
FIG 7 Butyrate and propionate inhibit 3T3-L1 adipogenesis. (A) Oil red O staining of 3T3-L1 adipocytes at day 10 treated with SCFA (8 mM) from day
0. The mix contained 2.67 mM of each of the SCFA. (B) Expression of differentiation markers and PPAR� targets was determined by qPCR at day 4. (C)
Concentration-dependent effect of butyrate on 3T3-L1 differentiation when added at day 0, as determined by expression of differentiation markers at day
4. (D) Effect of SCFA (8 mM) and rosiglitazone (1 �M) on expression of PPAR� targets in fully differentiated 3T3-L1 adipocytes. Cells were treated for
24 h. (E) Effect of SCFA (8 mM) and rosiglitazone (1 �M) added on day 1 on human SGBS adipocyte differentiation and expression of adipogenesis
marker genes at day 15. Error bars represent SD. An asterisk indicates a result significantly different from that of the control according to Student’s t test
(P 	 0.05).

Short-Chain Fatty Acids Induce ANGPTL4 via PPAR�

April 2013 Volume 33 Number 7 mcb.asm.org 1313

 on A
pril 8, 2015 by A

N
N

A
JA

H
 U

N
IV

E
R

S
IT

Y
http://m

cb.asm
.org/

D
ow

nloaded from
 



DISCUSSION

Here, we explored the mechanisms involved in regulation of
ANGPTL4 synthesis in human colon. The two major findings are
(i) ANGPTL4 synthesis is highly stimulated by SCFA and (ii)
SCFA transactivate and bind to PPAR�, likely by serving as selec-
tive PPAR modulators. Overall, the data indicate that SCFA in-
duce ANGPTL4 mRNA expression and protein secretion in colon
cells by activating PPAR�. Butyrate was the strongest activator
followed by propionate, whereas acetate only weakly stimulated
PPAR� and ANGPTL4.

Butyrate is a potent histone deacetylase inhibitor, which likely
accounts for most of the observed effects of butyrate in colon
adenocarcinoma cells as revealed by microarray. Indeed, a far larger
number of genes was regulated by butyrate than by rosiglitazone,
suggesting that PPAR� activation is quantitatively a relatively minor
pathway in gene regulation by SCFA, at least in T84 cells.

Two previous studies have hinted at potential activation of
PPAR� by butyrate (55, 56), yet the concept has largely eluded
recognition in the field. In contrast, long-chain (unsaturated)
fatty acids (LCFA) are well-known activators of PPAR� (57). They
activate PPAR� at concentrations in the low- to medium-micro-
molar range and thus serve as high-affinity agonists of PPAR�. In
contrast, concentrations of SCFA needed to activate PPAR� are in
the high-micromolar to low-millimolar range. Due to the low
affinity, the in vivo relevance of PPAR� activation by SCFA is likely
insignificant in most human tissues, including adipose tissue.

However, the situation is different in the GI tract and in liver (58).
Indeed, SCFA concentrations approaching or even exceeding 100
mM have been reported in human colon and cecum (59). In
mouse intestine, we measured total SCFA concentrations of
around 40 mM, which would result in substantial activation of
PPAR�. Accordingly, we believe that activation of PPAR� by
SCFA is physiologically meaningful only in human cecum and
colon and perhaps in liver.

Interestingly, medium-chain fatty acids (MCFA; C8 to C10)
were recently shown to act as modulators of PPAR� (31). Similar
to the data reported here for SCFA, the MCFA decanoic acid
bound and (trans)activated PPAR�, and contrary to synthetic
PPAR� agonists and LCFA, decanoic acid inhibited adipogenesis.
Furthermore, it was shown that the hydrocarbon tail of decanoic
acid occupies a completely different pocket than the tail of LCFA
or rosiglitazone. Remarkably, even though no specific orienta-
tional or positional restraints were used to guide the binding of
butyrate in the large PPAR� binding site, the most favorable so-
lution to the docking was very similar to that of decanoic acid. In
general, the best solutions of the docking protocol displayed high-
quality interactions with the PPAR� receptor, with a slightly dif-
ferent orientation of the butyrate carboxylic acid group in the
binding site compared to decanoic acid. The model shows that
butyrate is stabilized in the binding site by interactions with pro-
tein side chains. Since the buried surface area and interaction en-
ergy with the receptor are less than those for decanoic acid, the
affinity of the complex with butyrate is predicted to be weaker
than that with decanoic acid.

PPAR� has an antineoplastic effect in many different tumor
types, yet its role in colorectal tumors remains controversial (60).
In contrast, the anti-inflammatory effect of PPAR� in the colon is
well recognized (61). PPAR� ligands were shown to suppress in-
flammatory gene expression in colonic cell lines by suppressing
NF-�B and reduce inflammation in a mouse model of inflamma-
tory bowel disease (62, 63). In addition, PPAR� in colonic epithe-
lial cells was shown to protect against experimental inflammatory
bowel disease (49). Similarly, SCFA, especially butyrate, seem to
have broad anti-inflammatory properties by altering immune cell
migration, adhesion, and cytokine expression and by affecting cell
proliferation and apoptosis (64). Accordingly, it can be hypothe-
sized that the anti-inflammatory properties of SCFA in the colon
are at least partially conveyed by PPAR� (65).

Previously, ANGPTL4 expression in the human colon cell line
HT29 was found to be stimulated by heat-stable factors secreted
by the probiotic bacteria Lactobacillus strain F19 in a PPAR�- and
PPAR�-dependent manner (20). Based on data presented here, it
seems highly plausible that the secreted factors represent SCFA.
Thus, probiotic and resident microbiota may be able to influence
ANGPTL4 production via production of SCFA and subsequent
activation of PPAR�. Backhed reported that colonization of the
gut of germ-free mice with microbiota reduces Angptl4 expres-
sion in mouse intestine (2). Inasmuch as SCFA stimulate
ANGPTL4 expression, the suppressive effect of colonization on
ANGPTL4 must be mediated by a mechanism other than SCFA.

It has been suggested that alterations in intestinal Angptl4 ex-
pression influence adipose LPL activity and thereby impact adi-
pose mass (2). SCFA may thus inhibit fat storage by stimulating
release of ANGPTL4. Whether ANGPTL4 also has a functional
role in the intestine is unclear. Since the intestine does not express
LPL, the local role of ANGPTL4 in intestine must extend beyond

FIG 8 Inulin feeding activates PPAR in colon. Mice were fed a diet enriched
with inulin for 10 days. (A) Lumenal concentration of SCFA in the colon as
determined by gas chromatography. Error bars represent SEM. (B) Gene ex-
pression changes in colon illustrated by heat map of genes belonging to the
most significantly induced gene set, termed PPAR targets. SLR, signal log ratio.
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LPL inhibition. LPL inhibition is conferred exclusively by the N-
terminal domain of ANGPTL4, whereas the C-terminal fragment
of ANGPTL4 acts as a ligand for integrins to alter cellular signaling
(66–68).

In conclusion, we show that SCFA potently stimulate
ANGPTL4 production in human colon cell lines via PPAR�. Our
data point to activation of PPARs as a novel mechanism of gene
regulation by SCFA in the colon, in addition to other mechanisms
of action of SCFA.
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