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Abstract. A model to solve the hydraulics of trickle irrigation units is developed in this study.
This model is based on utilizing Newton Raphson technique. The model converts laterals into
equivalent outlets through utilizing a simple power relation between inlet lateral discharge and
hydraulic head. This relation is obtained through least squares analysis between inlet lateral
discharge and hydraulic head. This study showed that this relation with only two coefficients
is sufficient to describe the relation between inlet lateral discharge and hydraulic head. Based
on this relation, the model converts manifold lines into equivalent laterals and solves their
hydraulics by Newton Raphson technique. After that solution, the model evaluates trickle ir-
rigation units by estimating statistical uniformity and Christiansen uniformity coefficients and
checks the solution obtained through forward step method for each lateral. Several numerical
examples for utilizing the model are presented in this paper.
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Abbreviations: Cy(j) — Hazen-Williams coefficient for lateral segment # j; C(j) — lateral line
coefficient for segment #j; d(j) — Diameter of lateral segment # j in mm; E(j) — Elevation of
outlet # j; f'(Hp) — First derivative of f(H) evaluated at H,;,; H(j) — Total hydraulic head at
outlet # j; Hy,; — Hydraulic head vector (H) as determined (or assumed) from iteration # m;
H,,,+1 — Improved estimate of vector H for the following iteration (m+1); H, — Inlet pressure
at inlet point of the lateral/manifold line; h ¢ (j) — Head loss in lateral segment number j; K&x —
Outlet pressure-discharge coefficients; L(j) — Length of lateral segment j in meters; q — Outlet
discharge; q(j) — Discharge from outlet number j; Q(j) — Flow rate in lateral segment number j

Introduction

Hydraulic analysis of trickle irrigation units is based on the hydraulics of
pipelines with multiple outlets. Well known, Christiansen’s F factor was
introduced to estimate the friction head losses along a pipe with multiple
outlets, equally spaced with constant discharge (Christiansen 1942). Wu &
Gitlin (1974) introduced a method to describe the pressure distribution along
a lateral line assuming that discharge is uniformly distributed along that line.
As the distance between the first outlet and the beginning of the lateral line
is some times equal to half the spacing between other outlets, Christiansen’s
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F factor was adjusted for that situation. Scaloppi (1988) adjusted F factor to
compute pressure head loss in pipes having multiple, equally spaced outlets
for any given distance from the first outlet to the beginning of the pipe/lateral.
Anwar (1999) introduced a G factor to consider outflow from the downstream
end of a lateral line. This allowed the application of this correction factor
to calculate friction losses in tapered laterals. Analytical equations for two
average pressure correction factors for linear displacement laterals with or
without outflow at the downstream end were also developed (Anwar 2000a).
These factors were adjusted to be used when the first outlet is a fraction of a
full spacing from the lateral inlet (Anwar 2000b).

The analytical solutions mentioned above assume constant discharge from
outlets along laterals. However, discharge from outlets is function of pressure
head along lateral lines unless pressure compensating outlets are utilized.
Warrick & Yitayew (1988) presented an alternative treatment that includes
a spatially variable discharge function as part of the basic solution. This ap-
proach was utilized for deriving an analytical solution of trickle irrigation
hydraulics for the design of laterals (Yitayew & Warrick 1988). Valiantzas
(1998) presented an analytical approach to improve the accuracy of previous
analytical approaches through assuming a varied flow along the lateral (power
relation).

The other approach to solving the hydraulics of lateral lines is numerical.
Numerical approaches solve the problem either backward or forward and
can take into consideration the variability in discharge, pressure, diameter,
spacing, etc. Numerical approaches became popular with the development
of personal computers. These approaches to solve the hydraulics of trickle
systems included the use of finite elements (Bralts & Segerlind 1985; Kang
& Nishiyama 1996a; Kang & Nishiyama 1996b).

Solving the hydraulics of trickle irrigation systems requires solving sets of
nonlinear equations which is common in solving the hydraulics of pipe net-
works. There are two main approaches in solving these systems of equations.
The first approach is a successive linear approximation method in which these
equations are linearized using an initial solution. This results in converting
the system of nonlinear equations into a set of linear equations. Solving such
sets is quite common in the finite element method where symmetric banded
matrices are solved efficiently. The results are used as an improved estimate
of an initial solution; then a new system of linear equations is formed and
solved again. The procedure is continued until convergence (Jeppson 1977).
The successive linear approximation approach was implemented to solve the
hydraulics of trickle systems (Hathoot et al. 1993; Bralts & Segerlind 1985;
Kang & Nishiyama 1996a, 1996b).
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Figure 1. A trickle line with N outlets.

The second approach is to use Newton Raphson method to solve the
system of nonlinear equations. This method showed a speed of convergence
much faster than successive linear approximation when the two methods start
from the same initial solution in analyzing a set of small hypothetical trickle
irrigation systems (Mizyed 1997). However, the biggest disadvantage of ap-
plying both successive linear approximation and Newton Raphson methods to
trickle irrigation units is memory requirements. This results from considering
all laterals and outlets in a real size trickle irrigation unit. This paper utilizes
Newton Raphson method in analyzing trickle irrigation units and it considers
alternatives to overcome memory problems.

Hydraulics of trickle irrigation lines

Considering a trickle lateral line with N outlets, these outlets are numbered
from 1 to N along a lateral line (Figure 1). Outlet number 1 is connected to
the manifold or to pressure regulator with known head (H,). Discharge from
each outlet is given by (Walker, 1980):

q=K(H - E)" (D
Where:

q : Outlet discharge

H : Total hydraulic head at outlets

E : Elevation of outlet

K and x are outlet pressure-discharge coefficients.

The difference in head between any two successive outlets is equal to the
friction head loss in the lateral line segment connecting these outlets. Friction
head loss could be taken from Hazen-Williams formula, which is (Jeppson
1977):

he(j) = CU)* Q")) 2)

Where:
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Q@G) : Flow rate in lateral line segment number j,
hy() : Head loss in lateral line segment number j,
C(G) : Lateral line coefficient given by:
clj) = 1.21%10'%* L () 3)
J)= CIILI.SS(j)*d4.872(j)
Where:
LG) :  Length of lateral line segment j in meters,
d@g) :  Diameter of lateral line segment j in mm,
Cg() : Hazen-Williams coefficient for lateral line segment j.

To determine flow rate in a lateral (pipe) segment from head loss along that
segment, Eq. (2) can be written as:

h f<j>)°'54
W)

The head loss along the lateral segment can be written as the difference in
head between the two nodes connected by the lateral segment. Considering

any two successive nodes j—1 and j in the lateral line, the following equation
gives flow rate in lateral segment #;:

 (HG=D—H@O\™™
Q(J)—( o) ) 5)

To solve the hydraulics of a trickle line, the principle of continuity should be

satisfied at each outlet (node) in the trickle line. Considering any node (# j)
along a lateral line, continuity principle requires that:

Q) = ( “4)

Q) =0G+1D+4q() (6)
Where:

QG) : discharge in trickle line from node j—1 to j

Q@G+1) : discharge in trickle line from node j to j+1.

q() : discharge from outlet j given by eq. 1.

Writing equation 6, in terms of total head at nodes results as:

H(i—D—H(i 0.54 H(iV—H(i+1 0.54
( (j C()j) (J)) ( (Jé(j+(1])+ )) FKHHG) —EGY* ()

For laterals with equally spaced outlets and constant diameter (a common
case in irrigation systems) the coefficients C(j) and C(j+1) are equal. How-
ever, different lengths and diameters, different values of C(j) could be used
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in such a numerical method. For the last outlet (#N) in the lateral, continuity
principle gives:

(H(N— 1) = H(N)

C(N)

For the first outlet in the lateral, continuity principle results as:

(H,, — H(1)>0'54 B (H(l) — H(2)
ca) S\ CO

Where, H, is pressure at the inlet to the lateral line which might be regulated
or controlled by a valve, and/or other hydraulic characteristics of the supply
system.

Assuming the inlet pressure H, is given, then solving the hydraulics of
the above trickle line requires solving a set of N nonlinear equations (equa-
tions 7 through 9). The above set of N nonlinear equations has a set of N
unknowns. This set of nonlinear equations could be solved iteratively through
two common methods. The first method is successive linear approximations
of these equations and solving the resulting set of linear equations each time
through common linear algebra methods (Kang & Nishiyama 1996a). The
second method is using Newton Raphson technique which is discussed in the
following section. When the set is solved for the unknown values of heads at
outlets, outlet discharge could be determined from outlet pressure-discharge
equation (eq. 1). After that any performance parameter could be determined
for the lateral line.

0.54
) = K*(H(N) — E(N))" (8)

0.54
) + K*(H() - E1)" 9

Newton Raphson technique

Newton Raphson technique is an iterative procedure which starts from an
initial solution for the vector of unknowns H and this vector is improved
gradually until convergence. The set of equations is first converted into the
form of f(H)=0 through moving all non zero terms to the left side of the
equation. The solution is obtained utilizing the formula:

H,., = H, — f(H,)/f (H,) (10)
Where:
H, : Vector H of Hydraulic head as determined (or assumed)
from iteration # m,
H,+1 : Improved estimate of vector H for the following iteration
(m+1),

f'(H,,) : Firstderivative of f(H) evaluated at H,,,.
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The above formula is written as:
Hm+1 = Hm - D_lf(Hm) (11)

where D is the Jacobian matrix consisting of the derivative elements. For a
set of N equations above, the Jacobian matrix will have a dimension of NxN.
However, this Jacobian matrix is symmetric and there are many zeros in it.
As the numbers utilized in numbering the outlets are in order, the Jacobian
matrix will have a diagonal row and another two symmetric diagonal rows
(one above and one below). Utilizing the symmetry and sparse nature of such
matrices for trickle laterals results in a matrix with N rows and 2 columns, or:

af1 af1
3H() 0H?2)
af2 af>
3H(2) 0HQ)
=", . (12)

AH(j) O0H(j+1)

fn
dH(N) 0

The iterative formula could be written as:

Hm+1 =H, -7 (13)
Where:

Z =D "*f(H,,)

D*Z = f(H,,) 14

Solving a system of equations shown above (13 and 14) is common in
finite elements using some linear algebra computer subroutines. Utilizing
the symmetric sparse nature of matrix D is essential in reducing com-
puter memory requirements. The system could be solved without utilizing
that nature through direct estimation of the inverse of initial matrices and
multiplying them by f(H,,) or any other method of linear algebra.

Applying the above iterative method to a node on the lateral line such as
node #j, requires first rewriting eq. 7 as (assuming equally spaced outlets and
constant diameter of the lateral line or C(j)= C(j+1)):

H(i—1)—H(i 0.54 H(i)—H(i+1 0.54
1= (TS (P ER) k- e Gy as)
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Taking the derivatives of eq. 15 gives:

OF; 054 (H(j) ~H(j+ 1))‘“46 16)
IHG+1)  C() c@)
af; df; df;

+ K*x*(H() — EG)™" (17)

dH()  8H(G—1) oH( +1)

The above procedure could be utilized to improve the estimates of H and the
procedure continues until convergence or when the difference between Hy,
and Hy,,; becomes insignificant.

Verification of Newton Raphson model for solving lateral lines

The procedure mentioned above was converted through a FORTRAN code
into a model to analyze the hydraulics of trickle irrigation lines. A set of
lateral lines shown in Table 1 was used to verify the model. These numerical
examples are examples of trickle and sprinkler lines with outlets ranging from
10 to 200. The model determines pressure head distribution, discharge from
each outlet and inlet discharge for a lateral line with known characteristics
and known inlet pressure heads. It also estimates average discharge, statistical
uniformity and Christiansen uniformity coefficients of the lateral line under
consideration. Statistical uniformity is defined as:

Sy = 100*(1 — Cy) (18)

Where: Sy : Statistical uniformity,
Cy : Coefficient of outlet discharge variations.

Laterals in Table 1 were also analyzed using a backward step solution (distal
outlet method) utilizing the head at the last outlet determined by the lateral
computer model and the geometric and discharge characteristics of the trickle
line. Results of distal outlet method were compared to those estimated by
Newton Raphson technique in the computer model.

Table 2 shows that solutions obtained by Newton Raphson technique are
similar to distal outlet method. Both solutions obtained the same inlet dis-
charge and the same pressure distribution along lateral lines. Inlet pressure
calculated by distal outlet was the same as that used in obtaining the solu-
tion by Newton Raphson method. This verifies the model developed even for
systems with low uniformity and high discharge variability. The use of distal
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Table 1. Description of a set of Numerical examples for lateral lines used in verification of
lateral line model.

Lateral 1 2 3 4 5
Number of outlets 100 200 10 20 20
Outlet Spacing (m) 0.5 0.5 10.00 10.0 5.0
Outlet Coefficient(L/sec/m™) 0.001 0.001 0.05 0.05 0.01
Outlet Exponent 0.5 0.5 0.5 0.5 0.5
Diameter (mm) 16.0 16.0 50.0 50.0 20.0
Hazen-Williams 140.0 140.0 140.0 140.0 140.0
Inlet head (m) 20.0 20.0 30.0 30.0 20.0
Slope (a=0%,b=5%,c=—5%) a,b,c a,b,c a,b,c a,b,c a,b,c

outlet is restricted as pressure head is regulated at the inlet point not at distal
end of laterals.

Solving a trickle irrigation unit

Considering a trickle irrigation unit with M laterals on both sides of the man-
ifold and assuming that the number of outlets on the right and left sides of the
manifold are N1 and N2 respectively, then the total number of outlets in the
system will be M«(N1+N2). The total number of nodes (points of unknown
head) in the system will be Mx(N1+N2+1). This will result in increasing the
band width of the Jacobian matrix to become N1+N2+1 which is a signi-
ficant increase in the memory requirement for solving the unit. Therefore,
considering all outlets in a trickle unit requires a lot of memory and large
sizes of matrices even if the sparse symmetric nature of matrices is utilized.
To overcome computer memory requirements, Kang & Nishiyama (1996b)
replaced lateral lines by equivalent outlets by converting manifold lines to
lateral lines. This enabled using the same methodology utilized in trickle
laterals to solve hydraulics of manifold lines and thus trickle irrigation units.

Outlet equivalents of laterals

The first relation to represent laterals is a polynomial equation between in-
let discharge and inlet head. The relation is shown as (Kang & Nishiyama
1996b):

Q(j)=Ci+CsH()+ CiH(G) + C;H(G) +...+ C:H(j)H)" (19)
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Table 2. Results of Newton Raphson method as compared to distal outlet method.

Lateral Newton Raphson method  Backward Step solution  Christiansen Statistical

(Distal outlet method) unifor- unifor-
Inlet  Inlet Head at Head at Inlet Inlet mity2 mityz(%)
head! dis- last last dis- head® (%) (%)

(m) charge1 outlet?  outlet! charge2 (m)
(U/s) (m) (m) (U/s)

la 20.0  0.399 14.57 14.57 0.399 20.000 96.08 95.31
1b 20.0 0.386 14.98 14.98 0.386 19.999 94.18 93.14
1c 20.0 0411 14.16 14.16  0.411 19.999 97.65 97.05
2a 20.0 0.542 4.20 420 0542 19.995 78.13 74.07
2b 20.0 0.341 12.57 12.57 0.341 19.998 87.87 85.78
2c 20.0 0.386 9.84 9.84  0.386 19.998 95.86 94.72
3a 30.0 2.677 28.32 28.32 2.678 30.002 93.96 92.45
3b 30.0 2.552 28.49 28.49 2.552 30.002 97.05 96.41
3c 30.0 2.798 28.15 28.15 2.798 30.001 98.59 98.28
4a 30.0 4.806 21.04 21.04  4.806 30.002 95.82 94.89
4b 30.0 4.359 22.92 2292 4395 30.001 89.76 87.78
4c 30.0 5.202 19.20 19.20 5.203 30.002 98.24 97.92
Sa 20.0  0.692 9.73 9.73 0.692 19.999 91.07 89.14
5b 20.0 0.645 11.40 1140  0.645 19.999 86.00 83.20
5c 20.0 0.734 8.09 8.09 0.734 19.999 94.70 93.18
1 given, 2computed.
Where:

QG) : inlet discharge for lateral j,

C;,Cy...C, : regression coefficients, and

HG) : inlet head for lateral j.

Values of head are assumed at the distal end of laterals and their corres-
ponding values for inlet head and discharge are estimated using distal outlet
method considering the geometry and characteristics of the laterals in the sys-
tem. The set of values for inlet head (H(j)) and corresponding inlet discharge
(Q(j)) could be then analyzed using least squares method to determine the re-
gression coefficients (C; , C, ... C,). Regression analysis in this study showed
that seven coefficients are sufficient to represent the laterals considered in
many numerical examples including those shown in Table 3.
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Manifold Inlet

Lateral # 1, Side # 2 Lateral # 1, Side # 1

Lateral # 2, Side # 2 Lateral # 2, Side # 1

Inlet of Lateral # j

Lateral # |, Side & 2 Loteral # j, Side # 1
N2 outlets in each lateral N1 outlets in each lateral
Lateral # M, Side # 2 Lateral # M, Side # 1

Figure 2. An example of a trickle irrigation unit.

A second relation was investigated which is similar to outlet head-
discharge relation shown in eq. 1, or:

0(j) =K H(j)* (20)

Where: K and X are regression coefficients.

Equation 20 reduces the relation between inlet discharge and inlet head to
a simple relation with only two regression coefficients (K, X). These coeffi-
cients are also determined by least squares analysis for inlet discharge versus
inlet head.

To investigate the two methods above, laterals shown in Table 1 were
considered for numerical examples. For each lateral, polynomial and power
relation coefficients in equations 19 and 20 were estimated using least squares
analysis. To measure the validity of these relations for each inlet head, the
corresponding inlet discharge was estimated using equations 19 and 20. This
estimated discharge was compared to the initial discharge estimated earlier
by distal outlet. The difference between both is estimation error. The absolute
value of the maximum difference for the set is the maximum absolute error
of estimation. For each set, the errors were squared and the sum of squared
errors was estimated. The sum of squared errors was divided by the number
of points in the set to estimate average squared error. Then the square root
of the average squared error (SASE) was estimated and shown in Table 3 for



63

both relations. Table 3 shows that both polynomial and power relations could
be used for that representation with acceptable error. The polynomial relation
produced smaller errors than the power relation in most of the cases. This is
due to utilizing 7 coefficients in a polynomial equation compared to two in
a power relation. However, the errors estimated by power relation are also
small especially when the laterals have small slopes. The maximum errors
were observed when the maximum difference in elevation was more than 20%
of operating pressure which is usually considered high in irrigation systems.
Further numerical examples showed that the accuracy of power relation is
significantly improved when the maximum difference in elevation is reduced
to 20% or less of operating pressure. In most trickle laterals pressure differ-
ence is maintained at about 10% or less of operating pressure. This requires
maximum difference in elevation below 10% of operating pressure which
improves the accuracy of the power relation equation significantly.

Hydraulic analysis of trickle units/manifolds

After converting lateral lines into equivalent outlets, manifold lines are con-
verted into laterals. If the manifold has laterals on both sides, then there will
be two equivalent outlets at each node described by K;, X;, K, and Xj;. This
makes the analysis of manifolds similar to that of laterals and thus the same
Newton Raphson technique is utilized in the analysis. Therefore, a computer
model was developed with analysis summarized as:

1. Convert laterals on both sides of manifold into equivalent outlets, which
requires estimating coefficients of power relation between inlet discharge
and head shown in equation 20 for laterals on both sides.

2. The manifold is then converted into a lateral line. This line is analyzed
by the same model used earlier to analyze lateral lines which utilizes
Newton Raphson technique. The result of analysis will give hydraulic
distribution and discharge variations along manifold line. Thus, inlet head
and discharge for all laterals in the system are determined. Also, total inlet
discharge of the manifold is estimated.

3. Model verification and system evaluation routines were added.

System evaluation and model verification

The model of analysis described above was utilized in analyzing the hy-
draulics of 14 trickle irrigation units shown in Table 4. After estimating
inlet discharge to manifold, average outlet discharge was estimated divid-
ing inlet discharge to manifold by the number of outlets in the system. As



Table 3. Comparison between polynomial approximation and power relations for outlet equivalents of laterals.

9

Lateral Inlet Polynomial relation 7 terms Power relation 2 terms
flow Absolute errors Relative errors Absolute errors Relative errors

I/s Max! error SASE? Max error SASE Max error SASE Max error SASE
(x1073) (x1073) (x1073) (x1073) (x1073) (x1073) (x1073) (x1073)
la 0.4577 0.033 0.0026 0.0728 0.0057 0.017 0.0015 0.038 0.003
1b 0.441 0.263 0.0196 0.596 0.0444 1.260 0.110 2.860 0.249
1c 0.474 0.110 0.0078 0.232 0.0165 0.869 0.0779 1.830 0.160
2a 0.862 0.475 0.0328 0.551 0.0381 0.042 0.00355 0.048 0.004
2b 0.308 0.722 0.0410 2.34 0.1330 8.900 0.076 28.900 2.470
2¢ 0.404 0.516 0.0420 1.28 0.1040 1.590 0.0142 3.940 0.351
3a 2.700 7.820 0.6470 2.90 0.2400 0.031 0.0024 0.011 0.001
3b 2.560 0.588 0.0476 0.230 0.0186 15.000 1.36 5.860 0.531
3c 2.830 1.380 0.0980 0.488 0.0346 9.900 0.888 3.500 0.314
4a 5.620 1.900 0.1500 0.338 0.0267 0.220 0.0190 0.039 0.003
4b 5.030 1.750 0.1700 0.348 0.0338 61.000 5.50 12.100 1.090
4c 4.920 3.850 0.2600 0.783 0.0528 30.700 2.73 6.240 0.555
Sa 0.733 0. 245 0.0210 0.334 0.0286 0.053 0.00447 0.072 0.006
5b 0.620 1.250 0.1070 2.02 0.1730 19.000 1.57 30.600 2.530
5¢ 0.826 0.168 0.0100 0.203 0.0121 2.780 0.240 3.370 0.291
Aver. 1.919 1.405 0.1100 0.847 0.0641 10.090 0.894 6.631 0.571

Max: Maximum, 2SASE: square root of the average squared error
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inlet discharge and inlet head to each lateral are known from previous ana-
lysis, a forward stepwise algorithm is followed along each lateral to estimate
discharge from each outlet. The absolute value of the difference between indi-
vidual outlet discharge and average outlet discharge is estimated. Cumulative
additions for the differences in addition to the squares of outlet discharges
were done along each lateral. This eliminated the need to store individual
outlet discharges and thus reduced memory requirements. After analyzing
all the laterals of the system, the sum of the absolute values of differences
between outlet discharges and average discharge becomes known and thus
Christiansen uniformity coefficient is determined for the unit. From sums of
the outlet discharge squared, the average outlet discharge, and the number
of outlets, the standard deviations of outlet discharge were estimated. This
value is used to estimate coefficient of variations for outlet discharge and
thus statistical uniformity coefficient.

As a regression relation describing inlet lateral discharge versus inlet lat-
eral head was utilized, there is an error in estimation. To estimate this error
for each lateral in the unit from inlet lateral discharge and inlet lateral head,
a forward step method is followed until the end of the lateral. At the last
outlet in the lateral, the difference between discharge in the last segment of
the lateral and the discharge from that outlet (obtained in eq. 1) represents
the error of estimation for that lateral. The absolute values of errors for all
laterals in each system were estimated and their summation was determined
and shown in Table 5. The computer time utilized in the analysis was also
determined (a personal computer with Pentium II, 166 mhz was utilized for
all the analyses).

Table 5 shows the results of analyzing 14 trickle irrigation units using the
model developed in this study. It shows that errors of estimation were negli-
gible which verifies the use of the model. The model was also successful in
evaluating the trickle irrigation systems under consideration through determ-
ining statistical uniformity and Christiansen uniformity coefficients. Table 5
shows that time required by a personal computer to run the model is minimal
and was less than one second for all the examples shown in this study. This
is due to the power of convergence of the Newton Raphson technique and the
conversion of laterals into equivalent outlets.

As the computer time needed is low and the model could successfully
analyze trickle irrigation systems, the model could be also used in designing
trickle irrigation systems. This could be utilized through using the model to
evaluate different design alternatives to select the most appropriate one. It
could be also modified to design systems according to design requirements
which could include: finding maximum length of a manifold that could be
used to achieve a certain uniformity, the required inlet hydraulic head to
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Table 4. Description of a set of trickle units used in the hydraulic analysis.

System Lateral direction 1 Lateral direction 2 Manifold Total
No. of Slope No. of Slope No. of Diameter  No. of
outlets outlets laterals (mm) outlets
1 40 0 0 0 20 25.0 800
2 100 0 0 0 20 50.0 2000
3 200 0 0 0 20 65.0 4000
4 40 0 0 0 50 50.0 2000
5 100 0 0 0 50 65.0 5000
6 200 0 0 0 50 75.0 10000
7 40 0 40 0 20 40.0 1600
8 40 0.05 40 -0.05 20 40.0 1600
9 100 0 100 0 20 65.0 4000
10 100 0.05 100 —-0.05 20 65.0 4000
11 100 0.05 150 -0.05 20 75.0 5000
12 40 0.05 60 -0.05 50 75.0 5000
13 60 0.0 80 0.0 100 65.0 14000
14 40 0.05 60 -0.05 100 75.0 10000

Other common characteristics:
K=0.0005, X=0.5, Lateral diameter 16.0 mm, Spacing between outlets = 0.5 m, Cg= 140,
Spacing between laterals = 2 m, and Manifold slope = 0.0

achieve a required average outlet discharge in the farm, or to test the required
diameter for manifold pipes and laterals.

Conclusions

Considering all laterals and outlets in solving the hydraulics of a real field
scale trickle irrigation system causes memory problems. This work shows that
it is possible to replace lateral lines by equivalent outlets and thus replacing
manifold lines by laterals. Although polynomial equations with several para-
meters could be used to accurately describe relations between inlet discharge
and inlet lateral head, these relations could be adequately described by simple
power relations similar to those typically used to describe outlet discharge
versus outlet head. Such relations with two coefficients are sufficiently accur-
ate for actual field laterals. Newton Raphson method proved to be an efficient
method to solve the hydraulics of trickle laterals or manifolds with real size
problems. The nature of laterals and manifolds makes it possible to utilize
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Table 5. Results of the analysis of trickle units (summary).

System Inlet flow Head at Statistical ~ Christiansen  Time needed  Sum of errors

(1/s) manifold uniformity  uniformity (seconds) 1/s)
end(m) % % (x 1073)
1 1.55 13.58 94.50 95.40 0.11 0.002
2 4.20 18.56 98.32 98.60 0.11 0.04
3 7.13 18.927 91.06 92.48 0.17 0.4
4 4.17 16.64 97.37 97.79 0.17 0.005
5 9.82 15.46 96.02 96.73 0.16 0.07
6 16.12 14.40 89.72 91.58 0.22 0.8
7 3.37 17.18 97.92 98.26 0.05 0.004
8 3.37 17.18 97.35 97.88 0.11 2.0
9 8.40 18.55 98.31 98.60 0.11 0.08
10 8.39 18.55 95.76 96.28 0.16 1.0
11 10.30 18.94 97.26 97.87 0.16 1.0
12 10.61 17.35 97.39 97.90 0.16 9.0
13 16.35 2.53 65.11 70.51 0.33 1.0
14 16.88 8.76 87.00 89.20 0.22 3.0

the symmetry and sparse matrix characteristics for the Jacobian matrices
used for solving such systems. The nature of laterals and manifolds results
in Jacobian matrices with two columns and N rows, where N is the number
of outlets (or equivalent outlets for laterals) in the lateral (or manifold) under
consideration. This results in significantly reducing memory requirements for
solving such systems. The solution required very short computer times (less
than one second for each system considered in this study). This makes the
solution algorithm efficient in evaluating trickle irrigation systems and thus
an efficient tool that could be used in designing trickle irrigation systems.
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