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Abstract-We focus on peer-to-peer (P2P) content recommenda-

tion for on-line communities, where social relationships be-

tween users can be exploited as a parameter to increase the 

trust of recommendation. Most of the existing solutions estab-

lish friendship relationships based on users behavior or de-

clared trust. In this paper, we propose a novel P2P recommen-

dation approach (called F2Frec) that leverages content and 

social-based recommendation by maintaining a P2P and 

friend-to-friend network. This network is used as a basis to 

provide useful and high quality recommendations. Based on 

F2Frec, we propose new metrics, such as usefulness and simi-

larity (among users and their respective friend network), nec-

essary to enable friendship establishment and to select recom-

mendations. We define our proposed metrics based on users’ 

topic of interest and relevant topics that are automatically 

extracted from the contents stored by each user. Our experi-

mental evaluation, using the TREC09 dataset and Wiki vote 

social network, shows the benefits of our approach compared 

to anonymous recommendation. In addition, we show that 

F2Frec increases recall by a factor of 8.8 compared with cen-

tralized collaborative filtering. 

Keywords-P2P systems; personalization; recommendation; gossip 

protocols; social networks. 

I.  INTRODUCTION 

We focus on Peer-to-Peer (P2P) large scale content shar-
ing for on-line communities. For instance, in modern e-
science (e.g., bio-informatics, physics and environmental 
science), scientists must deal with overwhelming amounts of 
contents (experimental data and documents, images, etc.) 
produced and stored in his workspace that they are willing to 
share within a community or with specific friends without 
relying in a centralized server. 

Peer-to-Peer (P2P) networks, offers scalability, dy-
namicity, autonomy and decentralized control. Locating 
contents based on contents ids in a P2P overlay network is 
now well solved (see [4]). However, the problem with cur-
rent P2P content-sharing systems is that the users them-
selves, i.e., their interest or expertise in specific topics, or 
their rankings of documents they have read, are simply ig-
nored. In other words, what is missing is a recommendation 
service that, given a query, can recommend relevant docu-
ments by exploiting user information.  

Sinha et al. [11] have shown that users prefer the advices 
that come from known friends in terms of quality and trust, 
because users typically trust their friends’ advices. The 
emersion of Web2.0 and the growing popularity of online 
social networks have encouraged exploiting users’ social 
data in P2P systems. In existing P2P solutions, friendship 
links are extracted from users’ behaviors [6] or are estab-

lished based on explicit trust declaration [8]. To enrich these 
solutions, we consider that users that store similar contents 
may be potentially friends with a specific declared trust level 
with respect to the relevance of a user in a specific topic. 
Thus, our decentralized recommendation approach leverages 
content-based and social-based recommendation over a dis-
tributed graph, where each node represents a user labelled 
with the contents it stores and its topics of interests. As a 
basis for recommendation, we propose new social metrics 
such as similarities (among users and their respective friend 
network) and usefulness of a user with respect to a friend or 
query taking into account the declared trusts. These measures 
are defined based on user topics of interest and relevant 
topics that are automatically extracted from the contents they 
store. Notice that a user is considered relevant in a specific 
topic t if it has a sufficient amount of content with high prob-
ability related to t. Then this user will be relevant to serve 
queries related to t. also a user v is considered useful to a user 
u, if v is relevant in topics that u is interested in. 

We implement friendship networks using concepts from 
the Friend-Of-A-Friend (FOAF) project. FOAF provides an 
open, detailed description of profiles of users and the rela-
tionships between them using a machine-readable syntax. 
We use FOAF files to support users’ queries. To establish 
friendship and disseminate recommendation, we rely on 
gossip protocols [3] as follows: At each gossip exchange, 
each user u checks its gossip local-view to enquire whether 
there is any relevant user v that is useful to u, and whether its 
friendship networks have high overlap with u’s friendship 
network. If it is the case, a demand of friendship is launched 
among u and v and the respective FOAF files are updated 
accordingly.  

Whenever a user submits a keyword query, its FOAF file 
is used as a directory to redirect the query to the top-k most 
adequate friends taking into account similarities, relevance, 
usefulness and trust. In our previous work [3], we focused on 
P2P anonymous recommendation exploiting different types 
of gossip protocols. 

In this paper, we propose F2Frec, a new social-based ap-
proach for recommendation that facilitates the construction 
and maintenance of P2P social network and exploits social 
metrics to provide recommendations. Our major contribu-
tions are: 

 We introduce new social metrics to suggest friends and 
detect if a friend is relevant and useful to provide recom-
mendations.  

 We propose an efficient query routing algorithm that takes 
into account the social metrics to select, in a top-k ap-
proach, the most appropriate friends to provide recom-
mendation.  
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 Once the best recommendations are provided, we propose 
to rank them by taking into account the semantic similari-
ties, content popularity, distance and trust between que-
ry’s initiator and responders. 

 We provide an experimental evaluation using real data 
sets that demonstrates the efficiency of F2Frec over the 
TREC09 [10] and Wiki vote social network [12] com-
pared to anonymous P2P recommendations and central-
ized recommendation. 
The rest of this paper is organized as follows. Section II 

provides a general overview of F2Frec. Section III presents 
our social metrics and how we manage friendship estab-
lishment. Section IV describes our solution for retrieving 
recommendations over F2Rrec given a key-word query. 
Section V gives our experimental validation that compares 
F2Rrec with centralized collaborative filtering.  Section VI 
discusses related work. Section VII concludes. 

II. GENERAL OVERVIEW OF F2F RECOMMENDATION 

Our recommendation model is expressed based on a 
graph G = (D,U,E,T), where D is the set of shared docu-
ments, U is the set of users u1,…un corresponding to autono-
mous peers p1,…pn, E is the set of edges between the users 
such that there is an edge e(u,v) if users u and v are friends, 

and T is the domain of topics. Each user uU is associated 

with a set of topics of interest Tu  T, and a set of relevant 

topics Tu
r Tu extracted locally from the documents u has 

rated. The rating that has been given by a user u on docu-
ment doc is denoted by ratedoc

u
. 

In our approach, we use Latent Dirichlet Allocation 
(LDA) [2] to automatically extract the topics in the system, 
which in turn are used to extract users’ relevant topics of 
interest. In F2Frec, LDA processing is done in two steps: the 
training at a global level, and inference at the local level. The 
global level is given to the bootstrap server (BS) that aggre-
gates a sample set of M documents from F2Frec participant 
peers. Then, BS runs the LDA classifier to get a set T = 
{t1,..tk} of topics, where k is the number of topics. Each topic 

tT contains a set of Z words, where Z is the number of 

unique words in M, and each word zZ is associated with a 
weight value wz

t
 between 0 and 1. The wz

t
 represents how 

much the word zZ is related to t. At the local level, user u 
performs LDA locally to extract the topics of its local docu-
ments, using the same set of topics T that were previously 
generated at the global level.  LDA provides a vector of size 
k for each document doc, Vdoc = [wdoc

t1
,…,wdoc

tk
], where wdoc

t
 

is the weight of each topic tT with respect to doc. 
Users’ relevant topics of interest are extracted based on a 

combination between documents’ semantics and ratings. 
Since we focus on on-line communities, we safely assume 
that users are willing to rate the documents they store. Once 

a user u extracted the Vdoc for each docDu, it multiplies the 
Vdoc = [wdoc

t1
,..,wdoc

tk
], by the rating ratedoc

u
. Then, user u 

identifies for each topic tT only the documents that are 
highly related to t. A document doc is considered highly 
related to topic t, if its weight in that topic wdoc

t 
multiplied by 

its rating ratedoc
u
 exceeds a threshold value. Next, u counts 

how many documents are highly related to each topic t T. 

User u is considered interested in topic tTu if a percentage y 
of its local documents are highly related to topic t. Finally, u 

is considered a relevant user in topic tTu
r
 if it is interested 

in t and has a sufficient amount x (system-defined) of docu-
ments that are highly related to topic t. 

Each user uU maintains locally a FOAF file that con-
tains a description of its personal information, and friendship 
network, denoted by friends(u)={f1, f2,…fn}. Personal infor-
mation includes the extracted topics of interest, where each 

topic of interest tTu is associated with a Boolean value that 
indicates whether u is relevant in that topic.  Friends’ infor-
mation includes friends’ names, links (URI) to their FOAF 
files, relevant topics of interest, and trust levels. The trust 
level between user u and a friend v, denoted by trust(u,v), is 
a real value within [0, 1] and represents the faith of user u in 
its friend v. The trust level between user u and its friend v 
can be obtained explicitly [8] or implicitly [7]. 

Furthermore, each user uU establishes new friendships 
with users that are useful to u’s demands or have friendship 
networks with high overlap with u’s friendship network. A 
user v is considered useful to a user u, if v is a relevant user 
and a certain amount of v’s relevant topics Tv

r
 are of interest 

for u. User u exploits its useful friends (of friends) for rec-
ommendations. Notice that, if a friendship acquaintance 
exists between users u and v, u implicitly recommends its 
documents to v and vice-versa, in related topics. More pre-
cisely, if there is a friendship path between users u and v, 
path(u,v)={(u, vi), (vi,vj),...,(vk, v)}, then u can recommend its 
documents related to their topics of interest to v and vice-
versa.  

Queries are expressed through key-words, and mapped to 
topic(s) Tq using LDA. Moreover, queries are associated with 
a TTL (Time To Live), and routed recursively on a distribut-
ed top-k algorithm: Once a query is received by any user, it 
is forwarded to its top-k best friends by taking into account 
usefulness and trust. A response to a query q is a recommen-
dation provided in a ranked list and defined as: 

recommendationq  =   rank(recq
1
(doc1),… recq

n
(docj)) 

Different recommendations may be given for the replicas 
of a document doci. The recommendationq is ordered based 
on a ranking function, that ranks each recq

v
(doci) according 

to its relevance with q, its popularity, and the distance and 
trust between the q initiator and responder v. More details on 
query processing and recommendations ranking are given in 
Section IV. 

The trust value between a query’s initiator u and a re-
sponder v, denoted by trustq(u,v), is computed during query 
processing. The path of a query q between u and v can be 
represented as pathq(u,v)={(u, vi), (vi,vj), (vj, v)}, and the trust 
value between u and v can be computed by multiplying the 
trust values among directs friends along the pathq(u,v), which 
is: 

trustq(u,v) = ∏                             

III. FRIEND TO FRIEND RECOMMENDATION 

The goal is to let each user explicitly establish friendship 
with useful users, so that it can exploit them for recommen-

(1) 

(2) 
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dation. First, we present the similarity metrics we propose. 
Then, we present the data structures and algorithms for 
friendship establishment. 

A. Metrics 

We compute the similarity distance between u and v 
based on their friendship networks and relevant topics of 
interest. We measure the similarity distance between u and v 
based on their friendship networks, denoted by distance-

fri(u,v), by counting the overlap of their friends. We use the 
dice coefficient, which is: 

 distancefri(u,v) = 
                      

                       
 

We could also use other similarity functions such as co-
sine, jaccard, etc. We use distancefri(u,v) as a measure for the 
implicit trust between u and v. 

We measure the common interest of topics between user 
u and v, denoted by distanceintr(u,v), by counting the overlap 
of their topic of interests. We use the dice coefficient, which 
is: 

 distanceintr(u,v) = 
        

         
 

Notice that user u and v may be similar in terms of topics 
of interest. However, v may not be useful for u, because the 
topics of interest of u are not related to v’s relevant topics. 
Therefore, we measure how much v is useful to u, denoted 
by useful(u,v), by counting the overlap between u’s topics of 
interest Tu and v’s relevant topics Tv

r
. Similarly, we use the 

Dice coefficient to measure useful(u,v): 

 useful(u,v) = 
       

  

        
  

 

We measure the final similarity distance between u and v, 
denoted by sim(u,v), by combining distancefri(u,v) with use-
ful(u,v) in a weighted approach as follows: 

sim(u,v) = *useful(u,v) + (1-)*distancefri(u,v) 

The parameter  is used to adjust whether u prefers to es-
tablish friendship with users that are highly useful to its 
queries, or with users that their friendship networks are high-

ly overlapped with u’s friendship network. As  values be-
come close to 1, the usefulness of users play a more im-
portant role in the final similarity distance sim(u,v).  

Also, we use the Dice coefficient to measure how much a 
relevant user v is useful to a query q: 

useful(q,v) = 
       

  

|  |    
  

 

If useful(q,v)≠0, then the relevant user v can give recom-
mendations for q. 

B. Friendship Establishment 

Each user u exploits its gossip local-view to establish 
friendship. For each gossip cycle,  u goes through each user 

entry vlocal-viewu, and evaluates whether v may be sug-
gested for friendship as follows: User u computes the simi-
larity distance sim(u,v) as described in Section III.A. User v 
is suggested to u for friendship under some conditions, tak-
ing into account the degree of similarity sim(u,v), the dis-
tancefri(u,v), the distanceintr(u,v), useful(u,v), and v’s relevant 

topics, etc. If u has accepted to establish friendship with v, 
user u sends a message to v, denoted by msgreq, asking v for a 
friendship. Then, u adds v to a waitList list, waiting for 
friendship confirmation.  

Afterwards, user u receives a reply message, denoted by 

msgrep, from each user vwaitList. If user v has accepted to 
establish friendship with u i.e., msgrep = accept, u stores v’s 
information in its FOAF file. The information for the new 
friend v includes v’s relevant topics of interest, a trust value 
trust(u,v) between u and v, and link to v’s FOAF file. Notice 
that the trust(u,v) is assigned explicitly by u [8]. 

IV. QUERY PROCESSING BASED ON FOAF FILE 

In this section, we describe our query processing algo-
rithm to generate recommendations. Next, we describe the 
ranking model we use to order the returned recommenda-
tions. 

A query is defined as q(wordi, TTL, Vq, Tq, trustq(u,v),k), 
where wordi is a list of keywords, TTL is the time-to-live 
value, Vq is query q’s topic vector. Query q’s topic vector, 
Vq= [wq

t1
,..,wq

tk
], is extracted using LDA. Then, query top-

ic(s) Tq  T are computed, where q is considered to belong to 

a topic tTq if its weight wq
t
 in that topic exceeds a certain 

threshold (which is system-defined). The trustq(u,v) is the 
trust level between u and a responder v. The value k is the 
parameter for top-k redirection. 

Each time, a user u issues a query q, it proceeds as fol-
lows: First, it computes how much each useful friend 

vfriend(u) is useful to q. Then, u computes the rank of v, 
denoted by rank(v). The rank of a useful friend v for u de-
pends on the usefulness of v for q, and the trust level be-
tween u and v. Accordingly the rank(v) is defined as: 

rank(v) = trust(u,v)*useful(q,v) 

Once u has computed the rank of each useful friend v, it 
adds rank(v) to a RankList that contains the useful friends’ 
addresses along with their ranks. Then, it selects the top-k 
useful friends from the RankList with highest rank, and adds 
them to topkList. Then, u forwards q to each useful friend 

vtopkList, attaching to q the trust value trustq(u,v), and 
reducing the query TTL by one. Note that the value of 
trustq(u,v) is equal to the value of trust(u,v), because v is a 
direct friend of u. Also the useful friend v with the highest 
rank is the useful friend that is most useful to q, and has the 
highest trust level with u. 

Once user u receives the recommendation information 
from the responders, it ranks those recommendations and 
presents them in an ordered list (see Section IV.A).  

When a user v receives a query q that has been initiated 
by a user u, it processes q as follows: First, it measures the 
similarity between query q and each document v has locally. 
The similarity between a document doc and q, denoted by 
sim(doc,q), is measured by using the cosine similarity be-
tween the document topic vector Vdoc= [wdoc

t1
,…,wdoc

tk
] and 

the query topic vector Vq= [wq
t1
,…,wq

tk
], which is: 

sim(doc,q) = 
∑   

   
        

  

√∑   
     

   ∑     

       

   
   

 
   

 
 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Second, v returns to the query’s initiator u the recom-
mendations for the documents whose similarity exceeds a 
given (system-defined) threshold. 

Finally, v selects from its friends the top-k useful friends 
that have the highest rank, and adds them to the topkList if 
the query’s TTL is not yet zero. Then, v computes the trust 

value trustq(u,x) for each useful friend xtopkList based on 
Equation 2. Then v attaches trustq(u,x) to q, and forwards q 
to x after reducing TTL by one. 

With such query routing, we avoid sending q to all 
friends, thus minimizing the number of messages and net-
work traffic for q. In addition, we send the query to friends 
that are most useful and trustful. 

A. Ranking Recommendations 

Recall that the result of a query q submitted by a user u is 
recommendationq =   rank(recq

v1
(doc1),…, recq

v
(doci)), where 

recq
v
(doci) is the recommendation that has been given for a 

document doci from a responder v. We rank recq
v
(doci) based 

on the semantic similarity between q and doci,  the popularity 
of doci, and the distance and trust between u and the re-
sponders of doci. Accordingly, recq

v
(doci) that has been re-

ceived from responder v includes sim(doci,q), v’s topics of 
interest Tv and the trustq(u,v). The rank of a recq

v
(doc), de-

noted by rank(recq
v
(doc)), is defined as: 

rank(recq
v
(doc)) =               

  
∑                                 

   
 

            

Where a, b and c are scale parameters, pop(doc) is the 
popularity of doc, and |R| is the number of responders that 
have recommended doc to the initiator u. The popularity is 
equal to the number of replicas of doc in F2Frec. The user 
can specify whether it prefers highly popular documents, 
documents that are highly semantically relevant to q, or 
documents that come from highly similar users, by adjusting 
parameters a, b and c. Upon receiving the recommended 
documents, user u can download a copy of a document, rate 
and include it in its document set Du. 

V. EXPERIMENTAL EVALUATION 

In this section, we provide an experimental validation of 
F2Frec to assess the quality of recommendations, search 
efficiency (cost, and hit-ratio), and the average number of 
friends. We conducted a set of experiments using TREC09 
[10] and the Wiki vote social network [12]. We first describe 
the experimentation setup. Then, we evaluate the effect of 
friendship establishment on the performance of F2Frec. 
Finally, we compare F2Frec with centralized collaborative 
filter. 

A. Experimentation Setup 

We use the classical metric of recall that is used in in-
formation retrieval and recommender systems to assess the 
quality of the returned recommendations. Recall represents 
the system ability to return all relevant documents to a query 
from the dataset. Thus, in order to measure recall, the rele-
vant documents set for each query that have been issued in 

the system should be known in advance. Data published by 
TREC have many relevance judgments. We use TREC09 
filtering track [10], a set of 348566 references from 
MEDLINE, the on-line medical information database, con-
sisting of titles and abstracts from 270 medical journals over 
a five year period (1987-1991). It includes also a set Q of 

4904 queries. The relevant documents for each query qQ, 
denoted by Rq, were determined by TREC09 query assessors.  

In the experiments, user u issues a query qQ and uses 
F2Frec to possibly retrieve the documents that are in Rq. The 
set of documents returned by F2Frec for a user u and a query 
q is denoted by Pq. Once a user u has received Pq from 
F2Frec, it can count the number of common documents in 
both sets Pq and Rq to compute recall. Thus, recall is defined 
as the percentage of q’s relevant documents doc Rq occur-
ring in Pq with respect to the overall number of q’s relevant 
documents | Rq |: 

recall =      
|  ⋂  |

|  |
 

In addition we use the following metrics to evaluate 
F2Frec. 

 Communication cost: the number of messages in the P2P 
system for a query. 

 Background traffic: the average traffic in bps experi-
enced by a user due to gossip exchanges. 

 Hit-ratio: the percentage of the number of queries that 
have been successfully answered. 

 Average number of friends in the network: the total 
sum of the number of friend of all users divided by the 
size of the network (total number of users). 
We extracted the titles and abstracts of TREC09 docu-

ments and removed from them all the stop words (e.g., the, 
and,..). Then, we fed them to the GibbsLDA++ software [9], 
a C++ implementation of LDA using Gibbs sampling, to 
estimate the document topic vectors Vdoc. With |T|=100 as 
the number of topics. To estimate the query topic vectors Vq, 
we removed the stop words from queries keywords, fed the 
query keywords left to GibbsLDA++, and computed the 

topics Tq of each query qQ. For ease of presentation, we 

consider that each query qQ has one topic tqT. 
We use the Wiki vote social network [12] to give ran-

domly each user a set of documents from TREC09. Wiki 
vote considers that two users are considered friends if one 
votes for the other. It consists of 7115 users connected to-
gether by 103689 links with an average of 14.57 links per 
user. After distributing the TREC09 documents over the 
Wiki vote users, we get a total of 6816170 documents, with 
an average of 958 documents per user. 

We generate a random rating between 0 and 5 for each 
document a user has and compute the users’ topics of interest 
from the documents they have rated. We consider that each 
user u is interested at least in one topic and relevant at least 
for one topic. Also u is interested in at most 10 topics and 
relevant for 5 topics at most. 

F2Frec is built on top of a P2P content sharing system 
that we generated as an underlying network of 7115 nodes, 
which is equal to the number of users in the Wiki vote net-

(10) 

(11) 
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work. We use PeerSim for simulation. Each experiment is 
run for 24 hours, which are mapped to simulation time units. 

In order to evaluate the quality of recommendations, we 
let each user u issue a query after computing the previous 
query or after a system-specified timeout. Then we obtain the 
result for each query and compute the respective metric 
values. In order to obtain global metrics, we average the 
respective metric values for all evaluated queries. We let 
each user u establish new friends after each time it performs 
a gossip.  

B. Experiments 

We first investigate the effect of friend establishment on 
the performance of F2Frec over the respective metrics. Se-
cond, we compare F2Frec with a centralized collaborative 
filter. For the gossip parameters (gossip period Cgossip, gossip 
message Lgossip, and view-size), we use 30 minutes for Cgossip 
(simulation time units), 10 for Lgossip, and 50 for view-size (in 
[3] we showed that this setting provided good quality of 
recommendations with acceptable network traffic). We use 1 
for the TTL of the query, and query is forwarded to each 
friend v that is useful to query, in order to measure the quali-
ty and effectiveness of friendship establishment. 

Then, we collect the results for each experiment after 24 
simulation hours. We set TTL to 1 to measure the quality 
and effectiveness of friendship establishment. All experi-
ments are performed under churn i.e., the network size is 
changed during the run due to the joining and leaving of 
users. The experiments start with a stable overlay with 355 
users. Then, as experiments are run, new users are joining 
and some of the existing users are leaving. 

Friendship Establishment. In this experiment, we vary 

the value of  between 0 and 1, in order to investigate the 
trade-off of usefulness and friendship distance based on the 
Equation 6. In addition, we investigate the effect of friend-
ship establishment on the performance of F2Frec over the 

respective metrics. In each experiment, each user uU gets 
its initial friends from the Wiki social network, then u runs 
the F2Frec algorithm to establish new friends. 

Table 1 shows the results obtained after 24 hours of run-
ning the F2Frec algorithm. We can see that the average 
number of friends increases from 49.7 to 174.6 when in-

creasing  from 0 to 1. Combining users’ usefulness with 
friend networks increases the likeness between users. Thus 
more new friends are added to users’ FOAF files. We also 
observe that recall, communication cost, hit-ratio and back-
ground traffic are correlated to the average number of 
friends.  The communication cost increases because more 
useful friends are visited. Visiting more useful friends in-
creases the relevant documents returned, and thus greater 
recall is achieved. Also, hit-ratio increases as long as the 
average number of friends also increases, because there is a 
higher probability to find a useful friend to serve a query. 
However, bandwidth consumption increases because increas-
ing the number of friends implies the increase of the size of 
the gossip entries, increasing the size of the gossip messages. 
As a result the bandwidth consumed is increased. 

In Figure 1, we show the variation of average number of 

friends and recall versus time under different values of. We 

observe that combining the usefulness of users with friend-
ship networks increases the possibility of finding new friends 

(Fig. 1(a)). When the value of  is equal to 0, the final 
friendship establishment depends on the overlap between 
users’ friends only. This depends on the density of the links 
in the network graph. In our benchmark, the overlap between 
friend networks is low, and thus the average number of 
friends is low, which causes low recall. However, the rec-
ommended documents in this case have more confidence and 
quality, and users are more satisfied with those recommenda-
tions. This is because they are recommended by trusted 
friends. 

TABLE 1. RESULTS OBTAINED BY F2FREC OVER THE RESPECTIVE METRICS 

 
Max. 

recall 

Max. 

Com. 

cost 

Max. 

Hit-

ratio 

Max. Avg. 

background 

traffic (bps) 

Max. 

Avg. 

Friend 

0 0.31 20 0.61 12.4 49.7 

0.3 0.58 38.3 0.94 17.4 141.1 

0.5 0.67 46 0.977 19 177.6 

0.7 0.67 47 0.98 18.7 177.6 

1 0.73 46.5 0.98 18.5 174.6 

 

 

Figure 1.  F2Frec performance over respective metrics 

When the value of  is equal to 1, friendship establish-
ment depends on the usefulness of users only. Each time a 
user u performs gossip, new relevant users are added to its 
local-view. Thus, u finds new relevant users that are useful to 
its demand, and then establishes friendship with them. There-
fore, more friends are added at u’s FOAF file. As a result, 
the average number of friends is increased. While the values 

of  increase between the two extremes, u finds new relevant 
users that are useful to its demand, and establishes friendship 
with them. Accordingly, its friend list is increased. Then, the 
possibility of overlap between users’ friends increases as 
well. As a result, the possibility of establishing new friend-
ship increases. 

We observe that the recall achieved by =1 is greater 

than that with =0.7 or 0.5, even though the average number 

of friends are almost identical (Fig. 1(b)). When =1, friend-
ship establishment depends on users usefulness only. Ac-
cordingly, each user u establishes new friendship with rele-
vant users that are more useful to its demands.  

For the other simulations, we set =0.5, because this set-
ting leverages users’ usefulness and friendship networks, and 
provides reasonable results with acceptable overhead in 
terms of background traffic.  
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Social Effect. We compare F2Frec with a centralized 
collaborative filter [1] with respect to recall. In order to rec-
ommend a set of documents that a user u may like, we com-
pute the similarity between a user u and all the users in the 
system. Then, we select a set of users, noted neighbors(u), 
which are the top-k similar to u. We use the cosine similarity 
to extract a user’s neighbors, based on the ratings that are 
given by the users over the documents they have seen or 
created. Once the similarity between u and each user v has 
been computed, we select the top 178 similar users as the 
neighbors(u). Once users’ neighbors are extracted, we run 
the system and generate recommendations for each user from 
its neighbors, and then compute the average recall of all 
users. The recommendations for each user u are generated as 

follows: First, u randomly selects a query qQ s.t. tqTu. 
Then u forwards q to each member in its neighbors.  Each 
neighbor receives q, returns to u all the documents that their 
similarity with q exceed 0.5. We select the top 178 similar 

users as the neighbors(u), and tqTu, to be identical with 
F2Frec. 

We observe that the similarity measure is time consum-
ing as it takes about 38 hours to compute the similarity be-
tween the 7115 users with 6816170 documents. This time 
increases exponentially as the numbers of documents and 
users increase. 

Results. We observe that the average recall achieved by 
collaborative filter is equal to 0.076. F2Frec increases the 
recall by a factor of 8.8 in comparison with the centralized 
collaborative filter. A major reason behind this significant 
gain is the friendship establishment in F2Frec that relies on 
usefulness of users and friend networks. In contrast, central-
ized collaborative filter aggregates neighbors based on doc-
ument ratings only. Unfortunately, this kind of similarity 
does not capture the contents of the documents. 

VI. RELATED WORK 

In this section, we discuss the previous works that are 
most related to F2Frec. Previous works such as [3] and [5] 
exploit specific gossip protocols to aggregate the neighbors 
of each user. Then users use those neighbors (of neighbors) 
to serve their demands. However, these systems do not ex-
ploit users’ social data and explicit friendship for recommen-
dations.  

In [6] and [8], users’ social data (friends, trust, etc.) are 
exploited in computing recommendations. In [6], users’ 
preferences are extracted from user’s behaviors and asserted 
in users’ FOAF files. Then the system aggregates users’ 
FOAF files and clusters the users with similar preferences in 
one group. Then, when a user u in a group rates an item, the 
system determines whether the item is good enough to be 
recommended to other users in the group. However, aggre-
gating users’ FOAF files increases network traffic. In con-
trast, F2Frec lets each user maintain locally its FOAF file, 
and uses it to support its queries. 

In [8], trust in users is also used as a basis for recommen-
dations. The system lets each user u express its level of trust 
to each user it has interacted with. Then u measures the trust 
level between itself and each user in the network, and selects 
the most trustful as its neighbors. Those neighbors are used 

to compute the recommendations. However, inferring the 
trust relationships between users is time consuming and 
increases network traffic. In contrast, F2Frec computes the 
trust between indirect friends during query processing. Thus 
we do not need extra data and information to propagate and 
aggregate the trust network. 

VII. CONCLUSION 

In this paper, we proposed F2Frec, a P2P recommender 
system that leverages content and social-based recommenda-
tions by maintaining P2P social networks. The basic idea of 
F2Frec is to exploit the users’ relevant topics of interest and 
friends’ networks, in order to get high quality recommenda-
tions. F2Frec relies on gossip protocols to disseminate rele-
vant users and their information, in order to let users estab-
lish friendship with new useful friends.  

We use FOAF files to store users’ friendship networks 
and their relevant topics of interest, and as a directory to 
redirect a query to the appropriate trustful and useful friends 
in a top-k approach. 

In our experimental evaluation, using the TREC09 da-
taset and Wiki vote social network, we showed that F2Frec 
increases recall by a factor of 8.8, compared with centralized 
collaborative filter.  
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