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Summary. — The ground-state energy of the N-dimensional helium atom is pre-
sented by applying the variational principle. The calculations are made for the
unscreened and screened cases. It is shown that, in both cases, the magnitude of
the ground-state energy decreases (less negative) as the spatial dimension N in-
creases. For the unscreened case, the relative contribution of the electron-electron
interaction term to the ground-state energy is calculated for different dimensions,
and it is found that this ratio approaches one half as N — oo. For the screened
case, the effective nuclear charge is computed for different dimensions and its lim-
iting value is found to be 3/2 in the infinite-dimensional space. In addition, the
relative contribution of screening to ground-state energy is calculated in different
dimensions and it is shown that it reaches 1/8 as N — oo. Furthermore, the asymp-
totic behavior of ground-state energy, contribution of electron-electron interaction
and contribution of screening effect are presented.

PACS 03.65.-w — Quantum mechanics.
PACS 03.65.Ca — Formalism.
PACS 03.65.Ta — Foundations of quantum mechanics; measurement theory.

1. — Introduction

The helium ground-state energy has been a subject of interest for a long time [1-7]
and continues to attract the attention of many investigators [8-11]. The variational
technique is considered as a powerful tool for estimating the ground-state energy of a
quantum system. Over the last few years, this method has been applied to helium
atom in different settings: Komasa and Rychlewski [12] considered correlated Gaussian
functions in variational calculations to estimate the ground-state energy of helium dim-
mer, Banerjee [13] and Flores-Riveros et al. [14] studied energy spectrum of spherically
confined helium atom, Theodorakis et al. [15] considered optimization method to find
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approximate solutions of field equations, Lobanova et al. [16] and Biaye et al. [17] used
variational method in calculating energies of excited states of helium to illustrate the
importance of electron correlation effects. Hydrogen-like systems are considered a proto-
type of physical problems in N dimensions [18-20] and have an important role in different
areas of physics: For example, in quantum field theory [21], in quantum chemistry [22], in
quantum computation [23] and in nanotechnology [24]. In addition, the generalization of
physical problems to higher space dimensions is useful in random walks [25], in Casimir
effect [26], in harmonic oscillators [27-29] and in statistical mechanics [30,31]. Further-
more, the N-dimensional radial Schrodinger equation has been examined for different
kind of potentials [32-36]. In the present paper, we will derive an analytic expression for
the ground-state energy for helium atom in N dimensions via the variational method.
We do this for two cases: In the first case, we assume the nuclear charge to be unshielded
by the electrons, and in the second case we consider screening of the nuclear charge by
the electrons. The paper is organized as follows: in sect. 2, we present some aspects
of the N-dimensional hydrogenic system which are relevant to our work. In sect. 3, we
calculate the ground-state energy of helium atom in N dimensions by applying the vari-
ational method assuming no screening of the nuclear charge. In sect. 4, we include the
effect of screening on the ground-state energy. Section 5 is devoted for conclusions.

2. — The helium atom in N dimensions: preliminaries

We consider a helium atom which consists of two electrons and a nucleus with a charge
Ze (with Z = 2). The Hamiltonian for this system (assuming infinite nuclear mass and
ignoring fine structure and small corrections) is given by

(1) H = H0+‘/;ea

where Hy is the sum of two Hamiltonians for one-electron hydrogenic-like atoms, given
by

n? e2Z (1 1
2 Hy=—— (Vi+V3) - —+—
(2) 0 Qm( 1t 2) dmeg <7“1 Jrrg)’

and V.. represents the electron-electron interaction which is given by

ez 1

471'6() 12 ’

3) Vee

with 719 = 1/|Fy — 72|. In the N-dimensional space, the Laplacian operator in the polar
coordinates (r,01,0s,...,0n_2,p) of RN has the form

2 _
(4) V2:i+ué+i927

or? r  or r?
where Q2 is a partial differential operator on the unit hyper-sphere RY~1 and whose
eigenvalues are —¢(¢ + N — 2). The angular solutions are the hyper-spherical har-
monics Yz{m} which depend on (N — 1) angular coordinates with ranges 0 < 6; <«

and 0 < ¢ < 2m. Each of these spherical harmonics is determined by (N — 1) in-
tegers £, mi,mo,...,my_o that can assume all values consistent with the inequalities
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£>mqy > mg > ... > |my_z2| > 0. The eigenfunctions of Hy are the product of the
eigenfunctions of the one-electron Schrodinger equation for 7} and 7 coordinates, namely

(5) DO (7, 7)) = (1) (7a),
where
(6) V() = ARNne ()Y (05,9). j=1,2,3,...,N —2.

The functions Ry, (r) are the solutions for the radial Schrodinger equation and are given
by [37]

— 204+N—-2
(7) Ryvue(r) = e o L TR (0),

where L(p) is the associated Laguerre polynomial and p = (8m(—E)/h?)Y/2. The energy
eigenvalues of H are

(8) By =(Egnh+ (Ely)e=—"—"

where Fj is the three-dimensional ground-state energy of a one hydrogen atom that is
given by

2

9 Ey=———,
© 07 " 2a(4meg)

whose value equals —13.6eV and a = 4meg,2/me? is the Bohr radius. Since we are
interested in the ground-state energy of the helium atom in N dimensions, eq. (8) gives
the ground-state energy of Hy by putting Z = 2 and n = 1, with the result

32

(10) Ely = o1y

Ep.

3. — Variational method without screening

In order to find the contribution of the electron-electron interaction term V.. to the
ground-state energy, we apply the variational principle by adopting the trial wave func-
tion

—2Z(7’1 + 7’2)
11 —A i S
( ) ¢(7ﬂ17r2) exp |: a(N_ 1) b

where A is a normalization constant. Normalization requirement of the above trial wave
function over the two sets of the N-dimensional electron coordinates gives

4Z(7”1 —l—?“g) _ _
(12) 1= Az/exp {_a(N 0 NN T dr drg.
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The integration over the r coordinates can be easily carried out by letting x = 4Zr/a(N —
1) and using

(13) /O T aN-lemedy = T(N),

which immediately gives the value of the constant A, namely

We apply the variational principle, using the trial wave function given in eq. (11), to find
the contribution of V. to the ground-state energy of the helium atom. This is given by

e? 1 4Z(r1 4 r2)
15 Vie) = A? — L 2 ) N Q1dQs.
(15) (Vee) Tneg / -y exp ( AN =1) ) ry oy dridradQ;dQs

Tt is helpful to expand 1/|7# — 7| as [38]

1 T V-2
(16) EREY i = THIC (cosb),
=0 ">

where 6 is the angle between 7| and 75 and CéN_Q)/ 2 are the Gegenbauer polynomials.
The addition theorem for the M linearly independent hyperspherical harmonics Y, of
degree ¢ on the SV~ sphere has the form [39]

N— ym
(17) Cé 2)/2(005 9) = W Z Ql )/Z )

where Q(N) = 27V/2/T(N/2) is the surface area of the N-dimensional unit sphere, and
M =20+ N —2)({+ N —3)!/(N — 3)!. Therefore eq. (15) becomes

62 oo M .
(18) (Vee) = MA2§;W/nm(f21)yem(92)d91dﬂ2

4Z(r +r 1 N—
x/exp {_a((Nl— 1)2)] r{v 17"5[ Yar dry

e? o o 4Z(r +1ra)] 1
LY N-14 / N-1 _adlrprry)) 1
4meq /0 " & 0 "2 &P a(N—-1) | rs
62 o0 1 T1 o0
= A2/ r e dry {/ g tdrge +/ révzdrge’\”] ,
47'(50 0 1 Jo 71

where we put A = —4Z/a(N — 1) and used the orthonormality of hyperspherical har-
monics [39]

(19) / Y (Y ()dAQ = GoprSrmm
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Using tables of integrals [40],

(—1)jx”_j n!
n _ ax axr
(20) /:c e"dr =e E pvES

2 (=

gives us

N-1 ;
Y (-1)(N-1)! N1 (—)N=L(N —1)!
N—-1 Aro ATq J
(21) /0 ry dree’? = |e E L VTN 1 —j)!rl - N ,

h

NS _CDWV =2 s
3 N2
< NHL(N —2 — j)!

(22) / Y T2 droert? = —A

™1 j:

and

S _1\N-1 —1)!
(23) / PN DA g G R\ L '
0

)\N

Therefore, after some algebra, we get

L™ N1 > No2 A (—1)N_1(N— Dl
— 24 "2dpy = -1
o /0 ry e ro + /r1 r2 T )\NTl (e )

N 2)! Lo
)\r N—-2—j
' Z >\3+1 —yh :

The integration over r, given in eq. (18), is now straightforward with the use of eq. (23)
and the result is

(24)

2 _1)\2N-3 —_9)!
25) (V) = et =) [(N—l)! (1 5v=)
N-2 . .
Jj@2N =3 —j)!
; ;) 22N=2-j(N — 1 —j)!]’

which upon the substitution of A and A becomes

e? 47 1 1
o <) CENEOED) [(N (1= )
2N 3—

The use of eq. (9) and after little manipulations, the above equation takes the form

N—-2
N (Vi) =~y |12 - ,1,Z2N e
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TABLE . — Ground-state energies in different space dimensions.

SAMI M. AL-JABER

N Ely (Vee) Ein |(Vee)/ EZn|
3 —108.800 34 —74.8 0.3125

4 —48.3555 16.6222 —31.7333 0.34374
5 —27.2 9.88125 —17.3187 0.36328
6 —17.408 6.562 —10.846 0.37695
7 —12.0889 4.6809 —7.408 0.3872

8 —8.88163 3.51058 —5.37104 0.39526
9 —6.8 2.7323 —4.06769 0.40181
10 —5.37284 2.188168 —3.18467 0.407264
11 —4.352 1.79259 —2.5594 0.4119
12 —3.5967 1.49588 —2.1008 0.4159
13 —3.0222 1.26755 —1.7546 0.4194
14 —2.5751 1.08802 —1.4871 0.4225
15 —2.2204 0.94428 —1.27611 0.42527

Our result clearly shows the dependence of the contribution of the electron-electron
interaction on the space dimension N. Therefore, using eq. (10), the ground-state energy,
which corresponds to the Hamiltonian H, in N-dimensional space is

32
2 EO + <‘/ee>~

(28) Einy = EVy + (Voo) = [

For the three-dimensional case (N = 3), eq. (27) gives (Vi) = —5EpZ/4 and thus
Ein = 2Z°Ey — 5E¢Z/4, which is an expected result [41]. It is constructive and il-
luminating to compute E?N, (Vee) and Ejn for different values of N. We show these
results in table I, where we used Ey = —13.6eV and Z = 2. It is interesting to calculate
the relative contribution of the electron-electron interaction to the ground-state energy,
namely |(Vee)/E%y|, which we include in the last column of table I.

For comparison purposes, we include in the second column of table I the ground-state
energy without (V.), which decreases as the space dimension N increases. This is due
to the extra repulsive term in the effective potential which arises in dimensions greater
than three, whose role has been emphasized by the present author more than a decade
ago [37]. Furthermore, the results in the third column show that the contribution of
the electron-electron interaction decreases as the space dimension increases. This is so
since, as IV increases, the repulsive extra term in the effective Hamiltonian tries to repel
the electron away from the nucleus and hence the average of 1/r decreases. The fourth
column gives the ground-state energies including the contribution (V,.). The last column
is interesting: It shows that the relative contribution of the electron-electron interaction,
|(Vee)/ EY |, increases as the space dimension increases. In fact, the terms in the curly
bracket in eq. (27) goes to unity as N — oo and thus, eq. (27), with Z = 2, gives

(29) (Vee) = —16Ey /(N — 1)



VARIATIONAL METHOD FOR GROUND-STATE ENERGY OF HELIUM ATOM ETC. 1105
Therefore, with the use of eq. (10), the relative contribution of (V,.) for large N is

(30) Jim (V) /By | = 1/2.

One must notice that though each of (Vi.) and EY) vanishes as N — oo, yet their
limiting ratio equals exactly one half.

4. — Variational method with screening

In this section, we consider the effect of electron screening of the nuclear charge. On
the average, each electron represents a cloud of negative charge which partially shields
the nucleus, so that the second electron sees an effective nuclear charge, Z. Therefore, we
set Z a variational parameter in our variational calculations for the ground-state energies
in different dimensions. We may write the Hamiltonian given in eq. (2) as

—h? e2 (72 Z e (Z-2 Z-2 1
31) H=— (V?+V2) - 4 = .
(31) 2m ( 1t 2) 4reg (7"1 + 7"2) + 4reg ( el * ro + |71 —F2|>

The expectation value of the above Hamiltonian is clearly

(32) (t1) =228 + 22 -2) ¢ )(3)+ .

4dmeg r
where EY, = 4Fy/(N — 1)? is the ground-state energy of a one hydrogen atom in N

dimensions. The expectation value of 1/r in the N-dimensional one-particle hydrogenic
atom with nuclear charge Z is given by [37]

& )" o s

which gives for the ground state (n = 1)

e? 1 e? 4z
34 V= = 27E%,.
(34) dreg <r> drega (N — 1)2 N

(Vee) is given by eq. (27) which can be written as

N-—-2
- J(2N =3 — )l
_ 0 1-N
(35)  (Vee) = —2ZEy [(1-277) — _UZQN“ T

The substitution of eqs. (34) and (35) into eq. (32) yields

(36) (H) = ( — 272487 —27|(1—2'N)

N—-2

J(2N =3 —j)! 0
_1|Z2N 2] _1_j)|]>EN
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TABLE II. — Effective charge Z, ground-state energy with screening, (H) and its deviation and
percentage from that without screening.

N Z (H) (H) — Ein| | BN |100%
3 1.68750 —78.29 3.49 4.665

4 1.65625 —33.16180 1.4285 4.501

5 1.63672 —18.21617 0.89747 5.182

6 1.62300 —11.46373 0.6177 5.695

7 1.61279 —7.86111 0.4531 6.116

8 1.60474 —5.71795 0.3469 6.459

9 1.59819 —4.34216 0.2744 6.747
10 1.59273 —3.40746 0.2228 6.996
11 1.58809 —2.74395 0.18459 7.2125
12 1.58409 —2.25634 0.1555 7.404
13 1.58059 —1.88758 0.1329 7.578
14 1.57749 —1.60205 0.1149 7.7297
15 1.57472 —1.37652 0.10041 7.86817

We minimize (H) with respect to Z by setting %(H ) = 0 which immediately gives

N-2
_ 1 1-N J2N =3 —j)!
(37) Z=2-511-2"") - % _1|ZQNQJ AT

Clearly, the above equation shows that the effective nuclear charge which is seen by
the electron depends on the space dimension N, and for the three-dimensional space
(N = 3) it yields an effective charge Z = 27/16 = 1.6875. With the help of eq. (37), it is
tempting to calculate the effective nuclear charge Z, which minimizes (H), in different
space dimensions. Then eq. (36) can be used to calculate the minimum of (H), which
is just the ground-state energy that includes the screening effect. We also calculate
the contribution of screening, |(H) — F1y|, and its percentage, \%HOO%, to the
ground-state energy. These results are presented in table II.

The results in table IT show that as the space dimension N increases, the effective
charge Z decreases (i.e. screening increases) and the corresponding ground-state energy,
(H), decreases in magnitude (becomes less bound). In addition, comparison of column
three in table II with that in table I shows that the ground-state energy with screening
is more negative than the ground-state energy, F1y, without screening. Furthermore, it
is worth noticing that the ratio |ﬂ| increases as IV increases. It is interesting to
examine the very large N limit: As mentloned earlier, the curly bracket in eq. (27) goes
to unity and thus eq. (37) yields an effective charge Z = 3/2, which upon its substitution
into eq. (36), we get (H) = 18Ey/(N — 1)?. As was shown in the previous section, the
asymptotic behavior of the ground-state energy is E1y = 16Eq /(N —1)? and therefore the
ratio |¢| 1/8 as N — oo, which represents the relative contribution of screening
to the ground state energy of the helium atom in the infinite-dimensional space.
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5. — Conclusions

The variational method has been used to estimate the ground-state energy of an
N-dimensional helium atom. This has been done for two cases: the first without screening
and the second with screening. In the first case, the contribution of the electron-electron
interaction term, (V.), to the ground-state energy, was shown to depend on the space
dimension. Thus the ground-state energy decreases in magnitude (less negative) as N
increases and it asymptotically behaves as 16Ey/N2. Our results also show that the
relative contribution of V. to the ground-state energy E;y increases as N increases and
it approaches a value of one half in the infinite-dimensional space (N — oo) despite
the vanishing limiting value of each of (V,.) and E;y in that limit. In the second case,
the effective nuclear charge, due to electron screening, and its effect on the ground-state
energy, were calculated in different dimensions. The results show that as N increases,
the effective nuclear charge Z decreases (i.e. screening increases) and it approaches the
value 3/2 as N — oo, and the ground-state energy (H) decreases in magnitude and it
behaves asymptotically as 18FEy/N?2. It was also shown that the relative contribution of
screening increases with increasing N and it approaches the value 1/8 as N — oo.
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