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Abstract. Multicast protocols that provide message ordering and delivery
guarantees are becoming increasingly important in distributed system design.
However, despite the large number of such protocols, little analytical work has
been done concerning their performance, especially in the presence of message
loss. This paper illustrates a method for determining the performability of group
multicast protocols using stochastic activity networks, a stochastic extension to
Petri nets, and reduced base model construction. In particular, we study the
performability of one such protocol, called Psync, under a wide variety of workload
and message loss probabilities. The specific focus is on measuring two quantities,
the stabilization time—that is, the time required for messages to arrive at all
hosts—and channel utilization. The analysis shows that Psync works well when
message transmissions are frequent, but it exhibits extremely long message
stabilization times when transmissions are infrequent and message losses occur.
We use this information to suggest a modification to Psync that greatly reduces
stabilization time in this situation. The results provide useful insights into the
behaviour of Psync, as well as serving as a guide for evaluating the performability
of other group multicast protocols.

1. Introduction

Group multicast protocols are becoming increasingly
important in distributed system design for a number of
reasons. One is that they often provide strong guarantees
that can serve as an important foundation for building
highly dependable distributed applications. For example,
such protocols often preserve a consistent ordering among
messages, so that each process in the multicast group is
guaranteed to receive messages in the same order. Another
common property is atomicity, which guarantees that a
given message is delivered either to all processes or no
processes. These properties make group multicast a useful
abstraction for implementing, among other things, thestate
machine approachto building software that can continue
executing despite failures in the underlying computing
platform [1]. In this approach, a service is implemented as
a state machine that is replicated on multiple independent
hosts. Service requests are then disseminated to the
replicas using group multicast. The ordering and atomicity
properties implemented by the protocol mean that requests
are processed in the same order by all replicas, thereby
ensuring that states remain consistent despite failures.
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Many group multicast protocols that exhibit these
properties, or variants thereof, have been developed and
used in realistic settings. The Isis toolkit [2] includes
ABCAST and CBCAST, which are group multicast
primitives that implement different variants of message
ordering. Researchers associated with the European
Delta-4 project [3] constructed several versions of group
multicast, including one called xAMP that provides real-
time guarantees [4]. The Mars system, which is based
on a custom hardware platform with redundant hardware
elements, also includes a real-time group multicast [5].
Other systems with group multicast include Amoeba [6],
Consul [7], Totem [8], and Transis [9].

Despite the large number of such protocols, however,
little analytical work has been done concerning their
performance, especially in the presence of message loss.
While the guarantees made ensure that processes in a group
receive the same sequence of messages, they often say
nothing concerning the timeliness of those deliveries or the
network bandwidth required to achieve delivery. Studies
of the performance of such protocols have often been
limited to their fault-free (non-message loss) behaviour or,
if message losses are considered, to experimental results
for a small number of test scenarios. While these results
provide useful information, they are, by their nature, very
time consuming to obtain and limited in scope to the range
of test scenarios considered.
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Modelling is an attractive option for predicting the
performability [10] of group multicast protocols under a
wide variety of workload and fault scenarios. It has the
virtue of abstracting away details that are unimportant with
respect to measures of interest, while retaining important
information about system behaviour. Simulation models
are useful in this context, but they fail when the measures
of interest are very small or when important events in
the model are rare (such as message losses). Importance
sampling simulation [11] has the potential of dealing with
models with rare events but has been applied primarily to
relatively simple systems to date. Analytic models do not
suffer from these difficulties but suffer from rapid state-
space growth, leading to difficulties in both construction
and solution.

Stochastic activity networks (SANs) [12] and reduced
base model construction methods [13] avoid, to some
extent, both of these problems with analytic modelling.
First, SANs allow the model to be constructed at the
network rather than state level, and they permit specification
of the behaviour of complex systems, whose behaviour
would be extremely difficult, if not impossible, to specify
at the state level. Second, reduced base model construction
methods detect symmetries in a SAN model. To use
this approach, a complete (or ‘composed’) model is built
from one or more SAN submodels using ‘replicate’ and
‘join’ operations. Formally, the resulting model is known
as a composed SAN-based reward model(SBRM). The
replicateoperation duplicates a SAN and associatedreward
structure a certain number of times, holding some subset
of its places, called its ‘distinguished places’ in [13],
common to all resulting submodels. The combination
of several different submodels is accomplished using the
join operation. Informally, the effect of this operation
is to produce a composed model which is a combination
of the individual submodels. This approach permits the
construction of a stochastic process representation with
far fewer states than traditional stochastic Petri net state
generation methods, when such symmetries exist.

These features suggest that SANs and reduced base
model construction methods can be profitably used to
determine the performability of group multicast protocols.
We illustrate this by studying the performability of Psync
[14], the group multicast protocol found in the Consul
system. We represent message, retransmission request,
and retransmission losses in the model, and we faithfully
represent the behaviour of the protocol when these events
occur. The expected message stabilizing time—that is,
the time until all processes in the group have received
a multicast—and fraction of time various messages are
on the communication channel are determined for a wide
variety of workload and message loss probabilities. The
analysis shows that Psync works well when message
transmissions are frequent, but it exhibits extremely long
message stabilizing times when transmissions are infrequent
and message losses occur. We then use this information
to suggest a modification to Psync that greatly reduces
stabilizing time when message transmissions are infrequent.

The results are important for two reasons. First, they
provide useful information concerning the performability

of Psync. While the general relationship between message
transmission rate and stabilizing time is perhaps obvious
from the mechanism’s design, the precise nature of the trend
and magnitude in stabilizing time variation only became
clear during the modelling process. Furthermore, the results
obtained suggested a modification to Psync to improve
message stabilizing time, which was then evaluated to show
its usefulness. This modification greatly improved message
stabilizing time at low new-message transmission rates.
The good performance of the protocol at high new-message
transmission rates was not affected by the proposed change.
Second, the results illustrate the usefulness and practicality
of stochastic activity networks and reduced base model
construction in predicting the performability of realistic
applications. The stochastic processes that were constructed
automatically from the SAN representation ranged from
approximately 10K to 120K states (much smaller than
necessary if reduced base model construction was not
employed). Note that the generated stochastic processes are
not Markov, since we consider models that have a mix of
exponential and deterministic delays, and are solved using
recently developed solution methods for deterministic and
stochastic Petri nets.

The remainder of the paper is organized as follows.
First, in section 2, we provide a brief overview of the Psync
protocol, describe the workload, fault environment, and
protocol assumptions that were made in constructing the
model, and present a high-level description of the model
itself. The third section then describes the translation
of the model, described informally in section 2, into
a composed stochastic activity network representation.
Section 4 describes the performability measures that can
be determined using the model, and section 5 gives the
results obtained by solving the model for a wide range
of parameter values. Section 6 suggests a modification
to Psync to improve its performance and illustrates the
usefulness of the change by modifications to the model.
Finally, section 7 offers some conclusions regarding the
work.

2. The Psync protocol model

2.1. Overview of Psync

Psync [14] is a group communication protocol that
supports multicast message exchange among a collection
of processes. Messages are transmittedatomically and
are presented to receiving processes in aconsistent partial
order. The first property guarantees that messages
are delivered either to all processes or to no process,
despite communication or processor failures. The second
guarantees that each process receives messages in the same
(partial) order and that the order is consistent with execution
causality; this type of ordering has also been calledcausal
ordering [2]. More information on how Psync is used
within Consul and its relationship to other protocols in the
system can be found in [7] and [15].

To realize these properties, Psync explicitly maintains
on each host a copy of a directed acyclic graph called
the context graph. The nodes in this graph represent the
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Figure 1. Example of context graph.

multicast messages, while the edges represent the causality
relation between the receipt of one message by a process
and the subsequent sending of another message. Actual
transmission is done over the communications channel
using either a broadcast facility or point-to-point message
passing. Each message transmitted is identified by a
message idand theid of the sender.

The following sections give a brief description of
the context graph, the basic operations for sending and
receiving messages, and how Psync operates in the presence
of transient network failure. For a more detailed description
of Psync, consult [14].

Context graph. Formally, the context graph at a given host
defines the≺ (precedes) relation on the set of messages that
are multicast within the process group. For two messages,
m and m′, m ≺ m′ if and only if the process that sent
m′ had already received (or sent)m prior to sendingm′.
Figure 1 gives an example of a context graph. In this
example,m1 was the initial multicast message, while both
m2 and m3 were sent by processes that had receivedm1.
However, the lack of an edge betweenm2 andm3 implies
that their respective senders had not yet received the other
message prior to sending theirs. From the point of view of
the computation, then,m2 andm3 areconcurrent messages.
Similarly, m4 is concurrent withm2, but notm1 or m3, since
it was sent by a process that had receivedm1 andm3, but
notm2. The process sendingm5 received all prior messages
before initiating its transmission. The actual graph kept by
Psync differs from figure 1 in that redundant edges such as
those fromm1 to m4 and fromm3 to m5 are not maintained
by the implementation.

Since all messages sent using Psync are multicast,
the copies of the context graph on all hosts are identical
except for transient differences. Psync employs a garbage
collection routine that removes from the context graph
messages that have been received by all processes. Through
this context graph, an application using Psync is able to
determine the context in which each message has been
sent or received, and which messages have been received
by each host. These properties can be exploited, for
example, to sequence the messages consistently on all hosts
as required by the state machine approach.

Sending and receiving messages.When a process sends a
messagem, the message is transmitted by Psync to those
processors hosting other processes in the group. In addition,

m is inserted into the local copy of the graph, with incoming
edges from those nodes representing messages already
seen by the sending process. These messages are called
m’s predecessor messages. To indicate the appropriate
graph location to remote hosts, the message ids for these
predecessor messages are included withm when it is sent
over the network. Whenm subsequently arrives at a host,
then it is inserted into the copy of the graph on that host
based on these included ids. It is possible, however, that
one or more ofm’s predecessor messages may not have
arrived. In this case,m is placed temporarily into aholding
queue. Once the appropriate messages arrive,m is moved
from the holding queue to the context graph.

Sending and receiving retransmission requests.The key
reason a message may be placed into the holding queue
is that a predecessor message can be lost due to transient
network failures. To handle this, Psync implements a
retransmission protocol. Supposem is a message in the
holding queue. When it is placed there, Psync starts a timer.
Should this expire withoutm’s predecessors arriving, the
missing messages are considered lost. When this occurs,
a request to retransmit the missing messages is sent to the
host that sentm. That host is guaranteed to have the missing
messages in its copy of the graph since their ids were
included with m as its predecessor messages. Actually,
since it is possible that the predecessors’ predecessors
are also missing, the retransmission request identifies the
subgraph of the context graph that needs to be retransmitted,
not just the message(s) known to be missing.

Sending and receiving retransmissions.As discussed in
the previous section, retransmission requests identify a
subgraph of the context graph to be retransmitted. When
a host receives a retransmission request, it responds
by resending all messages in the subgraph. When a
retransmitted message arrives at a host, the message is
ignored if the host has previously received this message.
Otherwise, the message is placed in the context graph or
the holding queue as discussed previously.

2.2. Model assumptions

The first step in building an accurate model of Psync, and
the fault environment considered, is to state assumptions
about the protocol itself and the environment in which it
will operate. These assumptions are needed to simplify the
modelling and, as argued below, do not compromise the
basic characteristics of the protocol.

(i) There is a limit, equal to MAX, on the total number
of lost messages at any given time. A message is
considered lost if it is missing from the context graph
of at least one host. A transmitted message will
not be lost when the total number of lost messages
is MAX. MAX is chosen so that the fraction of
time during which the total number of lost messages
equals MAX is very small, thus making the model
an accurate approximation of the real situation where
there is no maximum value.
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(ii) The number of processes in the group is three, and
there is one process per host. This is a realistic
number for many fault-tolerant applications where
data or processing activity are often triplicated.

(iii) There are no outstanding messages at a host. If a
message arrives at a host and all of its preceding
messages are present in the context graph at that host,
the message is immediately received by the process
residing on that host.

(iv) There can be at most one message on the
communication channel at a time. Thus, when a
message arrives at a host, that host can determine
whether any of its predecessors are lost and issue a
retransmission request for the lost message(s).

(v) Retransmissions of lost messages and retransmission
requests are given higher priority than new message
transmissions, and retransmissions of lost messages
are given higher priority than retransmission requests.
Though Psync does not assign priorities to message
transmission, this assumption is important from a
modelling point of view (as will be shown later) and
reasonable, given that it would reduce the variance
of message stabilizing time and many communication
networks allow assignment of priorities to different
types of messages.

(vi) Message transmission, retransmission, and NAK
transmission times are deterministic and depend on
the length of the message sent.

(vii) Because Psync executes independently from applica-
tion processing, application processing in the model
is separated from the execution of the basic opera-
tions of Psync. A process executes application code
for a period of time and then generates a message to
be transmitted. The process does not start applica-
tion processing again until the message has been sent
on the channel. Hosts can receive and request re-
transmission for messages while processes are doing
application processing.

(viii) Since the focus of this model is Psync, rather than the
underlying network implementation, a simple scheme
to model the MAC layer is devised. If more than one
host wants to send a message on the channel, a host
is selected uniformly to transmit. All remaining hosts
wait until the communication channel again becomes
idle to attempt to transmit their message.

(ix) Message loss in the network is modelled probabilis-
tically, with a fixed loss probability assigned to each
message transmission. This loss probability is var-
ied to determine its effect on Psync’s performabil-
ity. Though the model permits assignments of differ-
ent message loss probabilities for different message
types, this paper will only consider the case where
the same loss probability is assigned to all transmit-
ted messages.

2.3. Model description

Given the preceding description of the protocol and
assumptions, we can now describe a model of Psync
that accounts for message, retransmission request, and

retransmission losses. The model faithfully represents
the behaviour of the protocol as described in section 2.1.
We define the following terms to facilitate the discussion.
The termlast-senderidentifies the process that transmitted
the latest new message. The termNAK-senderrefers to
the process that requested retransmission for one or more
messages from the last-sender. The termthird-process
refers to the process other than the last-sender and the NAK-
sender. The termrecipientsrefers to potential receivers of
new or retransmitted messages. In the model, we keep track
of both the last-sender and the NAK-sender.

Context graph representation.In the protocol, each newly
transmitted message is identified by a message id and
the id of the sender. Representing ids directly in the
state space will generate a model with an intractable state
space. Instead, the model keeps track of the number of
lost messages and their type. Note that this is purely
a modelling trick and does not in any way affect the
results obtained. Lost messages are grouped into two types,
depending on the number of processes that have lost them.
Messages that are lost by one process are called type-1
messages, and messages that are lost by two processes
are called type-2 messages. Locally, each process keeps
track of the number and type of messages it has lost.
Globally, the model keeps track of the number and type
of all messages lost. Each process therefore knows the
number and type of messages it has lost and the number
and type of all lost messages. We need only keep track of
lost messages, because these messages are important to the
protocol operation and the evaluation of its performance.
Once a message and its predecessors have been received
by all processes, it can be deleted from the context graph,
since it will not need to be retransmitted to another process.

The following variables are used to represent the
context graph at each host and the global context graph.
These variables replace identifying messages using message
ids and the id of the sender. The variableprocess-
type1-messagesrefers to the number of type-1 messages
a process has not received. The variableprocess-type2-
messagesrefers to the number of type-2 messages a
process has not received. The variabletotal-type1-messages
refers to the number of type-1 messages missing by all
processes. The variabletotal-type2-messagesrefers to the
number of type-2 messages missing by all processes. The
variable sender-type1-messagesrefers to the number of
type-1 messages that the last-sender has not received. The
variable sender-type2-messagesrefers to the number of
type-2 messages that the last-sender has not received. The
variableNAK-sender-type1-messagesrefers to the number
of type-1 messages the NAK-sender has not received. The
variableNAK-sender-type2-messagesrefers to the number
of type-2 messages the NAK-sender has not received.
All of these variables except process-type1-messages and
process-type2-messages are global (the values of global
variables are known to all processes). The use of global
variables in our model is equivalent to the ‘piggy-backing’
technique that the Psync protocol uses to pass context graph
information between the processes.
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Having described how lost messages are identified and
how the context graph is represented, we can now discuss
how the basic protocol operations are modelled.

Sending and receiving messages.Processes in the group
periodically generate new messages to be transmitted on the
communication channel. There are two alternate phases that
an application process executes, a processing phase and a
transmission phase, as per assumption (vii). At the end of
the processing phase, a process generates a new message
to be sent on the channel. During the transmission phase,
processes that are contending for the channel continuously
and independently sense the status of the channel. Once
the channel becomes idle, one host, selected uniformly (per
assumption (viii)), places a new message on the channel.
When a new message is transmitted, it is duplicated twice
(equal to the number of recipients, two in this model).
Each copy either reaches the destination host or is lost (per
assumption (ix)). The host that transmitted the message on
the channel starts processing immediately after placing the
duplicate copies on the channel.

If both copies reach their destination hosts, the
recipients may independently request retransmission for
previously lost messages, as described in the next section.
If one copy reaches the destination host and the other copy
is lost, the process that received the message may request
retransmission for previously lost message(s). In this case,
the process that did not receive the message increments
its process-type1-messages variable. If both copies are
lost, the recipients increment their process-type2-messages
variable. At the end of transmission, if one or two copies
are lost, total-type1-messages or total-type2-messages is
incremented, respectively.

Sending and receiving retransmission requests.In the
protocol, when a new message is transmitted, the message
includes the ids of this message’s immediate predecessors
in the context graph. A process uses this information to
determine if it has lost any messages. Since we do not
keep track of message ids in the model, the message loss
type distribution of the last-sender is made available to
the recipients through sender-type1-messages and sender-
type2-messages variables. Therefore, when a process
receives a message, it may request retransmission for
one or more messages from the last-sender by comparing
the process’s message-loss-type distributions with the
total message-loss-type distributions and the last-sender
message-loss-type distributions. The algorithm in figure
2 outlines how this is determined.

The algorithm is designed to determine if there is a
correlated message loss between the last-sender and the
receiver. A correlated message loss occurs when both
the last-sender and the receiver are missing the same
message(s). Hence, no NAK is sent for these messages. A
retransmission request is sent for the remaining messages
the receiver is missing.

The algorithm is structured using theif ... then
... else construct. The firstif statement checks to
see whether the receiver has not lost any messages or the
last-sender has lost all the messages that any host has

lost. If either case is true, no retransmission request is
sent for any messages because the just-received message
is not in the context of a lost message. The secondelse
if statement is true if the receiver has lost one or more
messages, but the last-sender has not lost any messages. In
this case, the just-received message is sent in the context
of all messages the receiver has lost. A retransmission
request is sent for these messages. The nextelse if
statement is true if the last-sender has lost at least one
message and the receiver has lost all messages considered
lost thus far. In this case, a retransmission request is
sent for all lost messages, except the messages the last-
sender lost. The remaining statements check to see how
many messages of those lost by the receiver are correlated
with the messages the last-sender has lost. For example,
if the statementelse if sender-type2-messages ==
0 or process-type2-messages == 0 is true, all the
messages the receiver has lost and the sender has lost are
type-1 messages. Therefore, all the messages missing from
the receiver’s context graph are present at the last-sender’s
context graph. The just received message was thus sent in
the context of all messages the receiver is missing, and a
retransmission request should be sent for these messages
(num-retrans = process-lost).

The algorithm continues to check all possible
values of process-type1-messages, process-type2-messages,
total-type1-messages, total-type2-messages, sender-type1-
messages, and sender-type2-messages variables and to
request retransmission for any messages present at the last-
sender’s context graph and missing from the receiver’s
context graph. As presented, the algorithm is applicable
when MAX ≤ 3 (the situation considered in this paper),
but it is straightforward to extend it to larger values of
MAX.

Once the number of messages to be retransmitted
has been determined, processes that are requesting
retransmission contend for the channel to send a NAK to
the last-sender. One process (as per assumption (viii)) is
selected uniformly to transmit the NAK. If the last-sender
receives the NAK, it will begin retransmitting messages as
described in the next section. Otherwise, processes that are
requesting retransmission contend for the channel again.
No new transmission can begin (as per assumption (v))
until all NAKs have been received by the last-sender and
all retransmitted messages have been received by the NAK-
senders.

Sending and receiving retransmissions.In the protocol,
the NAK messages identify, using message ids, a subsection
of the context graph to be retransmitted. This identification
is not needed in this model because the needed information
can be determined from the global variables. The NAK
message indicates the number of messages the last-sender
must send. In addition, the NAK-sender message loss
type distributions are made known to the last-sender
through NAK-sender-type1-messages and NAK-sender-
type2-messages variables.

When the last-sender receives a retransmission request
for one or more messages, it must determine the message
loss type (i.e., the number of processes for which
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let num-retrans be the number of messages for which a retransmission is requested
let process-lost = process-type1-messages + process-type2-messages
let total-lost = total-type1-messages + total-type2-messages
let sender-lost = sender-type1-messages + sender-type2-messages

if process-lost == 0 or sender-lost == total-lost
num-retrans = 0

else if sender-lost == 0
num-retrans = process-lost

else if process-lost == total-lost
num-retrans = total-lost - sender-lost

else if sender-type2-messages == 0 or process-type2-messages == 0
num-retrans = process-lost

else if total-lost == 3 and sender-lost == 1 and process-lost == 2
if sender-type2-messages + process-type2-messages == total-type2-messages

num-retrans = 2
else

num-retrans = 1
else if total-lost == 3 sender-lost == 2 and process-lost == 1

if sender-type2-messages + process-type2-messages == total-type2-messages
num-retrans = 1

else
num-retrans = 0

else if sender-type2-messages == process-type2-messages == total-type2-messages
and sender-lost == total-type2-messages

num-retrans = 0
else

num-retrans = 1

Figure 2. Algorithm to determine the number of messages for which retransmission is needed.

let type1-lost = total-type1-messages - process-type1-messages
let type2-lost = total-type2-messages - process-type2-messages
let total-lost = type1-loss + type2-loss

if type1-lost == 0 or NAK-sender-type1-messages == 0
P{type-1 message} = 0
P{type-2 message} = 1

else if type2-lost == 0 or NAK-sender-type2-messages == 0
P{type-1 message} = 1
P{type-2 message} = 0

else
P{type-1 message} = type1-lost/total-lost
P{type-2 message} = type2-lost/total-lost

Figure 3. Algorithm to determine message loss type of retransmitted messages.

the retransmission is intended) of each message to be
retransmitted. If the message is of type 1, it is transmitted
to the NAK-sender. If the message is of type 2, it is
duplicated and transmitted to the NAK-sender and the third-
process. The algorithm shown in figure 3 describes how
the message loss type is determined for a retransmitted
message. In this algorithm, the last-sender subtracts its
local message loss type distribution from the total message
loss type distribution to generate a new total message loss
type distribution for the recipients. Using this distribution
and the distribution of the NAK-sender, a type for the
retransmitted message is probabilistically selected.

When the NAK-sender receives retransmission for a

message of type 1, it decrements 1 from process-type1-
messages. If the message is of type 2, the number
of processes that receive this message is made known
to both processes. If the message is delivered to both
processes, each process decrements its process-type2-
messages. If the message is delivered to one process
only, the process that received the message decrements
its process-type2-messages. The process that did not
receive the message decrements its process-type2-messages
and increments its process-type1-messages. If neither
process receives the message, neither the local nor the
global message loss type distributions are updated. At the
end of retransmission, total-type1-messages, total-type2-
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messages, NAK-sender-type1-messages and NAK-sender-
type2-messages are updated to reflect the new total message
loss type distributions and the new message loss type
distribution for the NAK-sender.

Model summary. The execution of the model can be
summarized as follows. Execution begins with each process
in the application processing phase. When a process
generates a new message, it places the message on the
channel if the channel is idle. If the channel is busy, the
process contends for the channel and eventually sends its
message. When a process receives a message, it checks to
see if this message was sent in the context of any message
it is missing. If this is the case, the process waits for its
turn to send a NAK to the last-sender. When the last-sender
receives the NAK, it determines the message loss type for
each requested message and transmits this message on the
channel. Throughout the communication, messages can be
lost. The type and number of lost messages are recorded
using local and global variables. These global variables
are used to identify the number and type of messages to be
retransmitted.

3. Modelling Psync using SANs

Based on the model description above (assuming determin-
istic times for message transmissions, retransmissions, and
NAK transmissions (assumption (vi)) and exponential pro-
cessing times), a Markov regenerative stochastic process
(MRSP) [17] can be constructed for the protocol. Note that
the generated stochastic process isnot Markov and hence
cannot be solved using standard Markov solution methods.
Rather than building the MRSP directly, which would con-
sist of tens of thousands of states, the model is constructed
as a composed stochastic activity network (SAN) [12]. To
construct and solve the SAN model, the modelling package
UltraSAN [20] is used. Once a SAN model is built,Ultra-
SANautomatically converts the SAN model to a MRSP pro-
cess and solves the resulting process for the performance,
dependability, or performability variables of interest. The
solution method employed is based on recently developed
solution methods for deterministic and stochastic Petri nets
[18, 19]. While space does not permit a review of SANs and
UltraSAN, we will try to illustrate their use as the Psync
SAN model is described. For more information, consult
[12, 13, 16].

In the following, SAN models are built for each of
the protocol operations described, and a complete (or
‘composed’) model of the multiple processes is built using
replicate and join operations. Composed models consist of
SANs that have been replicated and joined multiple times.
The replicate operation reduces the state-space size of the
constructed Markov process by detecting symmetries in the
model [13]. Replicated and joined SAN submodels can
interact with each other through a set of places which are
common to multiple submodels. These places are known
ascommonor distinguishedplaces.

Figure 4 shows the composed model for Psync. The
model consists of three SAN submodels:transmit , receive,
and retransmit . These three submodels are joined to

retransmittransmit

Join

Rep

receive

Figure 4. Composed model for Psync.
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places common to all replicas

places common among submodels

initial marking 1

Figure 5. SAN submodel of transmit .

generate a complete model of the operations a process
performs. The joined model is then replicated three times,
representing the three processes in the group.

Figure 5 shows the SAN representation of thetransmit
submodel. This SAN models the application processing and
transmission of new messages on the channel. The SAN
consists of the timed activitiesprocessand transmitstart
(timed activities, which are drawn as ovals, are used to
represent delays in the model). Activityprocessrepresents
the delay (time) in the model that a process spends in the
application processing phase. When this activity completes,
a new message is generated by adding a token to place
messto send(represented as a circle). When the activity
transmitstart completes, a new message is placed on the
channel.

The input gatetrans en (represented as a triangle with
its point connected to the activity) has an enabling predicate
and function. The predicate specifies the conditions
under which the connected activity,transmitstart, is
enabled. The function is executed when the activity
completes. The predicate for gatetransmiten is true
if the channel is idle, i.e., MARK(channel) == 0
(MARK(x) is a macro that returns the number of tokens
in place x), the previous transmission on the channel has
completed (MARK(done) == 0), no process is requesting
retransmission (MARK(procreq retrans) == 0), and there
is a new message to transmit (MARK(messto send) ==
1). The function for this gate places the message
on the channel, makes this process’s message-loss-type
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Figure 6. SAN submodel receive .

distribution known to all processes, and initializes the
number of tokens in the places needed to make sure that
each recipient receives, at most, one copy of the message.
Places that are at the right of figure 5 are common to all
processes. Places at the bottom of the figure are common
to the submodels but local to a process. Placesstart proc
andmessto sendare local to this submodel.

Figure 6 is the SAN representation of thereceive
submodel. This SAN models the reception of new messages
and sending retransmission requests for lost messages. The
place lost trans is the only place local to this SAN. The
places at the left of the figure are common with other
submodels but local to a single process. All other places
in the figure are common to all processes. The activity
trans delay represents the message transmission delay and
has a deterministic time which depends on the length of the
message and the speed of the media. There are twocases
(small circles at the right of the activity) associated with
the activity trans delay. One case represents successful
message delivery; the other case represents message loss.
A single case is chosen probabilistically when an activity
completes and the attached gates and arcs are executed.
The completion of activityendreceivesignals the end of a
transmission. When this activity completes, processes will
start contending for the channel to send a NAK to the last-
sender, if a message loss has been detected. The activity
retransreq start represents contention for the channel to
send a NAK to the last-sender. The NAK is either delivered
to the last-sender or lost. If the NAK is lost, activity
trans req fail is enabled, signalling that processes can begin
contending for the channel to send another NAK to the
last-sender. The function of output gateevaluate(which
is represented as a triangle with its back side connected to
an activity) executes the algorithm given in figure 2. The
function of output gateupdateupdates the global and local
message-loss-type distributions at the end of transmission
as described in section 2.3.
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lost_by_two req_lost_by_two

req_lost_by_onelost_retrans

end_retrans_en

end_retrans

I_lost_by_two

Figure 7. SAN submodel retransmit .

The SAN retransmit submodel is given in figure
7. This SAN models the sending and receiving of
retransmissions. The activityretransreq delay represents
the deterministic NAK transmission delay. The cases
associated with the activity represent the probability of
receiving the NAK and the loss type of the retransmitted
message is type 1, the probability of receiving the NAK
and the loss type of the retransmitted message is type 2,
and the probability of not receiving the NAK, respectively.
When this activity completes, depending on which case is
chosen, zero, one, or two copies of a retransmitted message
are placed on the channel. Since a single NAK message
can request retransmission for more than one message, the
activity retransstart models transmission of the second and
third possible retransmissions for the same NAK message.

Two activities are needed because we need to represent
the NAK transmission delay only once. The cases
associated with activity retransstart determine what
message loss type to place on the channel. The message
loss type of a retransmitted message is determined using
the algorithm in figure 3. Once the message loss type
for a message is determined and the message is placed
on the channel, activityretransdelay, which represents
the transmission delay for each retransmitted message, is
enabled. This activity indicates that there is a message
on the channel. The cases associated with activity
retransdelayrepresent the uncertainty in message delivery.
When all messages have been removed from the channel,
activity endretrans is enabled, indicating the end of
retransmission.

The functions of output gatesog2 and og3 update
the local and global variables (represented as places in
the SAN) according to whether the retransmitted message
is received or lost (as described in section 2.3). The
place lost retrans is the only local place to this SAN. The
places I lost by one and I lost by two are common with
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other submodels and local to a process. The remaining
places are common (global) to all processes.

4. Performability variables

Several performability variables of interest can be
determined from the model. First, and probably the
more interesting, is the expected steady-state time for a
message tostabilize. Psync, formally, defines a message
m sent by hosth to be stable, if each processq 6= h

has sent a messagemq in the context ofm (m ≺ mq)
[14]. Thus, mq serves as an acknowledgment tom. In
a distributed application, such as replicated data, where
messages are used to implement operations on the data, the
shorter the message stabilizing time, the higher the system’s
throughput, especially if ordered execution of operations
is required. Therefore, a short message stabilizing time
is desirable, and the effect of message loss probability on
stabilizing time is of interest. We consider a more refined
notion of stabilizing, where a message is considered to be
stable when all processes in the group have received it.
Stabilizing, as defined in this paper, is thus a lower bound
on stabilizing, as formally defined in [14]. This measure is
useful to a protocol designer, who would like to minimize
the time until all processes in a group receive a message.
Since Psync supports a negative acknowledgment scheme,
message stabilizing time is dependent on two factors: the
reliability of the network in delivering messages and the
frequency of sending messages.

The expected steady-state time for a message to
stabilize can be computed from the composed SAN model
using Little’s result. To see this, letN be the number of
processes in the group,λ be the application processing rate,
v be the fraction of time a process is in the processing phase,
and w be the expected steady-state number of unstable
messages for all processes (this includes lost messages, new
messages on the channel, and new messages ready to be
transmitted on the channel). Then, the expected steady-
state stabilizing time,S, is

S = w

N × λ × v
.

N andλ are parameters of the model, andw andv can be
determined through steady-state solution of the model (as
discussed in the next section).

The fraction of the times messages of various types
are on the communication channel is also interesting, since
they provide insight into the proportion of time spent doing
useful message transmission and the proportion of time
spent in activities related to protocol operation. More
precisely, we determine the fraction of time the channel is
idle, the fraction of time a new message is on the channel,
the fraction of time a retransmission is on the channel, and
the fraction of time a NAK message is on the channel, for
varying message loss probabilities. These variables also
give an indication of the channel bandwidth which is needed
to support an application for different workloads and fault
environments.

5. Results

Once all the SAN models, the composed model, and the
performability variables have been specified, the stochastic
process representation of the model is automatically
constructed. The model described results in a Markov
regenerative stochastic process with 14 031 states. The
resulting Markov process can then be solved byUltraSAN
using methods developed for models with deterministic and
exponential delays.

The results in this section were derived using the
following network, environment, and protocol parameter
values:

(i) a deterministic multicast message transmission delay
of 15 ms,

(ii) a deterministic NAK transmission delay of 1 ms,
(iii) an average application processing rate which was

varied (see below),
(iv) a message loss probability which was varied (see

below),
(v) an equally likely message loss probability, whether the

message is a new transmission, a retransmission, or a
NAK (assumption (ix)), and

(vi) a value of MAX = 3.

The goal here was not to specify a set of parameter values
that correspond to a particular, existing network, but to vary
important parameters through reasonable ranges to see their
effect on Psync’s performability.

Expected message stabilizing time.Figure 8 shows the
expected steady-state time for a message to stabilize, as a
function of application processing rateλ and message loss
probability p. For these measurements, we assumed the
following values forp: 0.0, 0.000 001, 0.000 01, 0.0001,
0.001, 0.01, 0.05, and 0.1. For each value ofp, we solved
the model for values ofλ equal to 1× 10−7, 1 × 10−6,
1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1, 1. These
values were selected to measure the behaviour of Psync for
different applications and different communication channel
reliabilities. Figure 9 shows more clearly the effect ofp on
S near the minimum of each curve, by showing a close-up
of figure 8.

As shown in figure 8, for low application processing
rates, the expected message stabilizing time is extremely
long compared to the ideal case, wherep is 0.0. For
example, atλ = 1 × 10−5, S > 100 ms for p ≥
0.001, compared toS = 15 ms in the ideal case. This
is because at low application processing rates, the time
between transmitting new messages is long. Since Psync
employs a negative acknowledgment scheme, the frequency
of sending retransmission requests for lost messages is
low at low processing rates, resulting in long message
stabilizing times.

As the application processing rate increases,S

decreases until an optimal value ofS is reached for specific
values ofλ and p. Increasing the application processing
rate above the optimal value for particular values ofλ and
p increasesS. This is because asλ increases, more new
messages are generated, and processes experience longer
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Figure 8. Expected steady-state time for a message to stabilize as a function of processing rate and message loss
probability.
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Figure 9. Expected steady-state time for a message to stabilize as a function of processing rate and message loss
probability.

delays to access the communication channel. In its turn,
increasing the average number of messages (w) in the
system beyond some optimal number increasesS. As λ

increases further,S reaches a bound for some value ofλ

and remains at that value for higher arrival rates. This is
because there can be, at most, three processes waiting to
transmit a new message, putting a bound onw. As shown
in figure 8, for high processing rates (λ = 1), w reaches a
maximum fixed value (w ≥ 4.0) andS levels off at a value
≥ 60.

In addition, figure 8 shows that the higher the value

of p, the higher the value ofS for the same value ofλ.
For low application processing rates,λ ≤ 0.001, S is very
sensitive top. This is because for low values ofλ ≤ 0.001,
the value ofw is mostly due to the average number of lost
messages between the processes. The number of messages
on the channel and the number of messages waiting to be
transmitted are very small (close to zero) for such small
values ofλ. As shown in the figure, increasing the value of
p by a factor of 10 increases the value ofS by a factor of 10
for λ ≤ 1×10−4. However, for high application processing
rates (λ = 1), S is less sensitive top, compared with low
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Figure 10. Channel utilization as a function of processing rate and message loss probability.

application processing rates. At such high rates, the value
of w is mainly due to the number of messages waiting to be
transmitted and the new message on the channel. Increasing
p for such high rates increasesS, but not by the same factor
as was the case for low processing rates.

Channel utilization. Figure 10 shows how channel
utilization changes as application processing rate changes
for different message loss probabilities. In this figure,
channel utilization due to sending NAKs is not shown
because this value is very small. Channel utilization due
to sending NAKs ranges between 0.01% for message loss
probability 0.001 and processing rate 0.001 to 1.2% for
message loss probability equal to 0.1 and a processing rate
equal to 1.0. As shown in the figure, channel utilization
due to sending new messages and channel utilization due
to retransmissions are both proportional to processing rate.
In the figure,p is the message loss probability,Trans is
the channel utilization due to new messages,Retransis the
channel utilization due to retransmissions, andIdle is the
fraction of time the channel is idle.

Effect of MAX on model behaviour.Finally, table 1 gives
the fraction of time the total number of lost messages is
MAX (MAX = 3). As shown in the table, the probability
of reaching the maximum value is small even at a very high
message loss probability (p = 0.1) and high processing rate
(λ = 1.0). This confirms that setting MAX to three has little
effect on the results obtained.

6. Use of null messages

While the results show the efficiency of the protocol (almost
no time is spent transmitting negative acknowledgments),
they also reveal the extremely long message stabilizing

times that can result if the time between transmitting new
messages is long. An example of an application that
generates infrequent network transmission is a replicated
server for which updates are relatively rare. Read requests
would go to the local server and not generate Psync traffic,
and hence the only traffic would be the updates.

Figure 10 shows when the time between transmitting
new messages is 1 s, and the channel is idle 95% of the
time. This suggests a modification to Psync that uses excess
channel capacity, if available, to transmit ‘null’ messages.
These messages carry no new information but instead
contain information about the sender’s view of the context
graph. To ensure timely transmission of new messages, null
messages have lower priority than new messages within a
process. When a host receives a null message, it compares
the sender’s view of the context graph with its view of the
context graph and requests retransmission for any message
the receiver is missing. Losing null messages does not
worsen message stabilizing time because these messages
carry no new information and hence are not added to the
context graph.

To study the effect of sending null messages, we
modified the transmit submodel (in figure 5) as shown
in figure 11. In this SAN, activitynull msgtransmits null
messages at a fixed rate, with exponential times between
transmissions. When activitynull msgcompletes, it places
a token innull send. The function ofog2 is modified to set
the marking of placesnull en andnull sendto zero and set
the marking ofmessto sendto one. The function ofog1
places a token innull en and places a token instart proc
if its marking is zero. Activitytransmitstart is enabled,
in turn, if there is a token in either of the placesnull send
andmessto send, and the condition discussed in section 3
holds.

The new placeon channel, which is global, is used to
distinguish between null and new messages on the channel.
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Table 1. Probability that the number of total lost messages MAX = 3.

Processing rate p = 0.1 p = 0.05 p = 0.01 p = 0.001

0.001 5.13 × 10−3 7.31 × 10−4 6.5 × 10−6 6.64 × 10−9

0.01 7.3 × 10−3 1.04 × 10−3 9.24 × 10−6 9.45 × 10−9

0.1 9.5 × 10−3 1.42 × 10−3 1.31 × 10−5 1.35 × 10−8

1.0 9.51 × 10−3 1.43 × 10−3 1.32 × 10−5 1.36 × 10−8

channel

last_sender

proc_req_retrans

trans_en

start_proc
process

mess_to_send

done

sender_lost_by_one

sender_lost_by_two
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Figure 11. SAN submodel of transmit with null messages.

If the transmitted message is a null message, the marking
of on channel is set to two. If it is a new message, the
marking of placeon channelis set to one. A recipient can
determine the kind of message it has received by looking
at the marking ofon channel.

This submodel (figure 11) is joined with thereceive
submodel (figure 6) and theretransmit submodel (figure
7) described previously. The joined submodel is then
replicated three times, representing the three processes in
the group. UsingUltraSAN, Markov regenerative stochastic
process representation of the system can be generated, and
consists of 116 602 states.

Using the resulting model, we studied the effect
of transmitting null messages for two message loss
probabilities,p = 0.1 andp = 0.0001. We selected these
values to see how null messages affect message stabilizing
time under very lossy environments (p = 0.1) and under
more reliable channels (p = 0.0001). For each message
loss probability, we varied the application processing rate
and the null message sending rate. We assumed the average
transmission delay for a multicast null message was 15 ms.
The remaining parameter values in the model are unchanged
from the previous model. In each case, we solved the model
for 10−7 ≤ λ ≤ 10−2. Higher application processing rates
were not considered since null messages are not needed in
this case, and the solution time becomes long, due to the
high uniformization rate that is required to solve the model.
The results of the runs forp = 0.1 andp = 0.0001 are
shown in figures 12 and 13, respectively.

Figure 12 shows an example of the effect of
transmitting null messages on message stabilizing time
when there is a very high message loss probability. As
shown in the figure, the message stabilizing time decreases

Table 2. Channel utilization due to null message as a
function of null messages sending rate.

Null message sending rate Channel utilization

1 × 10−5 4.5 × 10−4

1 × 10−4 4.5 × 10−3

1 × 10−3 4.5 × 10−2

1 × 10−2 4.3 × 10−1

rapidly as the null message sending rate increases. Table 2
shows channel utilization due to null messages as a function
of null message sending rate. These results show that even
with an extremely severe message loss probability (p =
0.1), a reasonable message stabilizing time can be achieved
with an acceptable channel utilization due to null messages.
If we assume a message loss probability equal to 0.0001,
we can a achieve a close-to-ideal message stabilizing time
with only 0.45% channel utilization, according to figure 13
and table 2. Thus large improvements can be made in the
expected message stabilizing time without huge network
bandwidth requirements.

7. Conclusions

This paper presents an evaluation of Psync, a group
multicast protocol, that accounts for the effect of message
loss on the performance of the protocol. Such protocols
are an important building block for dependable distributed
systems, due to the strong guarantees they make concerning
message delivery and ordering.

The paper makes two important contributions. First, it
presents useful information regarding the performability of
Psync under a wide range of workloads and message loss
rates. The results show that while the protocol is extremely
efficient in its use of bandwidth for heavy workloads,
message stabilizing times are long if use is infrequent and
loss probabilities are significant. The timeliness of message
stabilization is an important aspect of a multicast protocol’s
performance, and these long times could prevent Psync’s
use in harsh fault environments. We then show how to
improve message stabilization times through the use of null
messages. Null messages contain no new information but
are sent in the context of messages within a host’s context
graph. By exchanging information between hosts regarding
their context graphs, null messages induce retransmission
requests for lost messages, thus reducing stabilizing times
of multicasts within the group. The evaluation results show
that an adaptive algorithm that uses null messages as traffic
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Figure 12. Expected steady-state time for a message to stabilize as a function of processing rate and null message rate,
when message loss probability is fixed at 0.1.
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Figure 13. Expected steady-state time for a message to stabilize as a function of processing rate and null message rate,
when message loss probability is fixed at 0.0001.

diminishes can significantly reduce message stabilization
time with minimal use of network bandwidth. Similar
insights about other multicast protocols could undoubtedly
be gained using modelling techniques similar to those used
in this paper.

Second, the paper illustrates the appropriateness
of stochastic activity network models for analytically
predicting the performance of group multicast protocols.
By representing the behaviour of Psync as a composed
stochastic activity network model, we are able to accurately
characterize the protocol’s mechanism for handling lost

messages in a precise manner, and then automatically
generate a stochastic process representation of the model.
Reduced base model construction methods are used to
reduce the size of the resulting Markov regenerative
stochastic process, and recently developed numerical
techniques for models with deterministic and exponential
delays are used to obtain the desired performance measure.
If reduced base model construction techniques had not been
used, and the states of the process were to be the stable
(also known as ‘tangible’) reachable markings, 82 856
and 737 702 states would have been needed for the first
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and second models, respectively. Thus with respect to
this objective, the results show that it is indeed possible
to model complex protocol operations as SANs and, by
using reduced base model construction methods, obtain a
Markov regenerative stochastic process that can be solved
in reasonable time. The results bode well for the use
of stochastic activity networks and reduced base model
construction on practical protocol evaluations.
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