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Planck’s Spectral Distribution Law in N Dimensions
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Planck’s spectral distribution law is derived inN-dimensional space. Some relevant
formulas are thus obtained and analyzed. The behavior of these formulas in higher
dimensions is examined and some numerical values are calculated.

KEY WORDS: black body radiation; boson systems.

1. INTRODUCTION

Today it is well recognized that the concept of dimensions plays an impor-
tant role in many areas of physics. Fukutaka and Kashiwa (1987) and Neves and
Wotzasek (2000) considered path integrals formulation and free particle quantiza-
tion on N-dimensional sphere. Some authors discussed hypercubic lattices inN
dimensions (Bonnier, 2001; Francesco and Guitter, 2002; Joyce and Zucker, 2001;
Miller and Srivastava, 2001; Shrock and Wu, 2000). Recent work in mathematical
physics has been reported: Phase space and momentum operators inN dimensions
(Bashiret al., 2001; Paz, 2001), topological aspect of topological defects in arbi-
trary dimensions (Jiang, 2000), superintegrability and exact solvability models in
arbitrary dimensions (Rodriguez, 2002). A great deal of work has been carried out
in quantum gravity theories in extra dimensions. Arkani-Hamed (2002) consid-
ered approximate symmetries from distant breaking in extra dimensions. Biesiada
and Malec (2002) discussed the white dwarf cooling from extra dimensions. Oda
(2001) and Bander (2001) studied the generalization of locally localized gravity
models to higher dimensions. The investigation of Einstein gravitational equa-
tions of motion in higher dimensions was recently reported (Ito, 2001; Ivashchuk
and Melnikov, 2000; Mannheim, 2001). Furthermore, Al-Jaber (1999) considered
Fermi gas inD dimensions and Salasnich (2000) investigated ideal quantum gases
in D-dimensional space and confined in power-law potentials.
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The present paper further studies the photon gas inN-dimensional space.
In particular, we derive the Planck’s spectral distribution law and thus examine
Wien’s displacement constant and Stephan–Boltzmann law inN dimensions.

2. THE PHOTON GAS AND PLANCK’S LAW IN N DIMENSIONS

We consider electromagnetic radiation in thermal equilibrium within an en-
closure of volumeV in N-dimensional space, thus our system can be considered
a photon gas. Each photon is a boson of zero mass and has (N − 1) states of polar-
ization. The average number of photons in each energy level at temperatureT is

〈ni 〉 =
[

exp(βEi )− 1
]−1
. (1)

If the volumeV is large then the energy levels are closely spaced andEi can be
considered as a continuous variableE. Thus number of photonsn(E, T) dEwithin
the energy rangeE to E + dEat temperatureT is

n(E, T)dE= D(E)[exp(βE)− 1]−1dE, (2)

whereD(E) is the density of states (number of photon states per unit energy inter-
val). We may express the density of states as function of wavelength,λ, as

G(λ) = D(E)|d E/dλ|, (3)

and therefore the number of photons within the wavelength intervalλ andλ+ dλ
is given by

F(λ, T) dλ = G(λ)[exp(2πβhc/λ)− 1]−1dλ. (4)

Thus the energy density within the intervaldλ is

ρ(λ, T) dλ = E F(λ, T) dλ/V = 2πhcF(λ, T) dλ/(λV). (5)

Our aim now is to findD(E) and thenG(λ). The wave function of each photon is
a plane wave given, inN-dimensional space, by

9(x1, x2, . . . , xN) =
N∏

j=1

exp(ik j x j ), (6)

and if periodic boundary conditions are imposed, then

kj = 2π

L
nj , j = 1, 2,. . . , N, (7)

wherenj are integers, andL is the side length of our cubic volumeV . The number
of states, up to a given value ofk, is equal to number of unit cells of unit volume
within a hypersphere of radiusk. Taking into account that there are (N − 1) states
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of polarization of each photon, the total number of photon states,n, within the
hypersphere is

n = (N − 1)

(
L

2π

)N

VN , (8)

whereVN is the volume of the hypersphere given by (Bender, 1995)

VN = πN/2K N

0(1+ N/2)
, (9)

therefore,

n = (N − 1)(L/2π )N πN/2K N

0(1+ N/2)
, (10)

and upon usingV = L N andK = E/hc, we get

n = (N − 1)V

2NπN/20(1+ N/2)
(E/hc)N . (11)

The density of states is

D(E) = dn

d E
= (N − 1)V EN−1

2N−1πN/20(N/2)(hc)N
, (12)

and thus, upon the use of Eq. (3), we have

G(λ) = 2(N − 1)VπN/2

0(N/2)λN+1
. (13)

Therefore, Eq. (4) yields

F(λ, T) dλ = 2(N − 1)VπN/2dλ

0(N/2)λN+1
[exp(hc/λkT)− 1]−1, (14)

and hence the spectral distribution function, Eq. (5), is

ρ(λ, T) = 2(N − 1)πN/2hc

0(N/2)λN+2

1

ehc/λkT − 1
. (15)

This is the Planck’s spectral distribution law inN dimensions, that is, the energy
density per unit wavelength. The total energy density is

ρ(T) =
∫ ∞

0
ρ(λ, T) dλ = 2(N − 1)πN/2hc

0(N/2)

∫ ∞
0

dλ

λN+2(ehc/λkT − 1)
, (16)

and if we letx = hc/λkT, then we get

ρ(T) = 2(N − 1)πN/2(kT)N+1

0(N/2)(hc)N

∫ ∞
0

xNdx

ex − 1
. (17)
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The integral in Eq. (17) is (Dwight, 1961)∫ ∞
0

xNdx

ex − 1
= N!ξ (N + 1), (18)

whereξ (N + 1) is the Riemann zeta function.
The substitution of Eq. (18) into Eq. (17) and usingN! = 0(N + 1), gives us

ρ(T) = 2(N − 1)πN/2kN+10(N + 1)

0(N/2)(hc)N
ξ (N + 1)T N+1. (19)

It is clear the dependence of the total energy density on the dimensionN. It is
worthy to mention that in the three-dimensional case, our result yields (forN = 3)
the expected result (Bransden and Joachain, 2000)

ρ(T) = 8π5k4

15h3c3
T4, (20)

where we usedξ (4)= π4/90 (Abramowitz and Stegun, 1972).
It is interesting to calculate the total number of black body photons per unit

volume at absolute temperature

n =
∫ ∞

0

ρ(λ, T) dλ

hc/λ
. (21)

Using Eq. (15) and, as before,x = hc/λkT yields

n = 2(N − 1)(N − 1)!πN/2ξ (N)

0(N/2)(hc)N
K NT N , (22)

which could be written as

n = dNT N , (23)

with dN being the coefficient ofT N in Eq. (22). One sees that the number of
photons per unit volume increases as the dimensionN increases. For numerical
values, Table I shows the values of the parameterdN for several values of the
dimensionN. It is observed that for the three-dimensional case (N = 3) our results
givesd3 that coincides with the well-known result (Bransden and Joachain, 2000).

It may also be tempting to calculate the average energy〈E〉 of a black body
photon at absolute temperature. This is readily deduced by dividing the total energy
densityρ(T), given by Eq. (19), by the total number of photons per unit volume,
given by Eq. (22). The result, by doing so, is

〈E〉 = Nξ (N + 1)

ξ (N)
kT = aNT, (24)

where we have used0(N + 1)= N(N − 1)!. For numerical values, Table II shows
the values ofaN for several values of the dimensionN.
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Table II. Values ofaN for Different Values ofN

N 2 3 4 5 6 7 8 9 10

aN (10)23 2.018 3.729 5.291 6.773 8.211 9.624 11.021 12.415 13.80

It is observed from Table II and Eq. (24) that, at a given temperature, the
average energy of a photon increases as the dimensionN increases. Again, our
results give the expected result for theN = 3 case, i.e.,a3 (Bransden and Joachain,
2000).

3. SPECIAL CASES

In this section we discuss two special cases that are relevant to Planck’s
radiation law inN dimensions.

3.1. The Long Wavelength Limit

In the long wavelength limit, we can keep the first two terms in the expansion
of the exponential in the denominator of Eq. (15) and we get

lim
largeλ

ρ(λ, T) = 2(N − 1)πN/2

0(N/2)λN+1
kT, (25)

which is Rayleigh–Jeans formula inN dimensions. For theN = 3 case, the result
in Eq. (25) yields the expected formula in the three-dimensional case, namely

lim
largeλ

ρ(λ, T) = N=3−→ 8π

λ4
kT. (26)

3.2. Wein’s Displacement Law

We need to find the value ofλ for which the Planck spectral distribution,
Eq. (15), is maximum. The requirement thatdρ/dt(λ, T) = 0 gives

λT = hc

(N + 2)k
[1− exp(−hc/λkT)]−1. (27)

By letting x = hc/λkT, Eq. (27) becomes

x = (N + 2)(1− e−x), (28)

and upon writingx = (N + 2)− ε, the above equation can be written as

(N + 2)− ε = (N + 2)
(
1− e−(N+2)eε

)
. (29)
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By expandingeε ≈ 1+ ε + ε2/2, we find

εz

2
+ ε

(
1− eN+2

N + 2

)
+ 1= 0, (30)

whose positive root is

ε =
(

eN+2

N + 2
− 1

)
−
[(

1− eN+2

N + 2

)2

− 2

]1/2

. (31)

The defining equationx = hc/λkT implies that

λmax T = hc

k(N + 2− ε) ≡ bN , (32)

which is Wien’s displacement law inN dimensions andbN is Wien’s displacement
constant.λmax is the wavelength at whichρ(λ, T) has its maximum value for a
given absolute temperature. Using Eq. (15), we have

ρ(λmax, T) = 2(N − 1)hcπN/2

0(N/2)(bN)N+2

T N+2

ex − 1
. (33)

It is instructive to calculateε, x, bN , andρ(λmax, T) for several values ofN. This
is given in Table III.

It is noticed that as the dimensionN increasesbN decreases, which implies
thatλmax shifts toward lower values. This means that the system radiates at high
energy. This result is consistent with what was found in Section 2 that the average
energy of each photon increases asN increases. It is also observed from Table III
that asN increasesρ(λmax, T), at a given temperature, increases. This is also
consistent with our result in Section 2, which shows that the number of photons
per unit volume increases asN increases.

Table III. Values ofε, x, bN , andρ(λmax, T) for Several Values ofN

N ε x bN (10−3) ρ(λmax, T)

2 0.07930 3.9207 3.6728 1.389× 10−16T4

3 0.03488 4.965 2.9002 1.712× 10−13T5

4 0.01509 5.9849 2.4061 1.532× 10−10T6

5 0.00642 6.9936 2.0590 1.226× 10−7T7

6 0.00269 7.9973 1.8006 9.396× 10−5T8

7 0.00111 8.9989 1.6002 7.093× 10−2T9

8 0.00045 9.9995 1.4401 5.365× 101T10

9 0.00018 10.9998 1.3091 4.082× 104T11

10 0.00007 11.9999 1.2000 3.151× 107T12
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4. DISCUSSION AND CONCLUSIONS

In summary, the Planck’s spectral distribution law inN-dimensional space is
derived and thus the energy density was obtained. Afterwards the total number of
photons per unit volume was calculated and was shown to be proportional to the
Nth power of absolute temperature. Numerical values of the proportionality factor
dN were calculated and was shown that this factor increases as the dimensionN
increases. Subsequently, the average energy of each photon was obtained and was
shown that it increases asN increases. Furthermore, Rayleigh–Jeans formula inN
dimensions is obtained when the large wavelength limit of the spectral distribution
function is taken. Finally, Wien’s displacement law was derived and numerical
values of Wien’s displacement constant in higher dimensions were given. It is
shown that this constant decreases as the dimensionN increases, which implies that
the wavelength at which the spectral distribution function is maximum shifts toward
lower values. This means that the photon gas radiates at high energy in higher
dimensions, which is consistent with our result concerning the average energy of
each photon. It is also noticed that the maximum values of the spectral distribution
function, at a given temperature, increases asN increases, which is consistent with
our result for the number of photons per unit volume in higher dimensions. We
emphasize that our main results yield the expected results for the three-dimensional
space.
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