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Abstract

The polynomial solution of the D-dimensional Schrodinger equation for a special case of Mie potential is obtained with an arbitrary
[ # 0 states. The exact bound state energies and their corresponding wave functions are calculated. The bound state (real) and positive
(imaginary) cases are also investigated. In addition, we have simply obtained the results from the solution of the Coulomb potential by an

appropriate transformation.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of the Schrédinger equation for any spher-
ically symmetric (central) potential has attracted attention
in the recent years [1-16]. The motivation in this direction
arises from considerable applications in the different fields
of the material science and solid state physics.

The anharmonic oscillator and H-atom (Coulombic)
problems are exactly two solvable potentials studied in
D-dimensional space for an arbitrary angular momentum
[ # 0 state. These two problems are related to each other
and hence the resulting second-order differential equation
has the normalized orthogonal polynomial function solu-
tion (cf. Ref. [17] and the references therein). On the other
hand, the pseudoharmonic and Mie-type potentials are
also exactly solvable potentials other than Coulombic
and anharmonic oscillator. Their wave functions vanish
at origin.
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The path integral solution of one-dimensional special
case of Mie potential, i.e., Mie-type potential which is sim-
ply Coulomb potential with an additional centrifugal
potential barrier was obtained before [18]. Further, the
Schrodinger equation for Mie potential was also solved
by using the 1/N expansion method [19].

In this letter we follow the method given in Refs.
[17,20,21] to get a complete normalized polynomial eigen-
solutions to the general D-dimensional Schrédinger equa-
tion for diatomic molecular systems interacting via Mie-
type potential. These eigensolutions can be reduced to a
three-dimensional case. We obtain the analytic solution
of the D-dimensional Schrédinger with Mie-type potential
for the / # 0 states by using a standard method. It is not
difficult to verify that our results can be also obtained from
the solution of the Coulomb potential by employing an
appropriate transformation.

This paper is organized as follows. In Section 2, we pres-
ent the analytic eigensolutions for both bound state (real)
and imaginary cases. We can also obtain the eigensolutions
of the Mie-type potential from the Coulombic solutions by
utilizing an appropriate transformation. Finally, some con-
cluding remarks are given in Section 3.
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2. The D-dimensional Schrodinger equation for the Mie-type
potential

The Mie-type potential [18] is

k ro J ] ro k
om0 1
(r) 0 L —k\r j—k\r (1)
where the parameter Dy determines the interaction energy
between two atoms in a solid at » = ry, and j > k is always

satisfied. Taking j = 2k and further setting £ = 1, the po-
tential reduces to the Coulombic-type form:
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where a; = 2Dyrg and a, = 2D,r} are two constants. The D-
dimensional Schrédinger equation for the central potential
(2) is given by [22-25]
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where p and E denote the reduced mass and energy of two
interacting particles, respectively. x is a D-dimensional po-
sition vector with the hyperspherical Cartesian components
X1,X,- -, xp." This allows us to obtain the following radial
wave equation [22-25]:

& D-1d [(I+D-2)
{dr2 rodr r?

2u a; @
+7 [Ew+ 2= 5] }R,,,(r) —0. (5)
Owing to the symmetry of the potential, the present prob-
lem is reduced to a one-dimensional radial eigenvalue prob-
lem which in turn can be solved by a standard way. We first

study the solution of the bound states, i.e., E,; < 0, in the

"It should be mentioned that such a definition was introduced by
Erdélyi early in 1950s (cf. [26], pp. 232235, Chapter 11) even though the
notation used by him is quite different from that by Louck and Chatterjee
[27,28].

region r € (0,00). Defining the following dimensionless
quantities:
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allows one to obtain the following one-dimensional Schro-
dinger equation:
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We now proceed to solve Eq. (7) which has an irregular sin-
gularity in the x — oo limit where its normalizable solu-
tions for bound states behave as [17,20]

(fx—zz - 2>an(x> =0, ®)

which suggests the general solution be expressed by
R,/(x) = A, exp(—px) + C, exp(fx). Considering the fact
that the function R, (x) must be bounded everywhere,
including at infinity and since f > 0(g,, > 0) from Eq.
(6), we should set C,; = 0. Therefore, we must have the fol-
lowing exponentially decreasing solution:

1im Ru(x) = Ao exp(—), ©)

where A4,; is the normalization constant. This result sug-
gests that we look for a trial solution for Eq. (7) having
the general form

Ru(x) = Ny exp(—pr)g(v), (10)

where N,; is another normalization constant. Inserting this
back into Eq. (7), we find that the function g(x) satisfies the
following differential equation:

e+ (22 2)ew
. (2y —(x -Dp +l(l+D_2))g(x) =0,

x2

(11)

where the prime refers to the derivative with respect to x.
Because exponential behavior has already been taken out,
one expects that the solution for g(x) is a polynomial. In-
deed, Eq. (7) has a singularity at x — 0, the substitution
of the trial solution g(x) = x?, provides the positive root
solution:

qz—(D;2)+\/(z+DT_2) + 92 (12)

As g > 0, the wave function vanishes at x = 0, correspond-
ing to the strong repulsion between the two atoms. It is rea-
sonable to substitute

R,/(x) = Nx? exp(—px)h(x), (13)
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into Eq. (7), in order to obtain

R (x) + <2q i f L 2ﬁ>h/(x)
- (o208
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(14)

Setting the numerator of x~2 term equal to zero, in the last
equation, and solving the resulting quadratic equation
leads again to the solution given in Eq. (12). Hence, one
obtains the following wave function A(x) satisfying

xh"(x) + [2g + D — 1 — 2Bx|H (x)
+ [29* = 2¢9B — (D — 1)B]h(x) = 0. (15)

The confluent series, for large values of x, is proportional
to exp(2fx) so that R, (x) diverges for x — oo if the series
1F1 does not break off. If it does, |F is a polynomial and
R,/(x) — 0 for x — oo becomes normalizable. Substitution
of the following series form [20]

h(x) = %Cixi, (16)

i=0
into Eq. (15) gives
CH—I 1
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which leads to a divergent wave function if not truncated to
a maximum value for i. Nevertheless, the wave functions
should be convergent everywhere since i and / are finite
and consequently it follows
D—1)

L= r_,

lmax+q+ 2 ﬁ

n=0,1,2,....

Imax = 11;
(18)
Moreover, inserting the following abbreviations
D-1
s=2pme=(q+250)i cn=2-PIH (19)

in Eq. (15), then it reduces to the general type of Kummer’s
(Confluent Hypergeometric) differential equation of the
form

zh"(2) + [c — zJW'(z) + nh(x) =0; n=0,1,2,.... (20)

Essentially, the solution of Eq. (20) is given by
,y2
h(x) = 1Fi(a,c;z) = 1F, (—n;Zﬁ - 2n;2ﬁx)

1) (g, (21)

where Fi(—n,v+ 1;z) = L\"(z) denotes the Kummer’s
function. In addition, we may also rewrite Eq. (15) in the
following general form

zZh"(z) + [v+ 1 =zl (2) + nh(x) = 0, (22)

where v = 2q + D — 2 and 5y, :%—q—T— 0,1,2,.

If n is a non-negative integer, then a finite polynomial solu-
tion is allowed. This part of wave function combined with
the rest of R,;(x) yields a normalizable (physical) solution.
In particular, the solution of Eq. (22) is proportional to the
generalized Laguerre polynomial L!"(2fx). Combining
everything we finally arrive at the ansatz for the wave func-
tions with the following form:
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e
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where % =n +3+4/( —|—DT’2)2 + 2. Since the radial vol-

ume element in a D-dimensional space is #°~'dr, one ob-
tains [17]
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or equivalently
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On the other hand, following Ref. [21], we obtain the solu-
tions of the Mie-type potential from the solution of the
Coulomb potential by employing the transformation,

L(L+D—2) = I(14+D—2)+22% Thus, Eq. (5) can be
reduced to the following Schrodmger like equation:
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(D-2) D—2\" 2uDyr?
A=a and L:—TJr I+ 5 + = 0
(27)

It should be mentioned that the last equation is the usual
case of the Schrodinger equation with a Coulombic poten-

tial, V'(r) = —4. The bound state energy levels of Eq. (26)
are [29,30]

2
EnL:_ #A 2 7’120,1,2,"', (28)

20 (n+251 + 1)
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and the wave functions are

Uity 2 (0) = Awr’ exp(=aur)LEE 072 2eun) Vi, (R),
(29)
where 4, is a normalization constant and ¥ <LL1>-~LD,2 (X) is the

angular part of the wave functions. With the aid of Eq.
(27), we may rewrite Eq. (28) in a more explicit form as

2 D22
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2.1. Negative energy

For bound state case, i.e., § > 0, the solution given by
means of Eq. (23), in which R,;(x) — 0 for x — oo, becomes
convergent and normalized. Further, Eq. (30) with the aid
of Eq. (6) can be rewritten as [31]

-2
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Since the parameter y > 1 for most diatomic molecules, we
may expand Eq. (31) into powers of 1/7 as
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Moreover, the Mie-type potential given by Eq. (2) can be
expanded about its minimum at » = r, as

(r—ro)*

=D (33)

Hence, with classical frequency for small harmonic
vibrations,

2D,
w= —207 (34)
Hry

and the moment of inertia
I = ,LU’%7 (35)

we finally arrive at
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2.2. Positive energy

For f <0, ie., E,; >0, it is now no longer real but
purely complex, fx = —ixr with x = % Hence, the

wave functions become [31]
. D 1 i?
Ry (r) = A (r/ro)" exp(ixr), Fy <q 272" L
2g+D —1; 2iKr>, (37)

which vanishes at » = 0. Its asymptotic may be found from
the formula [31]
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which is true for the whole complex z-plane cut along the
positive imaginary axis. The total wave functions become

“n(o-2424) T(2g+D-1
R, (r) = Cyr exp(ir) | (q w22 M

iy? _
rg+2+27)
. g2 00 T(2¢g+D—1 i
X (—211(7’) q+hl'0 T4 ( q+2 1) e721hr
iy D—
F(q ko + T)
O oy S 2u D?
X (=2irer)TRTTI =y [ 20 39
e ] e W B )

Finally, for this system, the energy states become

-2
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3. Conclusions

We have obtained the solutions of the D-dimensional
Schro dinger equation for the Mie-type potential. Consider-
ing the special case of the Mie potential with j = 2k where
k = 1, the problem has been reduced into Coulomb potential
with the additional centrifugal potential barrier of order
1/r*. The exact solutions for this particular case have been
obtained from the known Hydrogenic solution by using a
convenient transformation [17]. In addition, we have calcu-
lated the eigenvalues and the corresponding wave functions
for any quantum-mechanical system bounded by such spe-
cial case of the Mie potential. We have also studied the neg-
ative (bound state) and positive (imaginary) cases.

Taking the potential parameters a; =1 and a, =0 in
Eq. (2), this reduces the present analysis to the Coulombic
results. Our calculations are similar to the previous calcula-
tions given in Refs. [17-19]. On the other hand, for this
particular case, the energy terms in the expansion (28) take
the following form
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which is the exact non-relativistic H-atom energy expres-
sion. Putting D=3, Dy =V,/2, ry=0, A=16%V, and
B =0V, in Eq. (31), gives

-2
5 12
E, = _h—’;BZ 20 + 1+ [(2l+ 1)’ +2—“ﬂ :

n=n—-s—1=1,2,3... (42)

which consequently recovers the formula (28) in Ref. [18]
and also formula (19) in Ref. [19]. It should be pointed
out that Eq. (42), in the H-atom case, gives —0.5 a.u. ex-
actly. Finally, we emphasize that the present results repro-
duce exactly the path integral, 1/N-expansion, and the
non-relativistic Schrodinger equation solutions.
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