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Planck’s Spectral Distribution Law in N Dimensions
Sami M. Al-Jaber?
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Planck’s spectral distribution law is derived k-dimensional space. Some relevant
formulas are thus obtained and analyzed. The behavior of these formulas in higher
dimensions is examined and some numerical values are calculated.
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1. INTRODUCTION

Today it is well recognized that the concept of dimensions plays an impor-
tant role in many areas of physics. Fukutaka and Kashiwa (1987) and Neves and
Wotzasek (2000) considered path integrals formulation and free particle quantiza-
tion on N-dimensional sphere. Some authors discussed hypercubic lattides in
dimensions (Bonnier, 2001; Francesco and Guitter, 2002; Joyce and Zucker, 2001;
Miller and Srivastava, 2001; Shrock and Wu, 2000). Recent work in mathematical
physics has been reported: Phase space and momentum operhtaigiensions
(Bashiret al,, 2001; Paz, 2001), topological aspect of topological defects in arbi-
trary dimensions (Jiang, 2000), superintegrability and exact solvability models in
arbitrary dimensions (Rodriguez, 2002). A great deal of work has been carried out
in quantum gravity theories in extra dimensions. Arkani-Hamed (2002) consid-
ered approximate symmetries from distant breaking in extra dimensions. Biesiada
and Malec (2002) discussed the white dwarf cooling from extra dimensions. Oda
(2001) and Bander (2001) studied the generalization of locally localized gravity
models to higher dimensions. The investigation of Einstein gravitational equa-
tions of motion in higher dimensions was recently reported (Ito, 2001; Ilvashchuk
and Melnikov, 2000; Mannheim, 2001). Furthermore, Al-Jaber (1999) considered
Fermi gas irD dimensions and Salasnich (2000) investigated ideal quantum gases
in D-dimensional space and confined in power-law potentials.
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The present paper further studies the photon gad-imensional space.
In particular, we derive the Planck’s spectral distribution law and thus examine
Wien's displacement constant and Stephan—Boltzmann lawdimensions.

2. THE PHOTON GAS AND PLANCK'S LAW IN N DIMENSIONS

We consider electromagnetic radiation in thermal equilibrium within an en-
closure of volume/ in N-dimensional space, thus our system can be considered
a photon gas. Each photon is a boson of zero mass antNhadlj states of polar-
ization. The average number of photons in each energy level at tempefatire

(ni) = [expBE) — 1] . (1)

If the volumeV is large then the energy levels are closely spacedE&rzian be
considered as a continuous variaBleThus number of photong E, T) dEwithin
the energy rang€ to E + dE at temperaturd is

n(E, T)dE = D(E)[exp(BE) — 1] *dE, 2)

whereD(E) is the density of states (number of photon states per unit energy inter-
val). We may express the density of states as function of wavelengls,

G(2) = D(E)IdE/d4A|, ®3)

and therefore the number of photons within the wavelength intéraad + di
is given by

F(r, T)dx = G(A)[exp(2rphc/a) — 1] 1dA. (4)
Thus the energy density within the inteneil is
p(A, T)dr = EF(A, T)dA/V = 2rhcF(A, T)dA/(AV). (5)

Our aim now is to findD(E) and thenG(1). The wave function of each photon is
a plane wave given, ihl-dimensional space, by

N
W(xy, X, ..., xn) = | | expk;x;), (6)
j=1
and if periodic boundary conditions are imposed, then
27 .
k,-:Tnj, j=1,2,...,N, (7)

wheren; are integers, ant is the side length of our cubic volumé& The number
of states, up to a given value kfis equal to number of unit cells of unit volume
within a hypersphere of radilks Taking into account that there afd & 1) states
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of polarization of each photon, the total number of photon statewithin the
hypersphere is

L N
n=(N—1)(—> VN, (8)
2
whereVy is the volume of the hypersphere given by (Bender, 1995)
N/2K N
N = niy (9)
1+ N/2)
therefore,
N/2K N
—(N-1)L/2n)N T 1
n=(N- D20 5y (10)
and upon usiny = LN andK = E/hc, we get
_ (N-1)v N
= Nanera+ N2y oo (11)
The density of states is
dn (N —1)VEN-1
D(E)= — = 12
(E) dE  2N-1zN/20(N/2)(hoN’ (12)
and thus, upon the use of Eq. (3), we have
_ 2(N - 1)V N2
Therefore, Eq. (4) yields
2(N — 1)V N/2da .
F(, T)dr = (N 2N [expthc/AKT) — 1]+, (14)
and hence the spectral distribution function, Eq. (5), is
2(N — D)nN/2he 1
o, Ty = 20 =2 (15)

F(N/Z)XN+2 ehe/akT _ 1°

This is the Planck’s spectral distribution law M dimensions, that is, the energy
density per unit wavelength. The total energy density is

0 2(N — 1)N/2he [ dx
o= [ o6 Ty = N / gy 09
and if we letx = hc/AKT, then we get
2(N — D V2(KT)NHL oo xNgx
o(r) = 20T D a7)

T'(N/2)(hoN b &1
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The integral in Eq. (17) is (Dwight, 1961)
> xNdx
o e -1
where£(N + 1) is the Riemann zeta function.
The substitution of Eq. (18) into Eq. (17) and usiNg= I'(N + 1), gives us
2(N — D) N2kNHIP(N 4 1)
p(T) = N
I'(N/2)(hc)
It is clear the dependence of the total energy density on the dimehkidinis
worthy to mention that in the three-dimensional case, our result yieldsl(fer3)
the expected result (Bransden and Joachain, 2000)
8r5k*
P(M = T3
where we useg(4) = 74/90 (Abramowitz and Stegun, 1972).

It is interesting to calculate the total number of black body photons per unit
volume at absolute temperature

= NIE(N + 1), (18)

E(N 4+ )TN+, (19)

T4, (20)

® p(A, T)da
= 0 7 21
A /0 hc/a (21)

Using Eq. (15) and, as before,= hc/ KT yields

2(N = (N = DIrN2E(N)
= KNT 22
" F(N/2hON ’ 22
which could be written as

n=dyTV, (23)

with dy being the coefficient o N in Eq. (22). One sees that the number of
photons per unit volume increases as the dimenslidncreases. For numerical
values, Table | shows the values of the paramdieffor several values of the
dimensionN. Itis observed that for the three-dimensional c&ée<{ 3) our results
givesds that coincides with the well-known result (Bransden and Joachain, 2000).

It may also be tempting to calculate the average enéfgyof a black body
photon at absolute temperature. This is readily deduced by dividing the total energy
densityp(T), given by Eq. (19), by the total number of photons per unit volume,
given by Eq. (22). The result, by doing so, is

_ NE(N+1)
="

where we have usdd(N + 1) = N(N — 1)!. For numerical values, Table Il shows
the values ofy for several values of the dimensidh

KT =anT, (24)
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Table Il. Values ofay for Different Values ofN

N 2 3 4 5 6 7 8 9 10

an (103 2,018 3.729 5291 6.773 8.211 9.624 11.021 12.415 13.80

It is observed from Table Il and Eq. (24) that, at a given temperature, the
average energy of a photon increases as the dimemimtreases. Again, our
results give the expected result for the= 3 case, i.e a3 (Bransden and Joachain,
2000).

3. SPECIAL CASES

In this section we discuss two special cases that are relevant to Planck’s
radiation law inN dimensions.

3.1. The Long Wavelength Limit

In the long wavelength limit, we can keep the first two terms in the expansion
of the exponential in the denominator of Eq. (15) and we get

. 2(N — 1)z N2
o, PO T) = TNy KT

which is Rayleigh—Jeans formula b dimensions. For th&él = 3 case, the result
in Eq. (25) yields the expected formula in the three-dimensional case, namely

(25)

lim p(h, T) =223 i—ZkT. (26)

large A

3.2. Wein's Displacement Law

We need to find the value of for which the Planck spectral distribution,
Eq. (15), is maximum. The requirement that/dt(1, T) = O gives

~ hc 1
T= m[l — exp(=hc/AkT)] (27)
By letting x = hc/AkT, Eq. (27) becomes
x=(N+2)(1-€), (28)

and upon writingk = (N + 2) — ¢, the above equation can be written as

(N+2)—e = (N+2)(1-e N, (29)
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By expanding®® ~ 1+ ¢ + ¢2/2, we find

g2 eN+2
Cre(1- 1=0, 30
2+8< N+2>+ (30)

whose positive root is

1/2
eN+2 eN+2 2

= -1)—-|(1- -2 . 31

¢ (N+2 ) [( N+2) D)

The defining equatior = hc/AKT implies that
hc _

K(IN+2—¢)

which is Wien’s displacement law iN dimensions anty is Wien’s displacement

constantinax is the wavelength at whicp(i, T) has its maximum value for a
given absolute temperature. Using Eq. (15), we have

Amax T = by, (32)

2(N — Dher N2 TN+2
T(N/2)(bn)N*2 ex — 17

p(Amax, T) = (33)
It is instructive to calculate, x, by, andp(Amax T) for several values oN. This
is given in Table I11.

It is noticed that as the dimensidt increasedy decreases, which implies
that Amax shifts toward lower values. This means that the system radiates at high
energy. This result is consistent with what was found in Section 2 that the average
energy of each photon increased\agcreases. It is also observed from Table I
that asN increaseso(Amax, T), at a given temperature, increases. This is also
consistent with our result in Section 2, which shows that the number of photons
per unit volume increases &kincreases.

Table lll. Values ofe, X, by, andp(Amax T) for Several Values oN

N € X bn (1073) p(Amaxs T)
2 0.07930 3.9207 3.6728 .389x 101674
3 0.03488 4.965 2.9002 M2 x 1071375
4 0.01509 5.9849 2.4061 832 x 1071076
5 0.00642 6.9936 2.0590 226x 10°7T7
6 0.00269 7.9973 1.8006 36 10°°T8
7 0.00111 8.9989 1.6002 .093x 107279
8 0.00045 9.9995 1.4401 3p5x 101710
9 0.00018 10.9998 1.3091 .082x 10°T1L
10 0.00007 11.9999 1.2000 %1% 107712
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4. DISCUSSION AND CONCLUSIONS

In summary, the Planck’s spectral distribution lanNrdimensional space is
derived and thus the energy density was obtained. Afterwards the total number of
photons per unit volume was calculated and was shown to be proportional to the
Nth power of absolute temperature. Numerical values of the proportionality factor
dn were calculated and was shown that this factor increases as the diméhsion
increases. Subsequently, the average energy of each photon was obtained and was
shown that itincreases &kincreases. Furthermore, Rayleigh—Jeans formuh in
dimensions is obtained when the large wavelength limit of the spectral distribution
function is taken. Finally, Wien's displacement law was derived and numerical
values of Wien’s displacement constant in higher dimensions were given. It is
shown that this constant decreases as the dimenbiocreases, which implies that
the wavelength at which the spectral distribution function is maximum shifts toward
lower values. This means that the photon gas radiates at high energy in higher
dimensions, which is consistent with our result concerning the average energy of
each photon. Itis also noticed that the maximum values of the spectral distribution
function, at a given temperature, increaseblascreases, which is consistent with
our result for the number of photons per unit volume in higher dimensions. We
emphasize that our main results yield the expected results for the three-dimensional
space.
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