
Leveraging Social and Content-based Recommendation in P2P Systems

Fady Draidi, Esther Pacitti, Michelle Cart, Hinde Lilia Bouziane

INRIA & LIRMM, Montpellier, France

{fady.draidi, esther.pacitti, cart, hinde.bouziane}@lirmm.fr

Abstract-We focus on peer-to-peer (P2P) content recommenda-

tion for on-line communities, where social relationships be-

tween users can be exploited as a parameter to increase the

trust of recommendation. Most of the existing solutions estab-

lish friendship relationships based on users behavior or de-

clared trust. In this paper, we propose a novel P2P recommen-

dation approach (called F2Frec) that leverages content and

social-based recommendation by maintaining a P2P and

friend-to-friend network. This network is used as a basis to

provide useful and high quality recommendations. Based on

F2Frec, we propose new metrics, such as usefulness and simi-

larity (among users and their respective friend network), nec-

essary to enable friendship establishment and to select recom-

mendations. We define our proposed metrics based on users’

topic of interest and relevant topics that are automatically

extracted from the contents stored by each user. Our experi-

mental evaluation, using the TREC09 dataset and Wiki vote

social network, shows the benefits of our approach compared

to anonymous recommendation. In addition, we show that

F2Frec increases recall by a factor of 8.8 compared with cen-

tralized collaborative filtering.

Keywords-P2P systems; personalization; recommendation; gossip

protocols; social networks.

I. INTRODUCTION

We focus on Peer-to-Peer (P2P) large scale content shar-
ing for on-line communities. For instance, in modern e-
science (e.g., bio-informatics, physics and environmental
science), scientists must deal with overwhelming amounts of
contents (experimental data and documents, images, etc.)
produced and stored in his workspace that they are willing to
share within a community or with specific friends without
relying in a centralized server.

Peer-to-Peer (P2P) networks, offers scalability, dy-
namicity, autonomy and decentralized control. Locating
contents based on contents ids in a P2P overlay network is
now well solved (see [4]). However, the problem with cur-
rent P2P content-sharing systems is that the users them-
selves, i.e., their interest or expertise in specific topics, or
their rankings of documents they have read, are simply ig-
nored. In other words, what is missing is a recommendation
service that, given a query, can recommend relevant docu-
ments by exploiting user information.

Sinha et al. [11] have shown that users prefer the advices
that come from known friends in terms of quality and trust,
because users typically trust their friends’ advices. The
emersion of Web2.0 and the growing popularity of online
social networks have encouraged exploiting users’ social
data in P2P systems. In existing P2P solutions, friendship
links are extracted from users’ behaviors [6] or are estab-

lished based on explicit trust declaration [8]. To enrich these
solutions, we consider that users that store similar contents
may be potentially friends with a specific declared trust level
with respect to the relevance of a user in a specific topic.
Thus, our decentralized recommendation approach leverages
content-based and social-based recommendation over a dis-
tributed graph, where each node represents a user labelled
with the contents it stores and its topics of interests. As a
basis for recommendation, we propose new social metrics
such as similarities (among users and their respective friend
network) and usefulness of a user with respect to a friend or
query taking into account the declared trusts. These measures
are defined based on user topics of interest and relevant
topics that are automatically extracted from the contents they
store. Notice that a user is considered relevant in a specific
topic t if it has a sufficient amount of content with high prob-
ability related to t. Then this user will be relevant to serve
queries related to t. also a user v is considered useful to a user
u, if v is relevant in topics that u is interested in.

We implement friendship networks using concepts from
the Friend-Of-A-Friend (FOAF) project. FOAF provides an
open, detailed description of profiles of users and the rela-
tionships between them using a machine-readable syntax.
We use FOAF files to support users’ queries. To establish
friendship and disseminate recommendation, we rely on
gossip protocols [3] as follows: At each gossip exchange,
each user u checks its gossip local-view to enquire whether
there is any relevant user v that is useful to u, and whether its
friendship networks have high overlap with u’s friendship
network. If it is the case, a demand of friendship is launched
among u and v and the respective FOAF files are updated
accordingly.

Whenever a user submits a keyword query, its FOAF file
is used as a directory to redirect the query to the top-k most
adequate friends taking into account similarities, relevance,
usefulness and trust. In our previous work [3], we focused on
P2P anonymous recommendation exploiting different types
of gossip protocols.

In this paper, we propose F2Frec, a new social-based ap-
proach for recommendation that facilitates the construction
and maintenance of P2P social network and exploits social
metrics to provide recommendations. Our major contribu-
tions are:

 We introduce new social metrics to suggest friends and
detect if a friend is relevant and useful to provide recom-
mendations.

 We propose an efficient query routing algorithm that takes
into account the social metrics to select, in a top-k ap-
proach, the most appropriate friends to provide recom-
mendation.

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

Author manuscript, published in "Int. Conf. on Advances in P2P Systems (AP2PS), Lisbon : Portugal (2011)"

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00640735/fr/
http://hal.archives-ouvertes.fr

 Once the best recommendations are provided, we propose
to rank them by taking into account the semantic similari-
ties, content popularity, distance and trust between que-
ry’s initiator and responders.

 We provide an experimental evaluation using real data
sets that demonstrates the efficiency of F2Frec over the
TREC09 [10] and Wiki vote social network [12] com-
pared to anonymous P2P recommendations and central-
ized recommendation.
The rest of this paper is organized as follows. Section II

provides a general overview of F2Frec. Section III presents
our social metrics and how we manage friendship estab-
lishment. Section IV describes our solution for retrieving
recommendations over F2Rrec given a key-word query.
Section V gives our experimental validation that compares
F2Rrec with centralized collaborative filtering. Section VI
discusses related work. Section VII concludes.

II. GENERAL OVERVIEW OF F2F RECOMMENDATION

Our recommendation model is expressed based on a
graph G = (D,U,E,T), where D is the set of shared docu-
ments, U is the set of users u1,…un corresponding to autono-
mous peers p1,…pn, E is the set of edges between the users
such that there is an edge e(u,v) if users u and v are friends,

and T is the domain of topics. Each user uU is associated

with a set of topics of interest Tu  T, and a set of relevant

topics Tu
r Tu extracted locally from the documents u has

rated. The rating that has been given by a user u on docu-
ment doc is denoted by ratedoc

u
.

In our approach, we use Latent Dirichlet Allocation
(LDA) [2] to automatically extract the topics in the system,
which in turn are used to extract users’ relevant topics of
interest. In F2Frec, LDA processing is done in two steps: the
training at a global level, and inference at the local level. The
global level is given to the bootstrap server (BS) that aggre-
gates a sample set of M documents from F2Frec participant
peers. Then, BS runs the LDA classifier to get a set T =
{t1,..tk} of topics, where k is the number of topics. Each topic

tT contains a set of Z words, where Z is the number of

unique words in M, and each word zZ is associated with a
weight value wz

t
 between 0 and 1. The wz

t
 represents how

much the word zZ is related to t. At the local level, user u
performs LDA locally to extract the topics of its local docu-
ments, using the same set of topics T that were previously
generated at the global level. LDA provides a vector of size
k for each document doc, Vdoc = [wdoc

t1
,…,wdoc

tk
], where wdoc

t

is the weight of each topic tT with respect to doc.
Users’ relevant topics of interest are extracted based on a

combination between documents’ semantics and ratings.
Since we focus on on-line communities, we safely assume
that users are willing to rate the documents they store. Once

a user u extracted the Vdoc for each docDu, it multiplies the
Vdoc = [wdoc

t1
,..,wdoc

tk
], by the rating ratedoc

u
. Then, user u

identifies for each topic tT only the documents that are
highly related to t. A document doc is considered highly
related to topic t, if its weight in that topic wdoc

t
multiplied by

its rating ratedoc
u
 exceeds a threshold value. Next, u counts

how many documents are highly related to each topic t T.

User u is considered interested in topic tTu if a percentage y
of its local documents are highly related to topic t. Finally, u

is considered a relevant user in topic tTu
r
 if it is interested

in t and has a sufficient amount x (system-defined) of docu-
ments that are highly related to topic t.

Each user uU maintains locally a FOAF file that con-
tains a description of its personal information, and friendship
network, denoted by friends(u)={f1, f2,…fn}. Personal infor-
mation includes the extracted topics of interest, where each

topic of interest tTu is associated with a Boolean value that
indicates whether u is relevant in that topic. Friends’ infor-
mation includes friends’ names, links (URI) to their FOAF
files, relevant topics of interest, and trust levels. The trust
level between user u and a friend v, denoted by trust(u,v), is
a real value within [0, 1] and represents the faith of user u in
its friend v. The trust level between user u and its friend v
can be obtained explicitly [8] or implicitly [7].

Furthermore, each user uU establishes new friendships
with users that are useful to u’s demands or have friendship
networks with high overlap with u’s friendship network. A
user v is considered useful to a user u, if v is a relevant user
and a certain amount of v’s relevant topics Tv

r
 are of interest

for u. User u exploits its useful friends (of friends) for rec-
ommendations. Notice that, if a friendship acquaintance
exists between users u and v, u implicitly recommends its
documents to v and vice-versa, in related topics. More pre-
cisely, if there is a friendship path between users u and v,
path(u,v)={(u, vi), (vi,vj),...,(vk, v)}, then u can recommend its
documents related to their topics of interest to v and vice-
versa.

Queries are expressed through key-words, and mapped to
topic(s) Tq using LDA. Moreover, queries are associated with
a TTL (Time To Live), and routed recursively on a distribut-
ed top-k algorithm: Once a query is received by any user, it
is forwarded to its top-k best friends by taking into account
usefulness and trust. A response to a query q is a recommen-
dation provided in a ranked list and defined as:

recommendationq = rank(recq
1
(doc1),… recq

n
(docj))

Different recommendations may be given for the replicas
of a document doci. The recommendationq is ordered based
on a ranking function, that ranks each recq

v
(doci) according

to its relevance with q, its popularity, and the distance and
trust between the q initiator and responder v. More details on
query processing and recommendations ranking are given in
Section IV.

The trust value between a query’s initiator u and a re-
sponder v, denoted by trustq(u,v), is computed during query
processing. The path of a query q between u and v can be
represented as pathq(u,v)={(u, vi), (vi,vj), (vj, v)}, and the trust
value between u and v can be computed by multiplying the
trust values among directs friends along the pathq(u,v), which
is:

trustq(u,v) = ∏ 

III. FRIEND TO FRIEND RECOMMENDATION

The goal is to let each user explicitly establish friendship
with useful users, so that it can exploit them for recommen-

(1)

(2)

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

dation. First, we present the similarity metrics we propose.
Then, we present the data structures and algorithms for
friendship establishment.

A. Metrics

We compute the similarity distance between u and v
based on their friendship networks and relevant topics of
interest. We measure the similarity distance between u and v
based on their friendship networks, denoted by distance-

fri(u,v), by counting the overlap of their friends. We use the
dice coefficient, which is:

 distancefri(u,v) =

We could also use other similarity functions such as co-
sine, jaccard, etc. We use distancefri(u,v) as a measure for the
implicit trust between u and v.

We measure the common interest of topics between user
u and v, denoted by distanceintr(u,v), by counting the overlap
of their topic of interests. We use the dice coefficient, which
is:

 distanceintr(u,v) =

Notice that user u and v may be similar in terms of topics
of interest. However, v may not be useful for u, because the
topics of interest of u are not related to v’s relevant topics.
Therefore, we measure how much v is useful to u, denoted
by useful(u,v), by counting the overlap between u’s topics of
interest Tu and v’s relevant topics Tv

r
. Similarly, we use the

Dice coefficient to measure useful(u,v):

 useful(u,v) =

We measure the final similarity distance between u and v,
denoted by sim(u,v), by combining distancefri(u,v) with use-
ful(u,v) in a weighted approach as follows:

sim(u,v) = *useful(u,v) + (1-)*distancefri(u,v)

The parameter  is used to adjust whether u prefers to es-
tablish friendship with users that are highly useful to its
queries, or with users that their friendship networks are high-

ly overlapped with u’s friendship network. As  values be-
come close to 1, the usefulness of users play a more im-
portant role in the final similarity distance sim(u,v).

Also, we use the Dice coefficient to measure how much a
relevant user v is useful to a query q:

useful(q,v) =

| |

If useful(q,v)≠0, then the relevant user v can give recom-
mendations for q.

B. Friendship Establishment

Each user u exploits its gossip local-view to establish
friendship. For each gossip cycle, u goes through each user

entry vlocal-viewu, and evaluates whether v may be sug-
gested for friendship as follows: User u computes the simi-
larity distance sim(u,v) as described in Section III.A. User v
is suggested to u for friendship under some conditions, tak-
ing into account the degree of similarity sim(u,v), the dis-
tancefri(u,v), the distanceintr(u,v), useful(u,v), and v’s relevant

topics, etc. If u has accepted to establish friendship with v,
user u sends a message to v, denoted by msgreq, asking v for a
friendship. Then, u adds v to a waitList list, waiting for
friendship confirmation.

Afterwards, user u receives a reply message, denoted by

msgrep, from each user vwaitList. If user v has accepted to
establish friendship with u i.e., msgrep = accept, u stores v’s
information in its FOAF file. The information for the new
friend v includes v’s relevant topics of interest, a trust value
trust(u,v) between u and v, and link to v’s FOAF file. Notice
that the trust(u,v) is assigned explicitly by u [8].

IV. QUERY PROCESSING BASED ON FOAF FILE

In this section, we describe our query processing algo-
rithm to generate recommendations. Next, we describe the
ranking model we use to order the returned recommenda-
tions.

A query is defined as q(wordi, TTL, Vq, Tq, trustq(u,v),k),
where wordi is a list of keywords, TTL is the time-to-live
value, Vq is query q’s topic vector. Query q’s topic vector,
Vq= [wq

t1
,..,wq

tk
], is extracted using LDA. Then, query top-

ic(s) Tq  T are computed, where q is considered to belong to

a topic tTq if its weight wq
t
 in that topic exceeds a certain

threshold (which is system-defined). The trustq(u,v) is the
trust level between u and a responder v. The value k is the
parameter for top-k redirection.

Each time, a user u issues a query q, it proceeds as fol-
lows: First, it computes how much each useful friend

vfriend(u) is useful to q. Then, u computes the rank of v,
denoted by rank(v). The rank of a useful friend v for u de-
pends on the usefulness of v for q, and the trust level be-
tween u and v. Accordingly the rank(v) is defined as:

rank(v) = trust(u,v)*useful(q,v)

Once u has computed the rank of each useful friend v, it
adds rank(v) to a RankList that contains the useful friends’
addresses along with their ranks. Then, it selects the top-k
useful friends from the RankList with highest rank, and adds
them to topkList. Then, u forwards q to each useful friend

vtopkList, attaching to q the trust value trustq(u,v), and
reducing the query TTL by one. Note that the value of
trustq(u,v) is equal to the value of trust(u,v), because v is a
direct friend of u. Also the useful friend v with the highest
rank is the useful friend that is most useful to q, and has the
highest trust level with u.

Once user u receives the recommendation information
from the responders, it ranks those recommendations and
presents them in an ordered list (see Section IV.A).

When a user v receives a query q that has been initiated
by a user u, it processes q as follows: First, it measures the
similarity between query q and each document v has locally.
The similarity between a document doc and q, denoted by
sim(doc,q), is measured by using the cosine similarity be-
tween the document topic vector Vdoc= [wdoc

t1
,…,wdoc

tk
] and

the query topic vector Vq= [wq
t1
,…,wq

tk
], which is:

sim(doc,q) =
∑

√∑

 ∑

(3)

(4)

(5)

(6)

(7)

(8)

(9)

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

Second, v returns to the query’s initiator u the recom-
mendations for the documents whose similarity exceeds a
given (system-defined) threshold.

Finally, v selects from its friends the top-k useful friends
that have the highest rank, and adds them to the topkList if
the query’s TTL is not yet zero. Then, v computes the trust

value trustq(u,x) for each useful friend xtopkList based on
Equation 2. Then v attaches trustq(u,x) to q, and forwards q
to x after reducing TTL by one.

With such query routing, we avoid sending q to all
friends, thus minimizing the number of messages and net-
work traffic for q. In addition, we send the query to friends
that are most useful and trustful.

A. Ranking Recommendations

Recall that the result of a query q submitted by a user u is
recommendationq = rank(recq

v1
(doc1),…, recq

v
(doci)), where

recq
v
(doci) is the recommendation that has been given for a

document doci from a responder v. We rank recq
v
(doci) based

on the semantic similarity between q and doci, the popularity
of doci, and the distance and trust between u and the re-
sponders of doci. Accordingly, recq

v
(doci) that has been re-

ceived from responder v includes sim(doci,q), v’s topics of
interest Tv and the trustq(u,v). The rank of a recq

v
(doc), de-

noted by rank(recq
v
(doc)), is defined as:

rank(recq
v
(doc)) =

∑

Where a, b and c are scale parameters, pop(doc) is the
popularity of doc, and |R| is the number of responders that
have recommended doc to the initiator u. The popularity is
equal to the number of replicas of doc in F2Frec. The user
can specify whether it prefers highly popular documents,
documents that are highly semantically relevant to q, or
documents that come from highly similar users, by adjusting
parameters a, b and c. Upon receiving the recommended
documents, user u can download a copy of a document, rate
and include it in its document set Du.

V. EXPERIMENTAL EVALUATION

In this section, we provide an experimental validation of
F2Frec to assess the quality of recommendations, search
efficiency (cost, and hit-ratio), and the average number of
friends. We conducted a set of experiments using TREC09
[10] and the Wiki vote social network [12]. We first describe
the experimentation setup. Then, we evaluate the effect of
friendship establishment on the performance of F2Frec.
Finally, we compare F2Frec with centralized collaborative
filter.

A. Experimentation Setup

We use the classical metric of recall that is used in in-
formation retrieval and recommender systems to assess the
quality of the returned recommendations. Recall represents
the system ability to return all relevant documents to a query
from the dataset. Thus, in order to measure recall, the rele-
vant documents set for each query that have been issued in

the system should be known in advance. Data published by
TREC have many relevance judgments. We use TREC09
filtering track [10], a set of 348566 references from
MEDLINE, the on-line medical information database, con-
sisting of titles and abstracts from 270 medical journals over
a five year period (1987-1991). It includes also a set Q of

4904 queries. The relevant documents for each query qQ,
denoted by Rq, were determined by TREC09 query assessors.

In the experiments, user u issues a query qQ and uses
F2Frec to possibly retrieve the documents that are in Rq. The
set of documents returned by F2Frec for a user u and a query
q is denoted by Pq. Once a user u has received Pq from
F2Frec, it can count the number of common documents in
both sets Pq and Rq to compute recall. Thus, recall is defined
as the percentage of q’s relevant documents doc Rq occur-
ring in Pq with respect to the overall number of q’s relevant
documents | Rq |:

recall =
| ⋂ |

| |

In addition we use the following metrics to evaluate
F2Frec.

 Communication cost: the number of messages in the P2P
system for a query.

 Background traffic: the average traffic in bps experi-
enced by a user due to gossip exchanges.

 Hit-ratio: the percentage of the number of queries that
have been successfully answered.

 Average number of friends in the network: the total
sum of the number of friend of all users divided by the
size of the network (total number of users).
We extracted the titles and abstracts of TREC09 docu-

ments and removed from them all the stop words (e.g., the,
and,..). Then, we fed them to the GibbsLDA++ software [9],
a C++ implementation of LDA using Gibbs sampling, to
estimate the document topic vectors Vdoc. With |T|=100 as
the number of topics. To estimate the query topic vectors Vq,
we removed the stop words from queries keywords, fed the
query keywords left to GibbsLDA++, and computed the

topics Tq of each query qQ. For ease of presentation, we

consider that each query qQ has one topic tqT.
We use the Wiki vote social network [12] to give ran-

domly each user a set of documents from TREC09. Wiki
vote considers that two users are considered friends if one
votes for the other. It consists of 7115 users connected to-
gether by 103689 links with an average of 14.57 links per
user. After distributing the TREC09 documents over the
Wiki vote users, we get a total of 6816170 documents, with
an average of 958 documents per user.

We generate a random rating between 0 and 5 for each
document a user has and compute the users’ topics of interest
from the documents they have rated. We consider that each
user u is interested at least in one topic and relevant at least
for one topic. Also u is interested in at most 10 topics and
relevant for 5 topics at most.

F2Frec is built on top of a P2P content sharing system
that we generated as an underlying network of 7115 nodes,
which is equal to the number of users in the Wiki vote net-

(10)

(11)

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

work. We use PeerSim for simulation. Each experiment is
run for 24 hours, which are mapped to simulation time units.

In order to evaluate the quality of recommendations, we
let each user u issue a query after computing the previous
query or after a system-specified timeout. Then we obtain the
result for each query and compute the respective metric
values. In order to obtain global metrics, we average the
respective metric values for all evaluated queries. We let
each user u establish new friends after each time it performs
a gossip.

B. Experiments

We first investigate the effect of friend establishment on
the performance of F2Frec over the respective metrics. Se-
cond, we compare F2Frec with a centralized collaborative
filter. For the gossip parameters (gossip period Cgossip, gossip
message Lgossip, and view-size), we use 30 minutes for Cgossip
(simulation time units), 10 for Lgossip, and 50 for view-size (in
[3] we showed that this setting provided good quality of
recommendations with acceptable network traffic). We use 1
for the TTL of the query, and query is forwarded to each
friend v that is useful to query, in order to measure the quali-
ty and effectiveness of friendship establishment.

Then, we collect the results for each experiment after 24
simulation hours. We set TTL to 1 to measure the quality
and effectiveness of friendship establishment. All experi-
ments are performed under churn i.e., the network size is
changed during the run due to the joining and leaving of
users. The experiments start with a stable overlay with 355
users. Then, as experiments are run, new users are joining
and some of the existing users are leaving.

Friendship Establishment. In this experiment, we vary

the value of  between 0 and 1, in order to investigate the
trade-off of usefulness and friendship distance based on the
Equation 6. In addition, we investigate the effect of friend-
ship establishment on the performance of F2Frec over the

respective metrics. In each experiment, each user uU gets
its initial friends from the Wiki social network, then u runs
the F2Frec algorithm to establish new friends.

Table 1 shows the results obtained after 24 hours of run-
ning the F2Frec algorithm. We can see that the average
number of friends increases from 49.7 to 174.6 when in-

creasing  from 0 to 1. Combining users’ usefulness with
friend networks increases the likeness between users. Thus
more new friends are added to users’ FOAF files. We also
observe that recall, communication cost, hit-ratio and back-
ground traffic are correlated to the average number of
friends. The communication cost increases because more
useful friends are visited. Visiting more useful friends in-
creases the relevant documents returned, and thus greater
recall is achieved. Also, hit-ratio increases as long as the
average number of friends also increases, because there is a
higher probability to find a useful friend to serve a query.
However, bandwidth consumption increases because increas-
ing the number of friends implies the increase of the size of
the gossip entries, increasing the size of the gossip messages.
As a result the bandwidth consumed is increased.

In Figure 1, we show the variation of average number of

friends and recall versus time under different values of. We

observe that combining the usefulness of users with friend-
ship networks increases the possibility of finding new friends

(Fig. 1(a)). When the value of  is equal to 0, the final
friendship establishment depends on the overlap between
users’ friends only. This depends on the density of the links
in the network graph. In our benchmark, the overlap between
friend networks is low, and thus the average number of
friends is low, which causes low recall. However, the rec-
ommended documents in this case have more confidence and
quality, and users are more satisfied with those recommenda-
tions. This is because they are recommended by trusted
friends.

TABLE 1. RESULTS OBTAINED BY F2FREC OVER THE RESPECTIVE METRICS


Max.

recall

Max.

Com.

cost

Max.

Hit-

ratio

Max. Avg.

background

traffic (bps)

Max.

Avg.

Friend

0 0.31 20 0.61 12.4 49.7

0.3 0.58 38.3 0.94 17.4 141.1

0.5 0.67 46 0.977 19 177.6

0.7 0.67 47 0.98 18.7 177.6

1 0.73 46.5 0.98 18.5 174.6

Figure 1. F2Frec performance over respective metrics

When the value of  is equal to 1, friendship establish-
ment depends on the usefulness of users only. Each time a
user u performs gossip, new relevant users are added to its
local-view. Thus, u finds new relevant users that are useful to
its demand, and then establishes friendship with them. There-
fore, more friends are added at u’s FOAF file. As a result,
the average number of friends is increased. While the values

of  increase between the two extremes, u finds new relevant
users that are useful to its demand, and establishes friendship
with them. Accordingly, its friend list is increased. Then, the
possibility of overlap between users’ friends increases as
well. As a result, the possibility of establishing new friend-
ship increases.

We observe that the recall achieved by =1 is greater

than that with =0.7 or 0.5, even though the average number

of friends are almost identical (Fig. 1(b)). When =1, friend-
ship establishment depends on users usefulness only. Ac-
cordingly, each user u establishes new friendship with rele-
vant users that are more useful to its demands.

For the other simulations, we set =0.5, because this set-
ting leverages users’ usefulness and friendship networks, and
provides reasonable results with acceptable overhead in
terms of background traffic.

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

Social Effect. We compare F2Frec with a centralized
collaborative filter [1] with respect to recall. In order to rec-
ommend a set of documents that a user u may like, we com-
pute the similarity between a user u and all the users in the
system. Then, we select a set of users, noted neighbors(u),
which are the top-k similar to u. We use the cosine similarity
to extract a user’s neighbors, based on the ratings that are
given by the users over the documents they have seen or
created. Once the similarity between u and each user v has
been computed, we select the top 178 similar users as the
neighbors(u). Once users’ neighbors are extracted, we run
the system and generate recommendations for each user from
its neighbors, and then compute the average recall of all
users. The recommendations for each user u are generated as

follows: First, u randomly selects a query qQ s.t. tqTu.
Then u forwards q to each member in its neighbors. Each
neighbor receives q, returns to u all the documents that their
similarity with q exceed 0.5. We select the top 178 similar

users as the neighbors(u), and tqTu, to be identical with
F2Frec.

We observe that the similarity measure is time consum-
ing as it takes about 38 hours to compute the similarity be-
tween the 7115 users with 6816170 documents. This time
increases exponentially as the numbers of documents and
users increase.

Results. We observe that the average recall achieved by
collaborative filter is equal to 0.076. F2Frec increases the
recall by a factor of 8.8 in comparison with the centralized
collaborative filter. A major reason behind this significant
gain is the friendship establishment in F2Frec that relies on
usefulness of users and friend networks. In contrast, central-
ized collaborative filter aggregates neighbors based on doc-
ument ratings only. Unfortunately, this kind of similarity
does not capture the contents of the documents.

VI. RELATED WORK

In this section, we discuss the previous works that are
most related to F2Frec. Previous works such as [3] and [5]
exploit specific gossip protocols to aggregate the neighbors
of each user. Then users use those neighbors (of neighbors)
to serve their demands. However, these systems do not ex-
ploit users’ social data and explicit friendship for recommen-
dations.

In [6] and [8], users’ social data (friends, trust, etc.) are
exploited in computing recommendations. In [6], users’
preferences are extracted from user’s behaviors and asserted
in users’ FOAF files. Then the system aggregates users’
FOAF files and clusters the users with similar preferences in
one group. Then, when a user u in a group rates an item, the
system determines whether the item is good enough to be
recommended to other users in the group. However, aggre-
gating users’ FOAF files increases network traffic. In con-
trast, F2Frec lets each user maintain locally its FOAF file,
and uses it to support its queries.

In [8], trust in users is also used as a basis for recommen-
dations. The system lets each user u express its level of trust
to each user it has interacted with. Then u measures the trust
level between itself and each user in the network, and selects
the most trustful as its neighbors. Those neighbors are used

to compute the recommendations. However, inferring the
trust relationships between users is time consuming and
increases network traffic. In contrast, F2Frec computes the
trust between indirect friends during query processing. Thus
we do not need extra data and information to propagate and
aggregate the trust network.

VII. CONCLUSION

In this paper, we proposed F2Frec, a P2P recommender
system that leverages content and social-based recommenda-
tions by maintaining P2P social networks. The basic idea of
F2Frec is to exploit the users’ relevant topics of interest and
friends’ networks, in order to get high quality recommenda-
tions. F2Frec relies on gossip protocols to disseminate rele-
vant users and their information, in order to let users estab-
lish friendship with new useful friends.

We use FOAF files to store users’ friendship networks
and their relevant topics of interest, and as a directory to
redirect a query to the appropriate trustful and useful friends
in a top-k approach.

In our experimental evaluation, using the TREC09 da-
taset and Wiki vote social network, we showed that F2Frec
increases recall by a factor of 8.8, compared with centralized
collaborative filter.

ACKNOWLEDGMENT

We would like to thank Bettina Kemme for her insightful
discussions.

REFERENCES

[1] J.-S., Breese, D., Hecherman, and C., Kadie, Empirical analysis of
predictive algorithms for collaborative filtering. Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence, 1998, pp. 43–52.

[2] D.-M., Blei, A.-Y., Ng, and M.-I., Jordan, Latent Dirichlet Allocation.
Journal of Machine Learning, 2003, vol. 3, pp. 993–1022.

[3] F., Draidi, E., Pacitti, and B., Kemme, P2Prec: a P2P
Recommendation System for Large-scale Data Sharing. Tran. on
Large-Scale Data- and Knowledge- Centered Systems, LNCS, 2011,
vol. 6790, No. 3, pp. 87-116.

[4] M., El Dick, E., Pacitti, R., Akbarinia, and B., Kemme, Building a
peer-to-peer content distribution network with high performance,
scalability and robustness. Information Systems, 2011, vol. 36, No. 2,
pp. 222-247.

[5] A.-M., Kermarrec, V., Leroy, A., Moin, and C., Thraves, Application
of Random Walks to Decentralized Recommender Systems.
OPODIS, 2010, pp. 48–63.

[6] H.-J., Kim, J.-J., Jung, and G.-S., Jo, Conceptual framework for
recommendation system based on distributed user ratings. LNCS,
2003, vol. 3032, pp. 115-122.

[7] L., Lacomme, Y., Demazeau, and V., Camps, Personalization of a
trust network. IEEE/ACM, 2009, pp. 408–415.

[8] P., Massa and P., Avesani Trust-aware Collaborative Filtering for
Recommender System. LNCS, 2004, vol. 3290, pp. 492-508.

[9] X.-H., Phan, October 2011, http://gibbslda.sourceforge.net

[10] S., Robertson and D.-A., Hull, The TREC-9 filtering track final
report. Proc. of 9th Text REtrieval Conf. (TREC-9), 2001, pp. 25-40.

[11] R., Sinha and K., Swearingen, Comparing Recommendation made by
Online Systems and Friends. Proc. of the DELOS-NSF Workshop on
Personalization and Recommender Systems in Digital Libraries, 2001

[12] Wikipedia vote network, October 2011, http://snap.stanford.edu/data/
wiki-Vote.html

lir
m

m
-0

06
40

73
5,

 v
er

si
on

 1
 -

14
 N

ov
 2

01
1

