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ABSTRACT 

We derive a general form of the induced electromotive force due to a time-varying magnetic field. It is shown that the 
integral form of Faraday’s law of induction is more conveniently written in the covering space. Thus the differential 
form is shown to relate the induced electric field in the nth winding number to the (n+1)th time-derivative of the magnetic 
field. 
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1. Introduction 

Faraday’s law of induction in its differential and inte-
gral forms is a well-known standard topic which is 
discussed in many textbooks on electricity and mag-
netism [1-4]. Its integral form relates the closed line 
integral of the induced electric field to the negative 
time-derivative of the enclosed magnetic flux. This 
induced electric field creates an induced electromotive 
force which gives a magnetic field that, by Lenz’s law, 
opposes the change in the magnetic flux. Therefore the 
magnetic field is modified each time the path is trav-
ersed. A consequence of this is that the induced elec-
tromotive force (ε) is a sum over all contributions of 
multiple paths. The role of multiple paths in determin-
ing the final outcome was suggested long time ago by 
Feynman in his path integral method [5]. There have 
been several applications of the path integral method in 
various fields. For example, in the discussion of the 
Aharonov-Bohm effect [6], in nonlinear filtering [7], in 
proton-transfer reactions [8], in the study of vibrational 
and rotational free energies of hydrated Chloride ions 
[9] and in atomic interferometry [10]. A convenient 
way in the treatment of such problems is the use of a 
covering space as proposed long ago by Schulman [11]. 
In the covering space, the two-dimensional polar angle, 
θ ranges from  to +∞ rather than 0 to  in the 
physical space. The usefulness of a covering space in 
the discussion of multiple paths was utilized by several 
authors [12-14].The purpose of this work is to consider  

 2π

the consequences of a rather straight forward and more 
fundamental problem, for which the solution on the 
covering space can be written down. In particular, we 
derive a general form of the induced electromotive 
force due to a time-varying magnetic field. Thereafter, 
the integral form of Faraday’s law of induction is nec-
essarily written on the covering space and the differen-
tial form relates the induced electric field for the nth 
loop (the so-called winding number) to the (n + 1)th 

time-derivative of the magnetic field. In section 2, we 
consider a time-varying magnetic field in a circuit and 
derive the induced electromotive force, ε. In section 3, 
we show how we can write the integral and differential 
forms of Faraday’s law of induction on the covering 
space. Section 4 is devoted for discussion and conclu-
sion. 

2. Derivation of the Induced Electromotive 
Force, emf 

Consider an external time-varying magnetic field that 
passes through a circuit of resistance R. We derive the 
induced electromotive force (emf = ε) by the method of 
successive approximation. First, we pretend that the 
magnetic field is 0B , and the emf is given by the nega-
tive rate of change of the magnetic flux as 
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and thus the induced current is 
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This induced current generates a magnetic field of its 
own, 1B , whose direction is such that, by Lenz’s law, to 
oppose the change in the magnetic flux. Biot-Savart law 
ensures that this magnetic field can be written as 
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where  is a vector whose magnitude depends on the 
geometry of the circuit. In the second step of the ap-
proximation, the total magnetic field through the circuit 
is 
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and thus, using Equation (1), the modified emf at the end 
of this step is 
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The above emf gives rise to a modified current given 
by 
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which in turn generates its own magnetic field, 2B  
given by 

2 2 0 02
d di

R R
      

c c
dB c B A c A B A ,    (7) 

where the prime denotes time derivative. 
In the third step of the approximation, the total mag-

netic field that passes through the circuit is  
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which corresponds to another modified emf given by 
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In a similar manor, it is easy to show that the modified 
emf at the end of the fourth step of approximation is 
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where is the  time-derivative of the magnetic 
field. Therefore, carrying the above steps further, one 
finds that the general formula for the emf is 
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It is instructive to write Equation (11) in terms of the 
self-inductance,  of the circuit which is defined as L
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so the result is 
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The above equation shows that the induced electromo-
tive force is written as a power series of self-inductance 
of the circuit and surface integrals over higher 
time-derivatives of the external magnetic field, 0B . One 
may easily check that the  term in the sum in Equa-
tion (13) has the expected unit, volt. Furthermore, the 
first term in the sum (

thn

0n  ) gives the induced emf that is 
found in most standard electromagnetic textbooks [4], 
namely 
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3. Integral and Differential Forms of  
Faraday’s Law 

The  term of Equation (13) contributes to the total 
induced emf a quantity given by 
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and, as is well-known [4], this is accounted for by an 
induced electric field nE  such that 

dn n   E s .               (16) 

This may be viewed as a closed line integral around 
the  loop (winding number) in the covering space 
whose polar angle 

thn
(  , )    . The necessity for a 

covering space was emphasized long time ago by 
AL-Jaber and Henneberger [12]. Therefore, the integral 
form of Faraday’s law in the covering space is 
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      (10) which gives the  loop (winding number n) contribu-
tion to the induced electric field due to the  
time-derivative of the magnetic field. In the physical 
pace, where the polar angle 
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s (0,  2π)  , one has to add      
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all contributions coming from different loops (winding 
numbers) to get the induced electric field E , namely 
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The above equation gives the integral form of Fara-
day’s law. It must be noticed that the closed line integral 
on is carried out on the physical space, while the closed 
line integral on the right is carried out on the covering 
space. The differential form of Faraday’s law is readily 
obtained by applying Stoke’s theorem to convert a closed 
line integral into a surface integral. In the covering space, 
one immediately gets 
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while in the physical space, the result is 
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The case n = 0 is readily obtained from the above two 
equations with the result 

0

t
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which is a well-known result. 

4. Conclusions and Discussion 

In this paper, we derived a general form of the induced 
electromotive force using the method of successive ap-
proximation. It was shown that this induced electromo-
tive force is a power series of the self-inductance of the 
circuit and of surface integrals of higher time-derivatives 
of the external magnetic field. The first term in the series 
is the familiar induced electromotive force and the higher 
order terms are contributions coming from different 
winding numbers in the covering space. The  term in 
the series is accounted for by the closed line integral of 
an induced electric field around the  loop (winding 
number) in the covering space. Therefore, the integral 
form of Faraday’s law was written in the covering space 
and the contribution coming from the  winding 
number is proportional to the  power of self-induc-
tance and to the surface integral of the  time- 
derivative of the external magnetic field. In addition, the 
differential form of Faraday’s law relates the curl of the 
induced electric field coming from the  winding 
number to the  time-derivative of the external 
magnetic field. While in the physical space, the curl of 

the total induced electric field is related to the sum of all 
contributions coming from different winding numbers. 
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