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Abstract: This paper proposes a text-independent speaker identification system based 
on Mel Frequency Cepstral Coefficients as a feature extraction and Vector Quantization 
technique that would minimize the data required for processing. The correlation 
between the identification success rate and the various parameters of the system 
including the feature extraction tools and the data minimization technique will be 
examined. Extracted features of a speaker are quantized by a number of centroids and 
the K-mean algorithm has been integrated into the proposed speaker identification 
system. Such centroids constitute the codebook of that speaker. MFCC are calculated in 
both training and testing phases. To calculate these MFCC speakers uttered different 
words, once in a training session and once in a testing one. The speakers were identified 
according to the minimum quantization distance which was calculated between the 
centroids of each speaker in the training phase and the MFCC of individual speakers in 
the testing phase. Analysis was carried out to identify parameter values that could be 
used to improve the performance of the system. The experimental results illustrate the 
efficiency of the proposed method under several conditions 
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1. Introduction 
 Speaker recognition aims at recognizing speakers from their voices as each person has his 
own speech characteristics and his way of speaking. Speaker recognition is basically divided 
into speaker identification and speaker verification. Speaker identification is the process of 
determining which registered speaker provides the speech input, while verification is the task 
of automatically determining if a person really is the person he or she claims to be. Speaker 
recognition has many particular applications as a speaker’s voice can be used to verify their 
identity and control access to services such as banking by telephone, database access services, 
voice dialing telephone shopping, information services and voice mail. Another important 
application of speaker recognition technology is for forensic purposes [1]. 
 Speaker recognition can be classified as based on text-dependent or text-independent 
methods. In the text dependent method, the speaker has to say key words or sentences having 
the same text for both training and recognition trials. Whereas in the text independent case the 
system can identify the speaker regardless of what is being said [2], [3], [4]. 
 The goal of this study is a real time text-independent speaker identification system, which 
consists of comparing a speech signal from an unknown speaker to a database of known 
speakers. The system will operate in two modes: a training mode and a recognition mode. 
During the training mode users will record their voices and make a feature model it. The 
recognition mode will use the information that the user has provided in the training mode and 
attempt to isolate and identify the speaker. The Mel Frequency Cepstral Coefficients (MFCC) 
and the Vector Quantization (VQ) algorithms are used to implement this process. The simple 
K-means clustering algorithm is used in this study whereas the LBG is used in other similar 
work [4]. 
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2. Feature Extraction 
 The main objective of feature extraction is to extract characteristics from the speech signal 
that are unique to each individual and that will be used to differentiate speakers. Since the 
characteristic of the vocal tract is unique for each speaker, the vocal tract impulse response can 
be used to discriminate speakers. Therefore in order to obtain the vocal tract impulse response 
from the speech signal, a deconvolution algorithm like the MFCC is applied [5]. 
 A wide range of possibilities exist for parametrically representing the speech signal for the 
speaker recognition task, such as Linear Prediction Coding (LPC), (MFCC), and others. MFCC 
is perhaps the best known and most popular. MFCC’s are based on the known variation of the 
human ear’s critical bandwidths in response to frequency. The MFCC technique makes use of 
two types of filters, namely, linearly spaced filters and logarithmically spaced filters. To 
capture the phonetically important characteristics of speech, a signal is expressed in the Mel 
frequency scale. This scale has a linear frequency spacing below 1000 Hz and a logarithmic 
spacing above 1000 Hz. Normal speech waveform may vary from time to time depending on 
the physical condition of speakers’ vocal cords rather than the speech waveforms themselves, 
the MFCC are less susceptible to the said variations [6]. 
 
3. The Mel Frequency Cepstrum Coefficient 
 The (MFCC) is used to resolve the speech signal into a sum of two components. This 
computation is carried out by taking the Discrete Cosine Transform (DCT) of the logarithm of 
the magnitude spectrum of the speech frame. The convolution of the two components is 
changed to multiplication when Fourier Transform (FT) is performed. A typical flowchart of 
the MFCC process is shown in Figure1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Flow diagram of the MFCC process 
 
A. Framing and Windowing 
 Framing is the process of segmenting the speech signal into small frames that range in 
length from ten to thirty milliseconds. In this range, the speech signal is for the most part 
stationary [7]. 
 Windowing is performed to avoid unnatural discontinuities in the speech segment and 
distortion in the underlying spectrum. The choice of the window involves a tradeoff between 
several factors. In speaker recognition, the most commonly used window shape is the hamming 
window. 
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B. Fast Fourier Transform 
 To convert the signal from a time domain to a frequency domain in preparation for the next 
stage, Mel Frequency Wrapping (MFW) is applied to. The basis of performing a Fourier 
transform is to convert the convolution of the glottal pulse and the vocal tract impulse response 
in the time domain into multiplication in the frequency domain [8]. 

 
C. Mel-Scaled Filter Bank 
 The information carried by low frequency components of the speech signal is more 
important compared to the high frequency components. In order to place more emphasis on the 
low frequency components, mel scaling is performed. It is a unit of special measure or scale of 
the perceived pitch of a tone. It does not correspond linearly to the normal frequency, but 
behaves linearly below 1 kHz and logarithmically above 1 kHz. This is based on studies of the 
human perception of the frequency content of sound. The relationship between the frequency 
(in hertz) and the mel scaled frequency is given in Eq.1; 
 

݈݉݁ሺ݂ሻ ൌ 2595 כ log 10ሺ1 ൅ ௙
଻଴଴
ሻ (1)

  
 In order to perform mel-scaling, a number of triangular filters or filterbank are used. To 
implement such filterbanks, the magnitude coefficient of each Fourier transformed speech 
segment is bounded by correlating them with each triangular filter in the filterbank. 
 
D. Cepstrum 
 The log mel spectrum has to be converted back to time producing Mel Frequency Cepstrum 
Coefficients (MFCCs). The cepstral representation of the speech spectrum provides a good 
representation of the local spectral properties of the signal for the given frame analysis. These 
MFCCs are real and so they may be converted to the time domain using the Discrete Cosine 
Transform (DCT). The MFCCs values may be calculated using Eq.2 [4]; 
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 Where n is the index of the cepstral coefficient and Sm is the output of an M-channel 
filterbank. The number of mel cepstrum coefficients, M, is typically chosen as (10-15). The set 
of coefficients calculated for each frame is called a feature vector. These acoustic vectors can 
be used to represent and recognize the voice characteristic of the speaker. Therefore each input 
utterance is transformed into a sequence of acoustic vectors [9], [10]. The next section 
describes how these acoustic vectors can be used to represent and recognize the voice 
characteristic of a speaker. 
 
4. Classification and Feature Matching 
 The decision making process to determine a speaker’s identity is based on previously stored 
information. This step is basically divided into two modes: training and testing. Training is a 
process of enrolling a speaker into the identification system database by constructing a unique 
model for each speaker based on the features extracted from the speaker’s speech sample. 
Testing is a process of computing a matching score, which is a measure of similarity of the 
features extracted from the unknown speaker and the stored speaker models in the database. 
The speaker with the minimum matching score is chosen to be identified as the unknown 
speaker. 
 The classification or speaker modeling techniques including Hidden Markov Modeling 
(HMM), Dynamic Time Warping (DTW), Gaussian Mixture Modeling (GMM), and Vector 
Quantization (VQ). The VQ approach has been used in this work due to its ease of 
implementation and high accuracy. 
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A. Vector Quantization 
 The number of feature vectors that is generated from the training mode is so large that 
storing every single vector is impossible. So, Vector Quantization is used to compress the 
information and manipulate the data in such a way as to maintain the most prominent 
characteristics [11]. The VQ is a process of mapping vectors from a vector space to a finite 
number of regions in that space. These regions are called clusters and represented by their 
central vectors or centroids. A set of centroids, which represent the whole vector space, is 
called a codebook. In this work, VQ is applied on the set of feature vectors extracted from 
speech sample and as a result the speaker codebook is generated. 
 There are a number of algorithms for codebook generation such as: K-means algorithm, 
Generalized Lioyd algorithm (GLA) (also known as Linde-Buzo-Gray (LGB) algorithm), Self 
Organizing Maps (SOM) and Pairwise Nearest Neighbor (PNN). Here, we have use the K-
means algorithm since it is the most popular, simplest and the easiest one to implement. 
 
B. K-mean Clustering Algorithm 
 The K-means algorithm partitions the T feature vectors into M centroids. The algorithm 
first randomly chooses M cluster-centroids among the T feature vectors. Then each feature 
vector is assigned to the nearest centroid, and the new centroids are calculated for the new 
clusters. This procedure is continued until a stopping criterion is met, where the mean square 
error between the feature vectors and the cluster-centroids is below a certain threshold or there 
is no more change in the cluster-center assignment [5], [9], [10]. The algorithm is summarized 
as shown in Figure2 [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Flowchart of the K-means algorithm 
 
 In the recognition phase an unknown speaker, represented by a sequence of feature vectors 
X= {x1,x2,….,xT}, is compared with the reference vectors R={r1, r2,…rK} in the database. 
Hence, a distortion measure is computed for each codebook, and the speaker with the lowest 
distortion is chosen [9]. 
 One way to define the distortion measure (D), which is the sum of squared distances 
between vector and its representative (centroid), is to use the average of the Euclidean 
distances as given by Eq.3 [4]. 
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 Thus, each feature vector in the sequence X is compared with all the codebooks, and the 
codebook with the minimized average distance is chosen. 
 
5. Simulation Results 
 The following results were achieved by performing the experiments on pure speech 
samples from the ELSDSR database which consists of 20 speakers, 10 male and 10 female 
speakers. Also, another database was selected from the local environment to see how the 
performance of the system varies by changing the spoken text, language and the test speech 
length.  
 Here, the identification rate is defined as the ratio of the number of speakers identified to 
the total number of speakers tested. The number of MFCC is set to 12, the number of filter 
banks is 29 and the codebook size is 64. The required measured distance between the given 
speech and the database is illustrated in Table 1. One can see that the distance is the least when 
the signal is compared with itself. This indicates that each signal matches itself more than any 
other signal and it varies in its distance from the other signals. 
 

Table 1. The distance between various speakers 
 Sp1 Sp2 Sp3 Sp4 Sp5 

Sp1 10.7 13.2 17.8 14.7 13.2 
Sp2 13.2 10.2 13.2 11.7 14.1 
Sp3 17.5 16.1 11.9 16.2 17.7 
Sp4 16.1 13.7 15.5 11.7 16.7 
Sp5 14.9 15.7 17.2 17.8 12.3 

 
 From Table 1, it can be seen that the system identifies the speaker according to the theory 
that “the most likely speaker’s voice should have the smallest Euclidean distance compared to 
the codebooks in the database”. 
 The experiments conducted have shown that there are five main parameters that can greatly 
affect the performance of the system. These are: the number of the MFCC, the number of 
filters in the filter bank, the codebook size, the test speech length and the text language. 
 
A. Number of MFCC coefficients 
  

 
 

Figure 3. Identification rate (in%) Vs. the No. of MFCC 
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 Increasing the number of mel frequency cepstral coefficients results in improving the 
identification rate (ID) up to a certain limit. Increasing this number has no significant 
improvement after a certain value as shown in Figure3. The MFCC are typically in the range 
12 to 15. 
 
B. Number of filterbanks 
 It is obvious that number of the filterbanks plays a major role for the purpose of improving 
recognition accuracy. Simulation results have shown that it is possible to obtain 100% 
identification rate using 40 filterbanks with a codebook size of 64 as illustrated in Figure4. 
 

 
Figure 4. Identification rate (in %) for values of filterbanks 

 
C. The codebook size 
 Increasing the codebook size improves the ID rate significantly such that the codebook size 
of 16 achieves an ID value of 98%. However, increasing the codebook size for larger values 
will not improve the ID rate as illustrated in Figure 5. On the other hand, the distortion measure 
for a speech sample text decreases as the codebook size increases as illustrated for three 
speakers in Figure 6. 
 

 
 

Figure 5. Codebook size Vs. Identification rate 
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Figure 6. Distortion measure Vs. codebook size 
 
 From the obtained results, it is obvious that increasing the number of centroids results in 
increasing the identification rate, but the computational time will also increase. On the other 
hand, the matching scores (Euclidean distance) for the same speaker is decreased as the 
codebook size increases. 
 
D. Test Speech Duration 
 To study the performance of different test shot duration, three tests were conducted using 
all test speakers uttering the same test speech sample with three different duration values. The 
ID rate accuracy is increased when the speech text duration is increased as illustrated in Table 
2. 
 

Table 2. Identification rate (in %) for different test shot duration 
Test speech duration ID (%) 

0.5 sec. 60% 
2 sec. 85% 

Full test shots 95% 
 
 The best identification can be achieved using the whole test shots from which we can 
conclude that the performance of the VQ analysis is highly dependent on the duration of the 
speech data that is being processed. 
 
E. The Effect of Text and Language 
 During the experiments, the speakers uttered different phrases in two different languages, 
Arabic and English, and the results showed that the system is able to identify the correct 
speaker regardless of the spoken text and language. This indicates that the mel frequency 
cepstral features extracted from the speech sample are sensitive to the speaker’s voice 
characteristics but not to the language or text. Moreover, VQ is used to cluster the feature 
vectors based on their sound classes and not according to the spoken text. 
 
6. Conclusion 
 A text-independent speaker identification system has been implemented using such that 
Mel Frequency Cepstral Coefficients were used for feature extraction and K-mean Vector 
Quantization technique was used to model the speakers. Using the extracted features, a 
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codebook from each speaker has clustered the feature vectors. Codebooks from all the speakers 
were collected in a database. A distortion measure, based on minimizing the Euclidean 
distance, was used when matching the unknown speaker with the speaker database. As the 
number of centroids increases, the identification rate of the system increases. Also, the number 
of centroids has to be increased as the number of speakers increase. In addition, as the number 
of filters in the filter-bank increases, the identification rate increases. The experiments 
conducted have shown that it was possible to achieve an almost 100% identification rate when 
using 40 filters with full training sets and full test shots. Reducing the test shot duration 
reduced the recognition accuracy. For real time application, the test data usually needs to be 
few seconds long. It has been shown that VQ based clustering is an efficient and simple way to 
perform text and language independent speaker identification. This system has more than 97% 
accuracy in identifying the correct speaker when using long enough training-sessions and 
testing sessions. 
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