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a b s t r a c t

By using the wave function ansatz method, we study the energy
eigenvalues and wave function for any arbitrary m-state in two-
dimensional Schrödinger wave equation with various power inter-
action potentials in constant magnetic and Aharonov–Bohm (AB)
flux fields perpendicular to the plane where the interacting parti-
cles are confined. We calculate the energy levels of some diatomic
molecules in the presence and absence of externalmagnetic andAB
flux fields using different potential models. We found that the ef-
fect of the Aharonov–Bohm field is much as it creates a wider shift
for m ≠ 0 and its influence on m = 0 states is found to be greater
than that of themagnetic field. To show the accuracy of the present
model, a comparison is made with those ones obtained in the ab-
sence of external fields. An extension to 3-dimensional quantum
system have also been presented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is commonly known that the anharmonic and harmonic oscillator potentials play an important
role in the history of molecular and quantum chemistry and have also been used to describe the
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molecular structure and molecules [1,2]. Also, the Kratzer-type potential describing the molecular
vibrations is important in studying the dynamical variables of diatomic molecules [3]. This potential
have a wide applications in various fields of physics and chemistry such as molecular physics,
solid-state physics, chemical physics, quantum chemistry, the molecular dynamics study of linear
diatomic molecules and the theoretical works on the spectral properties of a diatomic molecule
system [4]. Therefore, we found that it is necessary to study the exact bound state solutions of the
two-dimensional (2D) solution of the Schrödinger equation for these potentials under the influence
of external magnetic and Aharonov–Bohm fields.

The 2D hydrogen model was treated as an atomic spectroscopy and used as a simplified model of
the ionization process of the highly excited 3D hydrogen atom by circular-polarized microwaves [5].
The field-free relativistic Coulomb interaction has been studied by many authors by using various
techniques [6–8]. The nonrelativistic H-like atom under the influence of magnetic field has been the
subject of study over the past years [9–11]. In the presence of a lowmagnetic field, the quasi-classical
solution of the Dirac equation has been obtained by factorization method [12]. In the framework of
the variational method, the ground-state Dirac energies and relativistic spinless lowest few states
have been calculated for arbitrary strength values of magnetic field [13,14]. The Klein–Gordon wave
equation was solved exactly for particular values of magnetic field in which the wave function can be
expressed in closed analytical form [15]. The polynomial solutions of the Schrödinger equation was
obtained for the ground-state and a few first excited states of 2D hydrogenic atoms for particular val-
ues of the magnetic field strength perpendicular to the plane of transversal motion of the electron
using a relativistic wave function [16]. Recently, within the framework of power-series solutions, the
Klein–Gordon and Dirac equations have been solved for the 2D hydrogen-like systems when an arbi-
trary external magnetic field is applied [17]. For particular values of magnetic field B, it is found that
the exact polynomial solutions can be found using the well-known methods in literature [15,18–22].

Recently, the spectral properties in a 2D charged particle (electron or hole) confined by a PHO
potential in the presence of external strong uniform magnetic field

−→
B along the z direction and

Aharonov–Bohm (AB) flux field created by a solenoid have been studied. The Schrödinger equation is
solved exactly for its bound states (energy spectrum and wave functions) [23,24]. So, it is natural that
the relativistic effects for a charged particle under the action of this potential could become important,
especially for a strong coupling. Within this annals, we have also studied the exact analytical bound
state energy eigenvalues and normalized wave functions of the spinless relativistic equation with
equal scalar and vector pseudo-harmonic interaction under the effect of external uniform magnetic
field and AB flux field in the framework of the NU method [25]. Robnik and Romanovsky [26]
studied the Schrödinger equation of the hydrogen atom in a strong magnetic field in 2D. Setare and
Hatami [27] considered the exact solutions of the Dirac equation for an electron in a magnetic field
with shape invariant method. Villalba [28] analyzed the relativistic Dirac electron in the presence of a
combination of a Coulomb field, a 1/r scalar potential as well as the Dirac magnetic monopole and an
Aharonov–Bohm potential using the algebraic method of separation of variables. Schmid-Burrgh and
Gail [29] solved the stationary Dirac equation for an electron embedded in a uniform magnetic field
and in an electrostatic potential periodic along the field lines. The eigenvalues andwidth of the lowest
band gap are calculated. Kościk and Okopińska have studied quasi exact solutions for two interacting
electrons via Coulombic force and confined in an anisotropic harmonic oscillator in 2D anisotropic
dot [30]. An ansatz for wave function has been applied to obtain the D-dimensional solutions of radial
Schrödinger equation with some anharmonic potentials [31].

Recently, the 2D solution of the Schrödinger equation for the Kratzer potential with and with-
out the presence of a constant magnetic field has been studied for the first time within the frame-
work of the asymptotic iteration method (AIM) [32]. Effect of constant magnetic field on the
energy eigenvalues of a particlemoving under the Kratzer potential was precisely presented by Aygun
et al. [32]. Furthermore, we have studied the spectral properties of the quantum dots by solving the
Schrödinger equation for the anharmonic oscillator potential and superposition of pseudoharmonic-
linear-Coulomb potential in presence/absence of external uniform magnetic and AB flux fields in the
framework of the Nikiforov–Uvarov (NU) method and analytical exact iteration method (AEIM) [33].
Also, we have studied the effect of these external fields on the energy states and wave functions of a
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spinless particle with the Cornell (linear-plus-Coulomb) and Killingbeck (Cornell-plus-harmonic os-
cillator) potentials, respectively [34]. Very recently, we solved the Dirac equation for the anharmonic
oscillator potential under the influence of the external magnetic and AB flux fields and obtained the
relativistic energy states [35]. The two-dimensional solution of the spinless Klein–Gordon (KG) equa-
tion for scalar–vector harmonic oscillator potentials with and without the presence of constant per-
pendicular magnetic and Aharonov–Bohm (AB) flux fields has been studied within the asymptotic
function analysis and NU method [36] and via Laplace transform method [37].

The aim of this work is to extend the works in [33–35] and solve the Schrödinger equation for a
general form of potential models in the presence of external magnetic and AB flux fields. This work
can be considered as a unified treatment in studying some molecular potentials which find their di-
rect application in molecular physics and chemistry like the diatomic molecules. By using the quasi-
exact solutions, we carry out detailed exact 2D and 3D energetic spectrum and wave functions of the
Schrödinger equation with a general form of potential models including the well-known molecular
interactions in the presence of two external magnetic and Aharonov–Bohm (AB) flux fields. For ex-
ample, our investigation includes several molecular potentials used to study diatomic molecules such
as the pseudo-harmonic interaction, harmonic oscillator, the generalized Kratzer potential, modified
Kratzer potential and Mie-type potential.

The outline of our paper is as follows. In Section 2, we give the quasi exact solutions of the 2D
Schrödinger equation with a general scalar radial potential form V (r) and vector potential

−→
A under

the influence of external magnetic and AB flux fields. In Section 3, the calculations within the quasi
exact solution are obtained for various molecular potentials to obtain the closed analytical energy
spectrum and wave functions under external fields and the comparison with exact results is given
when fields become zero. Finally, the paper ends with concluding remarks in Section 4.

2. Exact solution to a general potential form under external fields

Consider a 2D charged particles with charge e and effective mass µ interacting via a radially
symmetrical interaction potential V (r, φ) under the influence of external uniform magnetic field,
−→
B = Bz and an AB flux field, applied simultaneously. Since we are taking the Hamiltonian in 2D,
its adequate to study the system in polar coordinates (r, φ)within the plane. Hence, the Schrödinger
equation with a vector potential

−→
A and repulsive interaction potential V (r, φ) can be written as

1
2µ


−→p +

e
c
−→
A
2

+ V (r)

ψ(r, φ) = Eψ(r, φ), (1)

with the 2D cylindrical wave function

ψ(r, φ) =
1

√
2π

eimφu(r), m = 0,±1,±2, . . . , (2)

and m is the magnetic quantum number (the eigenvalue of angular momentum). For the solution of
Eq. (1), we take the potential V (r, φ) as radial scalar power form [22,23]

V (r) = ar2 + br + d −
g
r

+
k
r2
, (3)

and the vector potential
−→
A may be represented as a sum of two terms,

−→
A =

−→
A 1 +

−→
A 2 such that

−→
∇ ×

−→
A 1 =

−→
B and

−→
∇ ×

−→
A 2 = 0, where

−→
B = Bz is the applied magnetic field, and

−→
A 2 describes

the additional magnetic fluxΦAB created by a solenoid. Hence, the vector potentials in the symmetric
gauge have the following azimuthal components [24]

−→
A 1 =

1
2
−→
B ×

−→r =
Br
2
φ, −→

A 2 =
ΦAB

2πr
φ, −→

A =


Br
2

+
ΦAB

2πr

φ. (4)
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Substituting the wave function (2) into the Schrödinger equation (1), we obtain a second-order
differential equation satisfying the radial part of the wave function; namely u(r),

d2u(r)
dr2

+
1
r
du(r)
dr

+


−ε2 −

β2

r2
− γ 2r2 +

g ′

r
− b′r


u(r) = 0, (5)

with

−ε2 = E ′
− d′

−
µωc

h̄
m′, (6a)

β2
= k′

+ m′2, (6b)

γ 2
= a′

+


µωc

2h̄

2

, (6c)

g ′
=

2µ
h̄2 g, b′

=
2µ
h̄2 b, E ′

=
2µ
h̄2 E, d′

=
2µ
h̄2 d,

k′
=

2µ
h̄2 k, a′

=
2µ
h̄2 a

(6d)

and

ξ =
ΦAB

Φ0
, Φ0 =

hc
e
, ωc =

eB
µc
, m′

= m + ξ . (7)

Note that ξ is taken as integer with the flux quantum Φ0 and ωc is the cyclotron frequency. The
magnetic quantum number (the eigenvalue of angular momentum) m relates to the new quantum
number |β| (Eq. (6b)). For this system, only two independent integer quantum numbers are required.
In addition, the radial wave function u(r) must satisfy the asymptotic behaviors, that is, u(0) → 0
and u(∞) → 0. To make the coefficient of the first derivative vanish in Eq. (5), we may define radial
wave function R(r) by means of the equation

u(r) = r−1/2R(r), (8)

which will lead to the radial wave function R(r) satisfying

d2R(r)
dr2

+


−ε2 − γ 2r2 +

g ′

r
− b′r −


β2

− 1/4


r2


R(r) = 0. (9)

To solve the above radial differential equation for β ≠ 0, we first investigate the asymptotic behavior
of R(r). First inspection of Eq. (9) shows that when r approaches 0, the asymptotic solution R0(r) of
Eq. (9) satisfies the differential equation

d2R0(r)
dr2

−


β2

− 1/4


r2
R0(r) = 0, (10)

which assumes the solution R0(r) = c1rβ+1/2
+ c2r−(β+1/2), where c1 and c2 are two constants. The

term r−(β+1/2) is not a satisfactory solution because it becomes infinite as r → 0 but the term rβ+1/2

is well behaved. Meanwhile, as r approaches ∞, the asymptotic solution R∞(r) of Eq. (9) gives the
differential equation

d2R∞(r)
dr2

−

b′r + γ 2r2


R∞(r) = 0, (11)

which yields the solution R∞(r) = c3 exp [g(p, q, r)], where g(b′, γ 2, r) = −b′r − γ 2r2 is an accept-
able physical solution since the solution becomes finite as r → ∞. Consequently, this asymptotic
behavior of R(r) suggests we take an ansatz for the radial wave function [31]

R(r) = rβ+1/2 exp [g(p, q, r)] F(r), (12)
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with

g(p, q, r) = qr +
1
2
pr2, q < 0, p < 0 (13a)

F(r) =


n=0

anrn. (13b)

Substituting Eq. (12) into Eq. (9) and equating the coefficients of rn+β+1/2 to zero, we can obtain the
following recurrence relation,

Anan + Bn+1an+1 + Cn+2an+2 = 0, (14)

where

An = −ε2 + q2 + 2p (n + β + 1) , (15a)

Bn = g ′
+ q (2n + 2β + 1) , (15b)

Cn = n (n + 2β) , (15c)

and

p2 = γ 2, (16a)

2pq = b′. (16b)

It is shown from Eq. (16) that the values of the parameters for g(p, q, r) can be evaluated as

p = ±γ , q =
b′

2p
. (17)

To retain awell-behaved solution at the origin and at∞, we choose p = −γ which enables us towrite
q = −b′/(2γ ). On the other hand, for a given s, if as ≠ 0 but as+1 = as+2 = as+3 = · · · = 0, where
s is the degree of polynomial (s = 0, 1, 2, . . .), we then impose the condition As = 0 from Eq. (14),
i.e., from which we can obtain the eigenvalue equation

ε2 = q2 + 2p (s + β + 1) , (18)

which can establish the relationship between energies, parameters of the potential and the two fields
strength B and ξ . Substituting the values of the parameters defined in (6) into (18) and by using p and
q obtained from (17) we may rewrite the energy eigenvalues of the power potential as

Enm′ = d +
1
2
h̄m′ωc +

h̄2

2µ


8µa
h̄2 +


µωc

h̄

2

s + 1 +


2µk
h̄2 + m′2


−

2µb2/ h̄2
8µa
h̄2

+


µωc
h̄

2 .
Following [31,32], the parameters An, Bn and Cn must satisfy the determinant relation for a nontrivial
solution:

det


B0 C1 · · · · · · · · · 0
A0 B1 C2 · · · · · · 0
...

...
...

. . .
...

...
0 0 0 0 As−1 Bs

 = 0. (19)

Note that Eq. (19) leads to the restriction for the flux quantum Φ0 and the cyclotron frequency ωc if
all other parameters of the model are fixed. However, Eq. (18) allows for calculating the energies for
these particularΦ0 and ωc .

As an example, the exact solution for s = 0, 1 is demonstrated below.
(1) For the simplest polynomial solution (s = 0), we can obtain from Eq. (18)

ε20 = −2γ (β + 1)+
µ2b2

h̄4 γ 2
. (20)
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On the other hand, it is shown from Eq. (19) that B0 = 0, which leads to the following restriction on
the parameters of the potential and β:

q = −
g ′

(2β + 1)
, (21)

and the energy formula can be obtained by substituting Eqs. (6b), (6d) and (17) into Eq. (21)

b =
γ

1
2 +


2µ
h̄2

k + m′2
g. (22)

The explicit form of the ground state energy is

E(m
′)

0 = d +
1
2
h̄m′ωc +

h̄2

µ


µωc

2h̄

2

+
2µ
h̄2 a


1 +


m′2 +

2µ
h̄2 k



−
µ

2 h̄2

b2
2µ
h̄2

a +


µωc
2h̄

2 . (23)

The eigenfunction for s = 0 can be written as

ψ0(r, φ) =
1

√
2π

a0r


m′2+ 2µ

h̄2
k
exp

−
1
2

 2µb

h̄2


2µ
h̄2

a +


µωc
2h̄

21/2 r + γ r2


 eimφ, (24)

where a0 is an expansion constant.
(2) When s = 1, the eigenvalue from Eq. (18) becomes

ε21 = −2γ (β + 2)+
µ2b2

h̄4 γ 2
,

and with the aid of Eq. (6) it reads

E(m
′)

1 = d +
1
2
h̄m′ωc +

h̄2

µ


µωc

2h̄

2

+
2µ
h̄2 a


2 +


m′2 +

2µ
h̄2 k



−
µ

2 h̄2

b2
2µ
h̄2

a +


µωc
2h̄

2 . (25)

Moreover, it is shown from Eq. (19) that B0B1 − A0C1 = 0 which provides the restriction on the
parameters:

g ′
−

b′

2γ
(2β + 1)

 
g ′

−
b′

2γ
(2β + 3)


= 2γ (2β + 1) ,

or alternatively

g =
b
γ
(β + 1)±

h̄2

4µ


µ2

h̄4

b2

γ 2
+ 2γ (2β + 1). (26)
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The corresponding wave function can be written as

ψ1(r, φ) =
1

√
2π

(a0 + a1r) r


m′2+ 2µ

h̄2
k

× exp

−
1
2

 2µb

h̄2


2µ
h̄2

a +


µωc
2h̄

21/2 r + γ r2


 eimφ, (27)

where a0 and a1 are expansion constants.
Following this way, we can obtain a class of exact solutions through taking s = 0, 1, 2, . . . etc. We

obtain the energy levels from Eq. (18) with the aid of Eq. (6) as

Enm′ = d +
1
2
h̄m′ωc +

h̄2

µ


µωc

2h̄

2

+
2µ
h̄2 a


n + 1 +


m′2 +

2µ
h̄2 k



−
µ

2 h̄2

b2
2µ
h̄2

a +


µωc
2h̄

2 , (28)

and the wave function can be obtained from Eqs. (2), (8), (12) and (13) as

ψ(r, φ) =
1

√
2π

eimφ exp

−
1
2

 2µb

h̄2


2µ
h̄2

a +


µωc
2h̄

21/2 r + γ r2




×


n=0

anr
n+

m′2+ 2µ

h̄2
k
, (29)

where an (n = 0, 1, 2, . . . , s) are expansion constants.Wehave one set of quantumnumbers (n,m, β)
for particle. Therefore, expression (24) for the energy levels of the electron may be readily used for
studying the thermodynamics properties of quantum structures when the magnetic field turns on or
off.

There is a corresponding relationship between 2D and 3D obtained by making a replacement
m = l + 1/2. Therefore, the bound state energy levels and wave function in 3D have the new forms:

Enl = d +
h̄2

µ


2µ
h̄2 a

n + 1 +


l +

1
2

2

+
2µ
h̄2 k


−

µ

2 h̄2

g2
n +

1
2 +


l + 1

2

2
+

2µ
h̄2

k
2 , (30)

ψ(r, θ, φ) = exp

−
1
2

 2µg
n +

1
2 +


l + 1

2

2
+

2µ
h̄2

k

h̄2

r + γ r2




×


n=0

anr
n+


l+ 1

2

2
+

2µ
h̄2

k
Ylm(θ, φ), (31)
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respectively, where Ylm(θ, φ) is the spherical harmonic function with angular momentum quantum
numbers being l and m.

3. Applications

The structure of molecules is more complex than atoms, however, we may assume that the ratio
of the molecular mass to electron mass to be large, which implies that the energy associated with
the motion of the nuclei is much smaller than that associated with the motion of the electrons
around the nuclei. Hence, this simplification is the basis of all molecular approximations. It is a
good approximation to assume the nuclei to have stable equilibrium arrangement between collapsed
structure and dispersed structure while studying the electronic motion. This nuclear structure can
be divided into translations and rotations of the quasi-rigid equilibrium arrangement and internal
vibrations of the nuclei about equilibrium, the translational motion does not give rise to non-
classical features. Thus, the molecular energy levels and wave functions are classified into electronic,
vibrational and rotational types [38].

The nuclei in diatomic molecules in general have masses m1 and m2 and their relative position
vector −→r and cylindrical coordinates r, φ, z or spherical coordinates r, θ, φ.

We apply our results obtained in the previous section to a class of molecular potentials which
includes the pseudo-harmonic interaction, the harmonic oscillator, the generalized Kratzer potential,
the modified Kratzer potential and the Mie-type potential. Such potentials are reasonably behaved
for both small and large internuclear separations. This set of potential models provides a reasonable
description of the rotating diatomic molecules and also will be useful in discussing long amplitude
vibrations in large molecules. We will find the energy levels and wave functions of a rotating
diatomicmolecules in 2D spacewhen applying themagnetic field and also 3D spacewithoutmagnetic
field.

3.1. The pseudoharmonic oscillator

The pseudoharmonic oscillator is an important model not only in classical physics, but also in
quantum physics. In non-relativistic quantum mechanics, many authors have adequately studied
the problem of the pseudoharmonic oscillator [35,38–40]. It has been studied in 3D [35] using the
polynomial solutionmethod, in 2D [40] using the Nikiforov–Uvarovmethod and inD-dimensions [20]
using an ansatz for the wave function. It has the following form [39–42]

V (r) = De


r
re

−
re
r

2

, (32)

which can be simply rewritten in the form of isotropic harmonic oscillator plus square inverse
potential

V (r) = ar2 +
k
r2

+ d, a, k > 0, (33)

where a = Der−2
e , k = Der2e and d = −2De. Therefore, the energy formula and wave function from

(28) and (29) become

Enm′ = −2De + h̄Ω

n +

|β| + 1
2


+

1
2
h̄m′ωc, Ω =


ω2

c + 4ω2
D, (34)

ψ(r, φ) =
1

√
2π

eimφ exp

−
1
2


µωc

2h̄

2

+
2µDe

h̄2 r2e
r2


n=0

anr
2n+


m′2+

2µDer2e
h̄2 , (35)

where |β| =


m′2 +

2µDer2e
h̄2

and ωD =

2De/µr2e . This is identical to Refs. [23,25,42] for the nonrel-

ativistic pseudo-harmonic in an external uniformmagnetic and AB flux fields. Further, in the absence
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Table 1
The rovibrational energy levels of the harmonic oscillator for NO, CO, N2 and CH diatomic molecules with various vibrational n
and rotational l quantum states for D = 3.

n l E(NO)nl (eV) Ref. [39] E(CO)nl (eV) Ref. [39] E(N2)
nl (eV) Ref. [39] E(CH)nl (eV) Ref. [39]

0 0 0.08251026 0.0824883 0.10195779 0.1019306 0.10918501 0.1091559 0.16867933 0.1686344
1 0 0.24742511 0.2473592 0.30575368 0.3056722 0.32743034 0.3273430 0.50514181 0.5050072
1 1 0.24784775 0.2477817 0.30623238 0.3061508 0.32792905 0.3278417 0.50872564 0.5085903
2 0 0.41233997 0.4122301 0.50954957 0.5094137 0.54567566 0.5455302 0.84160429 0.8413800
2 1 0.41276261 0.4126526 0.51002827 0.5098923 0.54617437 0.5460288 0.84518812 0.8449631
2 2 0.41360783 0.4134977 0.51098564 0.5108495 0.54717177 0.5470260 0.85235089 0.8521246
3 0 0.57725482 0.71334546 0.76392098 1.17806677
3 1 0.57767747 0.71382416 0.76441969 1.18165060
3 2 0.57852269 0.71478153 0.76541710 1.18881337
3 3 0.57979045 0.71621750 0.76691313 1.19954539
4 0 0.74216968 0.7419718 0.91714135 0.9168969 0.98216631 0.9819045 1.51452925 1.5141255
4 1 0.74259232 0.7423944 0.91762005 0.9173755 0.98266502 0.9824031 1.51811307 1.5177087
4 2 0.74343754 0.7432395 0.91857742 0.9183327 0.98366242 0.9834003 1.52527585 1.5248701
4 3 0.74470531 0.7445070 0.92001339 0.9197684 0.98515845 0.9848961 1.53600786 1.5356002
4 4 0.74639552 0.7461969 0.92192787 0.9216825 0.98715302 0.9868903 1.55029463 1.5498843
5 0 0.90708453 0.9068427 1.12093724 1.1206384 1.20041163 1.2000916 1.85099173 1.8504983
5 1 0.90750718 0.9072653 1.12141594 1.1211170 1.20091034 1.2005902 1.85457555 1.8540615
5 2 0.90835240 0.9081104 1.12237331 1.1220742 1.20190774 1.2015875 1.86173833 1.8612429
5 3 0.90962017 0.9093779 1.12380928 1.1235099 1.20340377 1.2030832 1.87247034 1.8719729
5 4 0.91131038 0.9110678 1.12572376 1.1254240 1.20539834 1.2050774 1.88675711 1.8862571
5 5 0.91342289 0.9131799 1.12811660 1.1278165 1.20789131 1.2075699 1.90457946 1.9040761

of the external fields, i.e., B = ΦAB = 0, we further obtain,

Enm = −2De +
h̄
re


2De

µ

2n + 1 +


m2 +

2µDer2e
h̄2

 , (36)

ψ(r, φ) = Bnm
1

√
2π

eimφ exp


−

1
2


2µDe

h̄2 r2e
r2


n=0

anr
2n+


m2+

2µDer2e
h̄2 , (37)

and reduces to 3D space if one replacesm by l + 1/2 as

Enl = −2De +
h̄
re


2De

µ

2n + 1 +


l +

1
2

2

+
2µDer2e

h̄2

 , (38)

which is identical to Eq. (15) of Ref. [39].
In our numerical work, we estimate the non-relativistic binding energy levels of the pseudo-

harmonic potential for NO, CO, N2 and CHdiatomicmoleculeswith various vibrational n and rotational
l quantum numbers, using Eq. (38) in 3D space, with the potential parameter values given in Ref. [38].
We display our results in Table 1 and compare themwith Ref. [39]. Further, the energy levels of these
diatomic molecules for any arbitrary quantum numbers n andm obtained through Eq. (34) under the
external magnetic field B and AB flux field ξ of different strength values. The results are displayed in
Table 2 for N2 and CH molecules. It is noticed from Table 2 that the magnetic field strength B ≠ 0
has a very small effect on the energy levels when the magnetic quantum number m = 0. However,
it has a greater effect on the energy levels when m ≠ 0; leading to a significant splitting to the two
degenerate states m = 1 and m = −1. Therefore, we conclude that only the strong magnetic fields
have impact on the m = 0. However, the magnetic field of any strength has greater effect on the
magnetic quantum number m ≠ 0. When we set B = 0 and ξ ≠ 0, the Aharonov–Bohm field of any
strength has greater influence on the energy levels for anym value. It removes the degeneracy on the
m = 1 andm = −1 and splitting them up and down, respectively. The application of a magnetic field
of constant strength and at the same time increasing the strength of AB field leads to an interchange
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Table 2
The rovibrational energy levels of the pseudoharmonic oscillator for N2 and CH diatomic molecules with various n and m
quantum states for D = 2 in the presence and absence of external magnetic field, B and AB flux field, ξ .

Enm (eV) N2

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 0.10912268 0.10912268 0.10912271 0.10912275
1 0 0.32736800 0.32736800 0.32736804 0.32736807

1 0.32761735 0.32762019 0.32762307 0.32762595
−1 0.32761735 0.32761451 0.32761169 0.32760889

2 0 0.54561333 0.54561333 0.54561336 0.54561340
1 0.54586267 0.54586551 0.54586840 0.54587127

−1 0.54586267 0.54585983 0.54585702 0.54585421
3 0 0.76385865 0.76385865 0.76385869 0.76385872

1 0.76410800 0.76411084 0.76411372 0.76411659
−1 0.76410800 0.76410516 0.76410234 0.76409953

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 0.10912268 0.10937203 0.11012011 0.11136681
1 0 0.32736800 0.32761735 0.32836543 0.32961213

1 0.32761735 0.32836543 0.32961213 0.33135744
−1 0.32761735 0.32736800 0.32761735 0.32836543

2 0 0.54561333 0.54586267 0.54661075 0.54785746
1 0.54586267 0.54661075 0.54785746 0.54960277

−1 0.54586267 0.54561333 0.54586267 0.54661075
3 0 0.76385865 0.76410800 0.76485608 0.76610278

1 0.76410800 0.76485608 0.76610278 0.76784809
−1 0.76410800 0.76385865 0.76410800 0.76485608

Enm (eV) CH

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 0.16823124 0.16823130 0.16823150 0.16823182
1 0 0.50469372 0.50469378 0.50469399 0.50469433

1 0.50648593 0.50650742 0.50652905 0.50655081
−1 0.50648593 0.50646458 0.50644336 0.50642228

2 0 0.84115620 0.84115627 0.84115648 0.84115683
1 0.84294841 0.84296991 0.84299154 0.84301332

−1 0.84294841 0.84292706 0.84290585 0.84288478
3 0 1.17761867 1.17761875 1.17761897 1.17761934

1 1.17941089 1.17943239 1.17945403 1.17947582
−1 1.17941089 1.17938954 1.17936834 1.17934729

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 0.16823124 0.17002346 0.17539767 0.18434658
1 0 0.50469372 0.50648593 0.51186015 0.52080906

1 0.50648593 0.51186015 0.52080906 0.53332056
−1 0.50648593 0.50469372 0.50648593 0.51186015

2 0 0.84115620 0.84294841 0.84832263 0.85727154
1 0.84294841 0.84832263 0.85727154 0.86978304

−1 0.84294841 0.84115620 0.84294841 0.84832263
3 0 1.17761867 1.17941089 1.18478511 1.19373402

1 1.17941089 1.18478511 1.19373402 1.20624552
−1 1.17941089 1.17761867 1.17941089 1.18478511

in the energy levels for m = 0 to become the energy level of m = −1 and the energy of the state
m = 1 becomes the energy of the statem = 0.

3.2. The harmonic oscillator

For an isotropic harmonic oscillator with angular frequency ω, the potential function is given
by [43]

V (r) =
1
2
κr2, κ = µω2. (39)
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Hence, the energy spectrum formula and wave function become

Enm′ = h̄

ω2

c + 4ω2


n +

1 + m′

2


+

1
2
h̄m′ωc, (40)

ψ(r, φ) =
1

√
2π

eimφ exp

−
1
2


µωc

2h̄

2

+
2µDe

h̄2 r2e
r2


n=0

anr2n+m′

. (41)

This is identical to Refs. [23,25] for the nonrelativistic harmonic oscillator in an external uniform
magnetic and AB flux fields. Furthermore, when the fields B = ΦAB = 0, we can obtain,

Enm = h̄ω (2n + 1 + m) , (42)

ψ(r, φ) =
1

√
2π

eimφ exp

−
µω

2h̄
r2


n=0

anr2n+m. (43)

In 3D, the energy formula becomes Enl = h̄ω

2n + l + 3

2


.

3.3. Generalized Kratzer potential

The generalized Kratzer potential is given by

V (r) = De


r − re

r

2

+ η, (44)

where re is the equilibrium separation and De is the dissociation energy between diatomic molecules.
In the case if η = 0, this potential reduces to the modified Kratzer potential proposed by Simons
et al. [44] and by Molski and Konarski [45]. The modified Kratzer potential is usually used in
applications on the molecular spectroscopies. Plíva [46] has demonstrated that the deficiencies of
rovibrational energy spectrum based on modified Kratzer potential can be substituted by including
correction terms dependent on the vibrational and rotational quantum numbers n and l, respectively.
In the case if η = −De, this potential turns to become the Kratzer potential consisting from the
attractive Coulomb potential plus repulsive inverse square potential [47]. Nowwewant to obtain a 2D
energy formula and wave function in the presence of the generalized Kratzer potential and magnetic
field and AB flux field. So we set the parameters values a = b = 0, d = De + η, g = 2reDe and
k = r2e De and use Eqs. (28) and (29) to obtain

Enm′ =
h̄ωc

2

m′
+

n + 1 +


2µr2e De

h̄2 + m′2


−

2µr2e D
2
e

h̄2

n +
1
2

+


2µr2e De

h̄2 + m′2

−2

+ De + η, (45)

and

ψ(r, φ) = exp

−
2µreDe

h̄2

n +
1
2

+


2µr2e De

h̄2 + m′2

−1

r −
µωc

4h̄
r2


×


n=0

anr
n+


2µr2e De

h̄2
+m′2 1

√
2π

eimφ, (46)
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Table 3
The rovibrational energy levels of the Kratzer–Fues potential for N2 and CH diatomic
molecules with various vibrational n and rotational l quantum states for D = 3.

−Enm (eV)

n m N2 CH

0 0 11.88375702 3.86419448
1 0 11.77611669 3.70626716
1 1 11.77562811 3.70300883
2 0 11.66993223 3.55782724
2 1 11.66945025 3.55476264
2 2 11.66848639 3.54864946
3 0 11.56517751 3.41812972
3 1 11.56470201 3.41524380
3 2 11.56375110 3.40948682
3 3 11.56232502 3.40088832
4 0 11.46182698 3.28650134
4 1 11.46135783 3.28378047
4 2 11.46041964 3.27835254
4 3 11.45901264 3.27024501
4 4 11.45713719 3.25949862
5 0 11.35985565 3.16233240
5 1 11.35939275 3.15976423
5 2 11.35846705 3.15464074
5 3 11.35707878 3.14698750
5 4 11.35522830 3.13684243
5 5 11.35291603 3.12425536

respectively. Further, when we set B = 0 andΦAB = 0, we obtain

Enm = −
2µr2e D

2
e

h̄2

n +
1
2

+


2µr2e De

h̄2 + m2

−2

+ De + η, (47)

and

ψ(r, φ) = exp

−
2µreDe

n +
1
2 +


2µr2e De

h̄2
+ m2


h̄2

r


n=0

anr
n+


2µr2e De

h̄2
+m2 1

√
2π

eimφ . (48)

The 3D non-relativistic energy solutions are obtained by settingm = l+ 1/2 where l is the rotational
quantum number, in Eq. (47) to obtain

Enl = −
8µr2e D

2
e

h̄2

1 + 2n +


8µr2e De

h̄2 + (2l + 1)2

−2

+ De + η, n = 0, 1, 2, . . . (49)

where l = 0, 1, 2, . . . is the rotational quantum number. Note that Eq. (49) is identical to Eq. (36) of
Ref. [48] when N = 3 and reverts to the rovibrational energy for the Kratzer potential (for η = −De)
studied in [49–51] and to energy for the modified Kratzer potential (for η = 0) studied in [52–54].

In our numerical work, we estimate the non-relativistic binding energy levels of the Kratzer
potential for N2 and CH diatomic molecules with various vibrational n and rotational l quantum
numbers in 3D space, with the potential parameter values given in Ref. [38] to see the accuracy of our
solution. Our results are displayed in Table 3 and compared with the ones in Ref. [38]. Furthermore
the energy levels of these diatomicmolecules in the presence of external magnetic field B, and AB flux
field, ξ of different strength valueswith various values of quantumnumbers n andm obtained through
Eq. (45) are presented in Table 4. It is noticed from Table 4 that the magnetic field strength B ≠ 0 has
very small effect on the energy levels when the magnetic quantum number m = 0. However, it has
greater influence on the energy levels when m ≠ 0; it makes splitting to the two degenerate states
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Table 4
The rovibrational energy levels of the Kratzer potential for N2 and CH diatomic molecule with various n andm quantum states
for D = 2 in the presence and absence of external magnetic field, B and AB flux field, ξ .

−Enm (eV) N2

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 11.88381894 11.88371512 11.88361129 11.88350747
1 0 11.77617777 11.77607347 11.77596918 11.77586488

1 11.77593347 11.77582870 11.77572393 11.77561916
−1 11.77593347 11.77582965 11.77572582 11.77562200

2 0 11.66999248 11.66988771 11.66978294 11.66967818
1 11.66975149 11.66964625 11.66954101 11.66943577

−1 11.66975149 11.66964719 11.66954290 11.66943860
3 0 11.56523696 11.56513172 11.56502648 11.56492124

1 11.56499920 11.56489349 11.56478777 11.56468206
−1 11.56499920 11.56489443 11.56478966 11.56468489

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 11.88381894 11.88357129 11.88282838 11.88159041
1 0 11.77617777 11.77593347 11.77520064 11.77397945

1 11.77593347 11.77520064 11.77397945 11.77227022
−1 11.77593347 11.77617777 11.77593347 11.77520064

2 0 11.66999248 11.66975149 11.66902854 11.66782383
1 11.66975149 11.66902854 11.66782383 11.66613766

−1 11.66975149 11.66999248 11.66975149 11.66902854
3 0 11.56523696 11.56499920 11.56428596 11.56309744

1 11.56499920 11.56428596 11.56309744 11.56143392
−1 11.56499920 11.56523696 11.56499920 11.56428596

−Enm (eV) CH

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 3.86462852 3.86445802 3.86428753 3.86411704
1 0 3.70667486 3.70650081 3.70632676 3.70615271

1 3.70504461 3.70486696 3.70468932 3.70451167
−1 3.70504461 3.70487408 3.70470355 3.70453302

2 0 3.55821069 3.55803309 3.55785548 3.55767787
1 3.55667739 3.55649619 3.55631498 3.55613378

−1 3.55667739 3.55650330 3.55632921 3.55615512
3 0 3.41849082 3.41830965 3.41812848 3.41794732

1 3.41704692 3.41686216 3.41667740 3.41649264
−1 3.41704692 3.41686928 3.41669163 3.41651398

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 3.86462852 3.86289297 3.85769569 3.84906466
1 0 3.70667486 3.70504461 3.70016252 3.69205445

1 3.70504461 3.70016252 3.69205445 3.68076315
−1 3.70504461 3.70667486 3.70504461 3.70016252

2 0 3.55821069 3.55667739 3.55208550 3.54445900
1 3.55667739 3.55208550 3.54445900 3.53383747

−1 3.55667739 3.55821069 3.55667739 3.55208550
3 0 3.41849082 3.41704692 3.41272269 3.40554035

1 3.41704692 3.41272269 3.40554035 3.39553666
−1 3.41704692 3.41849082 3.41704692 3.41272269

m = 1 and m = −1. Therefore, we conclude that only strong magnetic fields have impact on the
m = 0. But the magnetic of any strength has greater effect on the magnetic quantum number. When
B = 0 and ξ ≠ 0, the AB field of any strength has greater influence on the energy levels for any
m value. It removes the degeneracy on the m = 1 and m = −1 and splitting them up and down,
respectively. The application of a magnetic field of constant strength and at the same time increasing
the strength of AB field leads to an interchange in the energy levels for m = 0 to become the energy
level ofm = −1 and the energy of the statem = 1 becomes the energy of the statem = 0.0.
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Table 5
The rovibrational energy levels of theMie-type potential for N2 and CH diatomicmoleculewith various n andm quantum states
for D = 2 in the presence and absence of external magnetic field, B and AB flux field, ξ .

−Enm (eV) N2

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 11.88381894 11.88371512 11.88361129 11.88350747
1 0 11.77617777 11.77607347 11.77596918 11.77586488

1 11.77593347 11.77582870 11.77572393 11.77561916
−1 11.77593347 11.77582965 11.77572582 11.77562200

2 0 11.66999248 11.66988771 11.66978294 11.66967818
1 11.66975149 11.66964625 11.66954101 11.66943577

−1 11.66975149 11.66964719 11.66954290 11.66943860
3 0 11.56523696 11.56513172 11.56502648 11.56492124

1 11.56499920 11.56489349 11.56478777 11.56468206
−1 11.56499920 11.56489443 11.56478966 11.56468489

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 11.88381894 11.88357129 11.88282838 11.88159041
1 0 11.77617777 11.77593347 11.77520064 11.77397945

1 11.77593347 11.77520064 11.77397945 11.77227022
−1 11.77593347 11.77617777 11.77593347 11.77520064

2 0 11.66999248 11.66975149 11.66902854 11.66782383
1 11.66975149 11.66902854 11.66782383 11.66613766

−1 11.66975149 11.66999248 11.66975149 11.66902854
3 0 11.56523696 11.56499920 11.56428596 11.56309744

1 11.56499920 11.56428596 11.56309744 11.56143392
−1 11.56499920 11.56523696 11.56499920 11.56428596

−Enm (eV) CH

n m Enm(ξ = 0, B = 0) Enm(ξ = 0, B = 1) Enm(ξ = 0, B = 2) Enm(ξ = 0, B = 3)

0 0 3.86462852 3.86445802 3.86428753 3.86428753
1 0 3.70667486 3.70650081 3.70632676 3.70632676

1 3.70504461 3.70486696 3.70468932 3.70468932
−1 3.70504461 3.70487408 3.70470355 3.70470355

2 0 3.55821069 3.55803309 3.55785548 3.55785548
1 3.55667739 3.55649619 3.55631498 3.55631498

−1 3.55667739 3.55650330 3.55632921 3.55632921
3 0 3.41849082 3.41830965 3.41812848 3.41812848

1 3.41704692 3.41686216 3.41667740 3.41667740
−1 3.41704692 3.41686928 3.41669163 3.41669163

n m Enm(ξ = 0, B = 0) Enm(ξ = 1, B = 0) Enm(ξ = 2, B = 0) Enm(ξ = 3, B = 0)

0 0 3.86462852 3.86289297 3.85769569 3.84906466
1 0 3.70667486 3.70504461 3.70016252 3.69205445

1 3.70504461 3.70016252 3.69205445 3.68076315
−1 3.70504461 3.70667486 3.70504461 3.70016252

2 0 3.55821069 3.55667739 3.55208550 3.54445900
1 3.55667739 3.55208550 3.54445900 3.53383747

−1 3.55667739 3.55821069 3.55667739 3.55208550
3 0 3.41849082 3.41704692 3.41272269 3.40554035

1 3.41704692 3.41272269 3.40554035 3.39553666
−1 3.41704692 3.41849082 3.41704692 3.41272269

3.4. The Mie-type potentials

This potential has been studied in the D dimensions using the polynomial solution and the ansatz
wave function method [55,2]. The Mie-type potential has the form [55]

V (r) = De


k

j − k

 re
r

j
−

j
j − k

 re
r

k
, j > k, (50)
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where the parameter De determines the interaction energy between two atoms in a solid at r = re.
Taking j = 2k and further setting k = 1, the potential reduces to the Coulombic-type form [56–60]

V (r) = 2De


1
2

 re
r

2
−

re
r


. (51)

Now when taking a = b = d = 0, g = 2reDe and k = r2e De and using Eqs. (28) and (29) to obtain

Enm′ =
h̄ωc

2

m′
+

n + 1 +


m′2 +

2µr2e De

h̄2


−

2µr2e D
2
e

h̄2

n +
1
2

+


m′2 +

2µr2e De

h̄2

−2

, (52)

and

ψ(r, φ) = exp

−
2µreDe

h̄2

n +
1
2

+


m′2 +

2µr2e De

h̄2

−1

r −
µωc

4h̄
r2


×


n=0

anr
n+


m′2+

2µr2e De
h̄2

1
√
2π

eimφ, (53)

respectively. After setting B = 0 andΦAB = 0, we obtain

Enm = −
2µr2e D

2
e

h̄2

n +
1
2

+


m2 +

2µr2e De

h̄2

−2

, (54)

and

ψ(r⃗, φ) = exp

−
2µreDe

h̄2

n +
1
2

+


m2 +

2µr2e De

h̄2

−1

r


×


n=0

anr
n+


m2+

2µr2e De
h̄2

1
√
2π

eimφ . (55)

The 3D non-relativistic energy solutions for Mie-type potential are obtained by setting m = l + 1/2
where l is the rotational quantum number to obtain

Enl = −
2µr2e D

2
e

h̄2

n +
1
2

+


2µr2e De

h̄2 +


l +

1
2

2
−2

,

n = 0, 1, 2, . . . , l = 0, 1, 2, . . . (56)

which is identical to Eq. (30) of Ref. [44]whenD = 3. In Table 5, for theN2 and CHmolecules, when the
AB flux field is set to zero and the magnetic field strength increases this result to slightly decreasing
of the energy values. However its also noticed that the energy level is shifted (split) slightly up for
m = −1 whereas shifted down for m = 1. On the other hand when B is set to zero and the AB flux
field changed, this flux field has a similar influence on the energy states as the magnetic field change
in step 1.
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4. Concluding remarks

In this paper, we have carried out analysis for the 2D Schrödinger equationwith a specific potential
function in the presence of external uniform magnetic

−→
B and AB flux ΦAB fields by using an appro-

priate wave function ansatz. The restrictions on the potential parameters and β have been given. The
problem is then solved in 2D space and the bound state energy solutions are found under the influ-
ence of external magnetic and AB flux fields. The 3D bound state energy levels and wave functions
are obtained in closed form to show the accuracy of the present model. As an application, we applied
the energy formula on the pseudo-harmonic, harmonic, generalized Kratzer, Mie-type and Coulombic
potentials models for various strength of external uniform magnetic and AB flux fields. The exter-
nal fields produce splitting in the energy levels which is essentially dependent on the strength of the
applied fields.

As a further application,we generated the non-relativistic energy levels of fewdiatomicmolecules:
NO, CO, N2 and CH for various vibrational n and rotational l quantum numbers. The spectroscopic
constant for thesemolecules are given in Ref. [39]where the 3D pseudo-harmonic potential have been
considered. We have developed keen interest in these molecules to enable one in making comparison
with the previous work in the absence of external magnetic field. The criterion for selecting these
diatomicmolecules is nothing but for their intermediate importance in the chemical physics, chemical
industry, biological sciences and related areas. NO is an important messenger molecule involved in
many pathological and physiological processes within the mammalian body [61]. CO is the simplest
oxocarbon and isoelectronic with the cyanide ion andmolecular nitrogen. This molecule has received
a great deal of attention in clinical section as a biological regulator. N2 molecules is very essential in
industry for production of ammonia, nitric acid and explosives. The emission spectrum of CH can be
used to understand double spectral of diatomic molecules.

The energy levels of these diatomicmolecules have been calculated in 2D space under the influence
of magnetic field and Aharonov–Bohm field. It is noticed that the magnetic field has a small influence
on the energy levels when m = 0. However, when m ≠ 0, it removes the degeneracy and makes a
narrow shift for the energy states. On the other hand, the effect of the Aharonov–Bohm field is greater
as it creates a wider shift form ≠ 0 and its influence onm = 0 states is found to be greater than that
of the magnetic field. Them ≠ 0 states are much more sensitive to the two fields.

Acknowledgment

We thank the kind referee for the positive enlightening comments and suggestions, which have
greatly helped us in making improvements to this paper.

References

[1] M. Sage, J. Goodisman, Amer. J. Phys. 53 (1985) 350;
R.J. Le Roy, R.B. Bernstein, J. Chem. Phys. 52 (1970) 3869.

[2] S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 5 (2007) 516;
S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6 (2008) 685.

[3] S.M. Ikhdair, R. Sever, J. Math. Chem. 45 (2009) 1153;
F.M. Fernandez, S.A. Maluendes, E.A. Castro, Phys. Rev. D 36 (1987) 650;
Ş. Erkoç, R. Sever, Phys. Rev. D 30 (1984) 2117;
Ş. Erkoç, R. Sever, Phys. Rev. D 33 (1986) 588.

[4] S. Ozder, Ş. Erkoç, E. Iltan, Chem. Phys. Lett. 135 (1987) 582;
E. Kasap, B. Gönül, M. Şimşek, Chem. Phys. Lett. 172 (1990) 499;
R.W. Hasse, Phys. Lett. A 161 (1991) 130;
J. Plieva, J. Mol. Spectrosc. 193 (1997) 7;
S. Özçelik, M. Şimşek, Phys. Lett. 152 (1991) 145;
R. Sever, C. Tezcan, M. Bucurgat, O. Yeşiltaş, J. Math. Chem. 43 (2008) 749.

[5] J. Zakrzewski, R. Gebarowski, D. Delande, Phys. Rev. A 54 (1996) 691.
[6] S.-H. Dong, Z.-Q. Ma, Phys. Lett. A 312 (2003) 78.
[7] S.-H. Guo, X.-L. Yang, F.-T. Chan, K.-W. Wong, W.-Y. Ching, Phys. Rev. A 43 (1991) 1197.
[8] A. Poszwa, A. Rutkowski, arXiv:quant-ph/0809.1929v1.
[9] A.N. MacDonald, D.S. Ritchie, Phys. Rev. B 33 (1986) 8336.

[10] P. Martin, J.J. Rodrrigues-Nunez, J.L. Marquez, Phys. Rev. B 45 (1991) 8359.

http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref1a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref1b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref2a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref2b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref3a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref3b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref3c
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref3d
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4c
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4d
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4e
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref4f
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref5
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref6
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref7
http://arxiv.org/quant-ph/0809.1929v1
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref9
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref10


298 S.M. Ikhdair et al. / Annals of Physics 353 (2015) 282–298

[11] A. Soylu, O. Bayrak, I. Boztosun, Internat. J. Modern Phys. E 15 (2006) 1263.
[12] V.R. Khalilov, Theoret. Math. Phys. 119 (1999) 481.
[13] V.M. Villalba, P. Ramiro, Modern Phys. Lett. B 17 (2003) 1331.
[14] V.M. Villalba, P. Ramiro, Physica E 10 (2001) 561.
[15] V.M. Villalba, P. Ramiro, Phys. Lett. A 238 (1998) 49.
[16] A. Rutkowski, A. Poszwa, Phys. Scr. 79 (2009) 065010.
[17] A. Poszwa, Phys. Scr. 84 (2011) 055002.
[18] M. Taut, Phys. Rev. A 48 (1993) 3561.
[19] M. Taut, J. Phys. A: Math. Gen. 28 (1995) 2081.
[20] J. Karwowski, L. Cyrnek, Ann. Phys. 13 (2004) 181.
[21] J. Karwowski, L. Cyrnek, Collect. Czech. Chem. Commun. 70 (2005) 864.
[22] J. Karwowski, J. Phys.: Conf. Ser. 104 (2008) 012033.
[23] S.M. Ikhdair, M. Hamzavi, Physica B 407 (24) (2012) 4797.
[24] R. Khordad, Solid State Sci. 12 (2010) 1253.
[25] S.M. Ikhdair, M. Hamzavi, Chin. Phys. B 21 (11) (2012) 110302.
[26] M. Robnik, V.G. Romanovsky, J. Phys. A: Math. Gen. 36 (2003) 7923.
[27] M.R. Setare, O. Hatami, Chin. Phys. Lett. 25 (2008) 3848.
[28] V.M. Villalba, J. Math. Phys. 36 (1995) 3332.
[29] J. Schmid-Burrgh, H.P. Gail, Phys. Lett. 48A (1974) 209.
[30] P. Kościk, A. Okopińska, J. Phys. A: Math. Theor. 40 (2007) 1045.
[31] S.-H. Dong, Phys. Scr. 65 (2002) 289;

S.-H. Dong, Z. Ma, G. Espozito, Found. Phys. Lett. 12 (1999) 465;
A. Arda, R. Sever, Phys. Scr. 82 (2010) 065007.

[32] M. Aygun, O. Bayrak, I. Boztosun, Y. Sahin, Eur. Phys. J. D 66 (2012) 35.
[33] S.M. Ikhdair, M. Hamzavi, Physica B 407 (21) (2012) 4198;

S.M. Ikhdair, M. Hamzavi, R. Sever, Physica B 407 (23) (2012) 4523.
[34] S.M. Ikhdair, Adv. High Energy Phys. 2013 (2013) Article 491648;

S.M. Ikhdair, R. Sever, Adv. High Energy Phys. 2013 (2013) Article 562959.
[35] M. Hamzavi, S.M. Ikhdair, B.J. Falaye, Ann. Physics (NY) 341 (2014) 153.
[36] S.M. Ikhdair, B.J. Falaye, J. Assoc. Arab Univ. Basic Appl. Sci. 16 (2014) 1.
[37] S.M. Ikhdair, M. Hamzavi, A.R. Pazouki, A.H. Behrouz, M. Amirfakhrian, Romanian Rep. Phys. 66 (2014) 621.
[38] G. Herzberg, Molecular Spectra and Molecular Structure, Princeton, NJ, Van Nastrand.
[39] S.M. Ikhdair, R. Sever, J. Mol. Struct. THEOCHEM 806 (2007) 155;

M. Hamzavi, S.M. Ikhdair, K.-E. Thylwe, J. Math. Chem. 51 (2013) 227.
[40] I.I. Goldman, V.D. Kirchenkov, Problems in QuantumMechanics, Pergamon Press, New York, 1961.
[41] G. Chen, Z.-D. Chen, Z.-M. Lou, Chin. Phys. 13 (2004) 279;

R. Sever, C. Tezcan, M. Aktaş, Ö. Yeşiltaş, J. Math. Chem. 43 (2007) 845.
[42] S.M. Ikhdair, M. Hamzavi, Physica B 407 (2012) 4198.
[43] W.C. Qiang, Chin. Phys. 13 (2004) 283.
[44] G. Simons, R.G. Parr, J.M. Finlan, J. Chem. Phys. 59 (1973) 3229.
[45] M. Molski, J. Konarski, Phys. Rev. A 47 (1993) 711.
[46] J. Plíva, J. Mol. Spectrosc. 193 (1999) 7.
[47] A. Kratzer, Z. Phys. 3 (1920) 289.
[48] A. Durmus, J. Phys. A 44 (2011) 155205.
[49] E.D. Filho, R.M. Ricotta, Phys. Lett. A 269 (2000) 269.
[50] A.R. Matamala, Int. J. Quantum Chem. 89 (2002) 129.
[51] K.J. Oyewumi, Internat. J. Theoret. Phys. 49 (2010) 1302.
[52] M. Molski, Phys. Rev. A 76 (2007) 022107.
[53] S.M. Ikhdair, R. Sever, J. Math. Chem. 45 (2009) 1137.
[54] C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417 (2006) 326.
[55] S.M. Ikhdair, R. Sever, J. Mol. Struct. THEOCHEM 855 (2008) 13.
[56] G. Mie, Ann. Phys. II (1903) 657.
[57] Ş. Erkoç, R. Sever, Phys. Rev. A 37 (1988) 2687.
[58] M. Sato, J. Goodisman, Amer. J. Phys. 53 (1985) 350.
[59] Y. Weissman, J. Jortner, Phys. Lett. A 70 (1979) 177.
[60] Martin L. Sage, Chem. Phys. 87 (1984) 431.
[61] Y.C. Hou, A. Janczuk, P.G. Wang, Curr. Pharm. Des. 5 (1999) 417.

http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref11
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref12
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref13
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref14
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref15
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref16
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref17
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref18
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref19
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref20
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref21
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref22
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref23
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref24
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref25
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref26
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref27
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref28
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref29
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref30
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref31a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref31b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref31c
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref32
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref33a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref33b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref34a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref34b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref35
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref36
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref37
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref39a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref39b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref40
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref41a
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref41b
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref42
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref43
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref44
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref45
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref46
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref47
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref48
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref49
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref50
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref51
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref52
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref53
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref54
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref55
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref56
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref57
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref58
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref59
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref60
http://refhub.elsevier.com/S0003-4916(14)00337-6/sbref61

	Nonrelativistic molecular models under external magnetic and AB flux fields
	Introduction
	Exact solution to a general potential form under external fields
	Applications
	The pseudoharmonic oscillator
	The harmonic oscillator
	Generalized Kratzer potential
	The Mie-type potentials

	Concluding remarks
	Acknowledgment
	References


