modify the set of resources dedicated to a
processor and quickly estimate its effect on the overall system cost. As a result, designers

can explore more alternatives and obtain a better system for their application.

References

[1] M. A. Al-Mohummed, “Lower bound on the number of processors and time for schedul-
ing precedence graphs with communication costs,” IEFE Transactions on Software
Engineering, vol. 16, no. 12, pp. 1390-1401, December 1990.

[2] R. Algadi and P. Ramanathan, “Architectural synthesis of mission-critical comput-
ing systems,” in Proceedings Complex Systems FEngineering Synthesis and Assessment
Technology Workshop, pp. 185-192. Naval Surface Warfare Center, Silver Spring, Mary-
land, July 1993.

[3] E. B. Fernandez and B. Bussell, “Bounds on the number of processors and time for
multiprocessor optimal schedules,” IFFFE Transactions on Computers, vol. C-22, no. 8,
pp. 745-751, August 1973.

25

[4] S. Howell, C. M. Nguyen, and P. Q. Hwang, “System design structuring and alloca-
tion optimization,” in Proceedings of the 1991 Systems Design Synthesis Technology
Workshop, pp. 117-128, September 1991.

[6] K. K. Jain and V. Rajaraman, “Lower and upper bounds on time for multiprocessor
optimal schedules,” IFEE Transactions on Parallel and Distributed Systems, vol. 5, no.
8, pp. 879-886, August 1994.

[6] B. P. Lester, “A system for computing the speedup of parallel programs,” in Proceedings
of International Conference on Parallel Processing, pp. 145-152, August 1986.

[7] J. W. S. Liu, J.-R. Redondo, Z. Deng, T.-S. Tia, R. Bettati, A. Silberman, M. S.
an R. Ha, and W.-K. Shih, “PERTS: A prototyping environment for real-time systems,”
Technical report UIUCDCS-R-93-1802, University of Illinois, Urbana, Illinois, May
1993.

[8] J. J. Molini, S. K. Maimon, and P. H. Watson, “Real-time system scenarios,” in Pro-
ceedings of Real-Time Systems Symposium, pp. 214-225, December 1990.

[9] C. Polychronopoulos and U. Banerjee, “Speedup bounds and processors allocation for
parallel programs on multiprocessors,” in Proceedings of International Conference on
Parallel Processing, pp. 961-968, August 1986.

[10] K. Soet al., “A speedup analyzer for parallel programs,” in Proceedings of International
Conference on Parallel Processing, pp. 653-661, August 1987.

[11] X.-H. Sun and L. M. Ni, “Another view on parallel speedup,” in Proceedings of the 3rd
Supercomputing Conference, pp. 324-333, 1990.

APPENDIX

A. Proof of Theorem 2

Proof: Consider a task 7. Let E be earliest start time of ¢ returned by the algorithm.
Also, let M be the corresponding set of predecessors of ¢ which are merged with ¢ in the

algorithm. Let M = Pred; — M. We now show that if task ¢ cannot start earlier than .

From the algorithm, we know that

= max{rel;, ect(M), maxemr;} and (.1)
jeM

emr; > E VjeM (.2)
Consider a M’ # M. Let M’ = Pred; — M'. Let E' be the earliest start time of 7 if only

the tasks in M’ are merged with i. Then,

E' = max{rel;, ect(M'), maxemr;}. (.3)
jeM’

26

We must prove that £/ > F.

Case 1: M ¢ M’
Consider a task 7 € M’ N M. Hence, from Equations .3 and .2, £’ > emry > E.
Case 2: M C M’

Let T' = arg max,cyyemry, i.e., T'is the value of j which corresponds to the maximum emr;.

Now consider two cases.

Case 2a: T e M.
Since T' € M’', T is mergeable with M. Therefore, it follows from the algorithm that
ect(M U{T}) > E. The result then follows because

E" > ect(M') (from Equation .3)
> ect(MU{T}) (since MU{T}C M')
> F.

Case 2b: T'¢ M'.
From Equation .1 and the definition of T,

F = max{rel;,ect(M),emrr}. (.4)
Similarly, from Equation .3 and the definition of T',

E' = max{rel;,ect(M'),emry}. (.5)
Since M C M’, ect(M’) > ect(M). Therefore, from Equations .4 and .5, we can conclude

that £/ > E.

From Cases 1, 2a, 2b, we can conclude that the subset M identified by the algorithm
results in the smallest earliest start time for ¢. Hence, the algorithm evaluates a lower bound

on the earliest start time of each task in the application. a
B. Proof of Theorem 4

Proof: To prove the theorem, we individually consider the five cases illustrated in
Figure 5. In each case, we show that the right hand side (RHS) of Equation 6.2 evaluates

to the minimum overlap.

Case 1: L; <ty or ty < F; (see Figure 5(a)).

In this case, the execution of task ¢ cannot overlap with the interval [t;,?5]. Hence,

27

U(i,t1,72) = 0. Note that, the RHS of Equation 6.2 also evaluates to zero because
p(Li = t1) - pu(ty — E;) = 0.

Case 2: t; < F; < L; <3 (see Figure 5(b)).
In this case, task ¢ must completely execute in the interval [t1,t2]. Therefore, W(i,#1,%2) =

C;. Evaluating RHS of Equation 6.2,

RHS = 1- min{{Ci, C; + (EZ — tl), C; + (tg — Li), (tg — tl)}
=
= Wit).

Case 3: F; <t < L; <13 (see Figure 5(c)).

To minimize the overlap with the interval [ty,%;], task i should be executed as early as
possible. Thus, the overlap of ¢ is non-zero only if C; > (t; — F;). Hence, V(i ,t1,t2) =
a(C; — (t1 — E;)). Evaluating RHS of Equation 6.2,

RHS = 1-min{C:, a(C;—(t1 — E)),a(Ci— (Li —13)), (12— 11)}
= min{C;, a(C;—(t — E)), (ty—t1)} (since £, > L;)
= min{a(C; — (t1 — E;)), (t2 —t1)} (since t; > F;)
= a(Ci— (t — E)(since a(C; — (t1 — ;) < (Li — 1) < (ta — 1))
= Wi, i, 1)

Case 4: t < E; <ty < L; (see Figure 5(d)).

To minimize the overlap with the interval [t1,?5], task ¢ should be executed as late as
possible. Thus, the overlap of 7 is non-zero only if C; > (L; — t3). Hence, V(i t1,t2) =
a(C; — (L; — t3)). Evaluating RHS of Equation 6.2,

RHS = 1-min{C;, a(C;—(t1 — E)),a(Ci— (Li — t2)), (2 — 1)}
= min{C;, a(C;— (L;—13)), (12— 1)} (since t1 < E;)
= min{a(C; — (L; — 13)), (t2 — 1)} (since L; > 1)
= a(C;— (L; — t3))(since a(C; — (L —i—13)) < (ta — E;) < (ta — 1))
= Wi, i, 1)

Case 5: E; <t; <ty < L; (see Figure 5(e)).

Minimum overlap occurs in one of the following two cases; ¢ is executed as early as possible

28

or ¢ is executed as late as possible. That is, V(7,t1,¢3) = min{a(C; — (1 — E;)), ao(C; —
(Li = 12)), (2 = 11)}.
Evaluating RHS of Equation 6.2,

RHS = 1 -min{a(C; - (t1 — E))),a(C; — (L; — t2)), (t2—1t1)} (since t; > F; and L; > t3)
= W(i,ty,12).

29

