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Abstract

Some physical properties of the behavior of an ideal non- relativistic
Bose gas in N — dimensional space are theoretically investigated. The
general analytic expressions of the critical temperature T, of Bose —
Einstein condensation, and the high- temperature behavior of the gas
have been derived. The dependence of these physical quantities on space
dimension is discussed and some numerical values are calculated.
Moreover, the limit of these quantities in the infinite dimensional space
(N —> ) is also examined.
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1. Introduction

Recently, the study of the ideal Bose gas has been extensively carried
out by many researchers (Chen and Lin, 2003; Leggett, 2001; Edery,
2006; Tomas, 2006; Ovchinnikov, 1993). Bose gases in confined
geometries has been investigated ( Blakie, 2005; Hao et. al ., 2006;
Salasnich , 2004). The study of Bose — Einstein condensation has long
been of wide interest by many workers (Galli, et al, 2005; Mayers, 2006;
Kim et al., 1999; Algin and Deviren, 2005).

Physical problems in higher dimensions have been widely
investigated. Besides its mathematical interest (Belhaj and Rasmussen,
2005; Golovnev, 2006), the N- dimensional space has been used in the
study of Schr dinger equation with different kinds of potentials (Dong
and Sun, 2004; Quan et al., 2005; Znojil, 2000; Romera et al., 2006).

Some workers investigated higher dimensional gravity (Troncoso
and Zanelli, 2000; Tanabe et al., 2006). Others examined rotating black
holes in multidimensional space (Gibbons et al., 2004; Rogatko, 2000;
Berti et al., 2006; Kunduti et al., 2006). Furthermore, gravitational
collapse in higher dimensions has been of much interest to investigators
(Ilha et al., 1999; Patil, 2003; Goswami et al., 2004). Some researchers
discussed casimir energy (Huang, 2000; Fabi et al., 2006) and others
explored unified theories (Gogoladze et al., 2003; Gogoladze et al., 2005)
in N- dimensional space. The development of techniques to trap and cool
atoms and the experimental achievements of Bose- Einstein condensation
have stimulated great interest in the theoretical study of Bose gas in
higher dimensions. For example (Yan, 2000) derived the equation of
state of an ideal Bose gas trapped in n- dimensional generic power- law
potential. (Standen and Toms, 1998) discussed Bose — Einstein
condensation of the magnetized Bose gas and showed that for large
values of the magnetic field the gas undergoes a dimensional reduction.
Others (Kolomeisky et al., 1992; Crisano et al., 2002) examined
renormalization — group analysis of the dilute Bose gas in N dimensions.

An - Najah Univ. J. Res. (N. Sc.) Vol. 22,2008




Sami Al- Jaber 169

In addition, Lozovik et al. (1985) showed that the threshold
interaction constant for the existence of a condensed phase increases with
the spatial dimension of a Bose system.

Therefore, we believe that it is imperative to study the extent of the
dimensionality contribution to the physical properties of a Bose gas.

In this context, some properties of the ideal Bose gas in higher
dimensions are investigated. In section 2, the particle number and the
energy densities are derived. In section 3, an expression relating the
constant « (= —u/KT) with temperature and space dimension will be
derived. In section 4, the researcher is going to consider Bose- Einstein
condensation and show the dependence of the critical temperature on the
dimension N. Section 5, is devoted to the discussion and results.

2. The Ideal Bose Gas in N Dimensions

We consider a system of non- interacting Bose gas confined within a
cube with sides of length L and impenetrable walls at a finite
temperature. The number of particles n (E) dE within the energy interval
E to E+ dE is

n(E) dE = D(B) [e** - 1] 'dE )

where D(E) is the number of single — particle states per unit energy

a

interval. The constant c(= —fu) is related to the fugacity Z as Z =e ™,
with f= %T ,k is the Boltzmann constant , and g is the chemical

potential. The function D (E) in N dimensions (Al- Jaber , 1999) is given
by

2

Therefore, the number of particles per unit volume within the range
(E,E+dE) is
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n(E)dE n(E)dE _
v oL
(N -1)2m/n?)""?

N ﬂ_N/zr([%)

and thus the number density p of the particles is

(N -1)(2m/n?)

E (N-2)/2 [eﬁ’E+a —l}ldE,

N/2

0 E(N—Z)/Z dE

100
=— | n(E)dE =
p V!()

N ﬂN/zr(%)

The total energy per unit volume, U, of the gas is:

100
U=—|E n(E)dE
V! (E)

(N—1) 2m/5?)""* 7 EN2dE
ﬂ_N/zr(%) OeﬁE+a_1

The High — Temperature Limit

When e” >>1, we can neglect the 1 in (4) and we get

N/2 o

- (N -1) (2m/n?)
2N7Z_N/2r(|%) )

The integral in eq.(6) is

N/2 °

TE(N—2)/2e—ﬁEdE _ F(N /2)
0

and thus
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which can be written as

p=(N —l)[;k;j e, ®)

and it yields the well- known result in the three dimensional space

(N =3), (Bransden and Jochain, 2000). Equation (8) can be solved for
o as:

N/2
ea — N_l (2m1;12] TN/Z (9)
0 r

It is clear that the constant « depends on the particle density p, the

temperature T, and the dimension N. Introducing the mean thermal
wavelength

A= h/(2nmkT)"?, (10)
we can rewrite equation (9) as
e =(N-1)/(pr") (11

For numerical values, we consider *He whose mass density is 0.15 x
10°kg/m’, so that the particle density p is

mass /Vol. 0.15x10°

= = =22x10%m™
r mass / atom 4(1.67 x 10‘27)

and the quantity zml;lz =1.33x10" m’k™
Table I shows numerical values of « at a given temperature for
different values of the dimension N.

It is noticed that for a given temperature, the constant « increases as
the dimension N increases, which means that the Bose gas becomes
closer and closer to Maxwell — Boltzmann gas as the dimension
increases. This is equivalent to the condition (pA" )<<1 that expresses the
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low-particle density and the high temperature limit of the gas. In this
case, o increases and hence the chemical potential u becomes negative
with large magnitude and thus the fugacity, z(=exp(wkT)) of the system
must be much smaller than unity. This shows that quantum effects due to
identity of particles become less important in higher dimensions. It is
interesting to investigate the limit as N — oo ; we can rewrite (9) as:

12)

2
N mkT (N —1N
2 | 2zn? '

a=—In
yo)

2

. N—-1\N
We note I}llm —— | =1, and hence
—>®0 p

lim o = Nln[m”}, (13)
N large 2 272'7;12

For example, for T = 1078 K, and N = 1000 the value of a for ‘He
would be 142.6.

Table (1): Variation of & with N at a given Temperature.

T=300 K T =100 K

N a N a

3 6.58 3 493
4 30.7 4 28.5
5 54.7 5 51.9
6 78.6 6 75.3
7 102.5 7 98.7
8 126.4 8 122.0
9 150.3 9 145.3
10 174.1 10 168.6
11 197.9 11 191.9
12 221.7 12 215.1
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One may further examine the variation of temperature with the
dimension N for a given value of . To that end, we solve (12) for T;
2

2| o |N
T:27rh [pe ] ’ (14)

mk | N-1

and take o = 6.58 ( which is its value for “He in the three dimensional
space) . This is shown in Table (II), which clearly indicates that the
temperature decreases dramatically as N increases. Furthermore, the last
few entries in the table show that the temperature reaches a minimum
value for a very large N. This is obvious from (14), since

2
e” 2
P N >1, and hence T = N 27" yhose
N -1 N large N/arge  mk
value, for

*He at o = 6.58, is 7.518 X 10°K.

This demonstrates that the absolute zero is really a hypothetical
theoretical value, at least in this context.

Table (2): Variation of T with N at a given « .

N T N T

3 299 20 7.3X107"°
4 1.7X10°° 30 7.2x107"
5 1.3X10° 50 1.13X10"®
6 1.1X10® 60 8.8X 108
7 3.7X1071° 70 5.1X107"®
8 2.9x10™ 100 2.8X107"8
9 4.1X10"2 200 1.8X107"
10 8.4X107"° 400 1.0X107"
11 2.3X107"5 500 9.7x10™"
12 8X10™ 10* 7.6X10™"
13 3.2x10™" 10° 7.5X107"
16 42X1077 10" 7.518X10™"
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4. Bose — Einstein Condensation

In the low-temperature, high density limit D (0) = 0, but because
there is one state at E=0, D (E) must be modified

D (E)=D (E) + 6 (E), and thus (4) becomes

N-1) (am/n2)"" 7 EN-2)2
( N%& ) dE 15)
2V ZNP(N/2) e -1

where p, is the particle density in the ground state with E= 0. For bosons,

any number of particles can occupy the single — particle level of lowest
energy; therefore, there is no limitation on the size of the particle
densities p, or p. It is interesting to find the temperature below which
the particles are forced to condense into the ground state.

Let x= SE = E/KT, so that (15) becomes

p=p.+

(N=1) 2mkT /52)""* % x 2)2dx 16
2"ZVPr(N/2) et -1
The fraction of particles in states other than the ground state,
(p—po)/p is thus

pP—pP. =

p—p, (N-1) 1 [2kaJW2
= - f 1
p 2YZVO(N/2)p \ W <$§32 a7
Where
T x"dx
f = 18
n (a) Iex+a _1 ( )

0
The largest possible value of f (a) occurs when a=0 (since,a >0 ).

o (N-1)/2
f(0 :IXX—WZF(Ejg(EJ
(N-2)2 5 e =1 2 2
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Where &(n) is the Reimann zeta function. When the function
(p— po)/ o becomes less than unity, the system condenses into the

ground state. This occurs at temperatures T<T. (called -critical
temperature), where

2/N 2/N

2 2N N/2 2 2
h T 'p _ mh Yo, (19)

e o-n S| ™ Jovene(})

It is interesting to note that as the dimension N increases, T.
decreases. This means that the critical temperature at which the system
starts to condensate shifts towards lower values as the dimension N
increases. It is illustrative to use the relevant data for *He to calculate the
critical temperature for different values of the space dimension. This is
shown in table (III) below.

Table (3): Variation of critical temperature with N.

N Tc N TC

3 1.96 20 3.8X107'°

4 5.0X10° 30 4.6 X107
5 8.2X1038 40 1.6X107"

6 1.2X10”° 50 8.7X107'®

8 5.5 X107 100 25X107"8
10 22X 10" 200 1.3X107"®
12 26X 10 1000 8.4 X107
14 58X 107" 10* 7.6X 107"
16 1.8X107"% 10'° 7.519X107"
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It is tempting to consider the limit as N—oo. In this case

N -18
5(;) —x=>—1, and thus limT_ = 11033 =75188x107™" K .

N—o

5. Discussion and Results

In this paper, we considered some physical properties of the ideal
Bose gas in N- dimensional space. In particular, the particle number and
energy densities were derived. In the high temperature limit, the constant
a:(: —ul kT) with x being the chemical potential was found to

depend on the particle number, temperature, and the dimension N . As an
illustration, we calculated numerical values for the constant «,in the

classical limit, at a given temperature, at different values of the
dimension N, and it is found that « increases as N increases. In
addition, for a given «awe presented numerical results for the
temperature of the gas in different dimensions and showed that it
decreases as N increases and reaches a minimum value in the infinite
dimensional space.

Furthermore, we analyzed the Bose- Einstein condensation in higher
dimensions and derived the critical temperature as function of the particle
number density and the dimension N. It was concluded that the critical
temperature decreases as the dimension increases and it reaches a
minimum value of about 7.52 X 10" k for *He in the infinite
dimensional space, (N—o).
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